JPH01145366A - Oxide-based superconducting ceramics - Google Patents

Oxide-based superconducting ceramics

Info

Publication number
JPH01145366A
JPH01145366A JP87305284A JP30528487A JPH01145366A JP H01145366 A JPH01145366 A JP H01145366A JP 87305284 A JP87305284 A JP 87305284A JP 30528487 A JP30528487 A JP 30528487A JP H01145366 A JPH01145366 A JP H01145366A
Authority
JP
Japan
Prior art keywords
earth metal
critical temperature
superconducting ceramics
oxide
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP87305284A
Other languages
Japanese (ja)
Inventor
Keiji Kobayashi
啓二 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP87305284A priority Critical patent/JPH01145366A/en
Publication of JPH01145366A publication Critical patent/JPH01145366A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To enhance the critical temperature and stabilize the characteristics of a rare earth metal-alkaline earth metal-copper-oxygen-based superconducting ceramics having oxygen defect at the liquid site for Cu<++> ion, by using plural kinds of rare earth metal and alkaline earth metal respectively. CONSTITUTION:In an A-B-Cu-O-based oxide superconducting ceramics having oxygen defect at the liquid site for Cu<++> ion, two or more kinds of rare earth metal as the A (e.g., Y, La, Gd) and two or more kinds of alkaline earth metal as the B (e.g., Ba, Mg, Sr) are incorporated, respectively. For example, the objective superconducting ceramics is expressed by the formula I, II or III, having a critical temperature of >=95 deg.K and giving Meissner effect near this temperature, also excellent in the stability of superconducting characteristics.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) ゛本発明は、ペロブスカイト型結晶構造を有する酸化物
超電導セラミックスに関する。
Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) The present invention relates to an oxide superconducting ceramic having a perovskite crystal structure.

(従来の技術) 最近、液体窒素温度程度或いはそれ以上の温度で超電導
状態を示す酸化物超電導セラミックスが注目されている
。これらの多くは、希土類元素を含有するペロブスカイ
ト型酸化物である。代表的には例えば、Y(イツトリウ
ム)−Ba(バリウム)−Cu(銅)系の酸化物超電導
セラミックスがある。
(Prior Art) Recently, oxide superconducting ceramics that exhibit a superconducting state at temperatures around or higher than the temperature of liquid nitrogen have attracted attention. Many of these are perovskite-type oxides containing rare earth elements. A typical example is Y (yttrium)-Ba (barium)-Cu (copper)-based oxide superconducting ceramics.

しかしこれまでに発表されている高温超電導セラミック
スは、臨界温度Tcが高々95にである。
However, the high temperature superconducting ceramics announced so far have a critical temperature Tc of 95 at most.

臨界温度がこれより高いものもまれに公表されているが
、それらは十分なマイスナー効果が確認されていなかっ
たり、或いは極めて特性が不安定で経時変化が大きい、
といった問題があった。今後、高温酸化物超電導セラミ
ックスを工業上実用化するためには、更に臨界温度が高
く、しかも特性の安定性と信頼性が高いものであること
が望まれる。
Products with a critical temperature higher than this have been published on rare occasions, but in these cases sufficient Meissner effect has not been confirmed, or the properties are extremely unstable and change significantly over time.
There was such a problem. In order to put high-temperature oxide superconducting ceramics into industrial use in the future, it is desired that they have even higher critical temperatures and more stable and reliable characteristics.

(発明が解決しようとする問題点) 以上のように従来の酸化物超電導セラミックスは、未だ
臨界温度が十分に高いとは言えず、また特性も不安定で
あるという聞届があった。
(Problems to be Solved by the Invention) As described above, it has been reported that the critical temperature of conventional oxide superconducting ceramics is not yet sufficiently high, and the characteristics are also unstable.

本発明は上記の点に鑑み、臨界温度が高く、且つ安定し
た特性を示す酸化物超電導セラミックスを提供すること
を目的とする。
In view of the above points, an object of the present invention is to provide an oxide superconducting ceramic having a high critical temperature and exhibiting stable characteristics.

[発明の構成] (問題点を解決するための手段) 本発明は、Cu+◆イオンの配位子位置に酸素欠陥を有
するA−B−Cu−0系の酸化物超電導セラミックスに
おいて、Aとして二種類以上の希土類元素を有し、且っ
Bとして二種類以上のアルカリ土類金属元素を有するこ
とを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) The present invention provides an A-B-Cu-0 based oxide superconducting ceramic having an oxygen defect at the ligand position of the Cu+◆ ion. It is characterized by having more than one type of rare earth element, and having two or more types of alkaline earth metal elements as B.

(作用) 本発明のようなセラミックス成分とすることにより、臨
界温度95に以上が得られ、またその臨界温度付近でマ
イスナー効果が確認され、超電導特性の安定性も優れた
ものが得られる。
(Function) By using the ceramic component of the present invention, a critical temperature of 95 or above can be obtained, the Meissner effect is confirmed near the critical temperature, and excellent stability of superconducting properties can be obtained.

(実施例) 以下、本発明のいくつかの実施例を具体的に説明する。(Example) Hereinafter, some embodiments of the present invention will be specifically described.

第1図は各実施例の酸化物セラミックスの磁化率特性を
測定した結果である。
FIG. 1 shows the results of measuring the magnetic susceptibility characteristics of the oxide ceramics of each example.

実施例I G d、5L ao、5M go、5B al、5Cu
30 、の成分を有するセラミックス材料を、1050
℃の水素還元雰囲気中で5時間焼結し、その後空気中で
600℃、30分のアニールを施した。この酸化物セラ
ミックスは、X線回折の測定から、ペロブスカイト系の
結晶構造を有することが確認された。臨界温度はTc−
98にであった。第1図に示したように、この臨界温度
付近で反磁性を示している。
Example I G d, 5L ao, 5M go, 5B al, 5Cu
A ceramic material having a composition of 1050
It was sintered for 5 hours in a hydrogen reducing atmosphere at 600° C. and then annealed in air at 600° C. for 30 minutes. This oxide ceramic was confirmed to have a perovskite crystal structure from X-ray diffraction measurements. The critical temperature is Tc-
It was in 1998. As shown in FIG. 1, it exhibits diamagnetic properties near this critical temperature.

特性の安定性も優れていることが確認された。It was confirmed that the stability of properties was also excellent.

実施例2 Nd  Sn  Ba  Sr  CuOの成分を0.
5 0.5 1.5 0.5 3 6.5有するセラミ
ックス材料を、1000℃の002ガス雰囲気中で5時
間焼結し、その後空気中で550℃、30分のアニール
を施した。アニール後、徐冷した。この酸化物セラミッ
クスは、臨界温度はTc=110にであった。この臨界
温度付近で反磁性を示した。特性の安定性も優れている
ことが確認された。
Example 2 The components of Nd Sn Ba Sr CuO were reduced to 0.
5 0.5 1.5 0.5 3 6.5 was sintered in a 002 gas atmosphere at 1000°C for 5 hours, and then annealed in air at 550°C for 30 minutes. After annealing, it was slowly cooled. The critical temperature of this oxide ceramic was Tc=110. It exhibited diamagnetic properties near this critical temperature. It was confirmed that the stability of properties was also excellent.

実施例3 Yb  Y   Ba  Mg  CuOの成分を0.
5 0.5  1.5 0.5 3 6.5有するセラ
ミックス材料を、空気中で1050℃。
Example 3 The components of Yb Y Ba Mg CuO were reduced to 0.
5 0.5 1.5 0.5 3 6.5 ceramic material at 1050°C in air.

5時間焼結し、その後300℃、30分のアニールを施
した。得られた酸化物セラミックスは、X線回折の結果
、ペロブスカイト構造を有することが確認された。臨界
温度はTc−101にであった。この臨界温度付近で反
磁性を示した。特性の安定性も優れていることが確認さ
れた。
It was sintered for 5 hours, and then annealed at 300°C for 30 minutes. As a result of X-ray diffraction, it was confirmed that the obtained oxide ceramic had a perovskite structure. The critical temperature was at Tc-101. It exhibited diamagnetic properties near this critical temperature. It was confirmed that the stability of properties was also excellent.

実施例4 Yb  Sc  Ba  Cr  CuOの成分を有0
.5 0.5 1.5 0.5 8 7するセラミック
ス材料を、空気中で1100℃。
Example 4 Contains 0 components of Yb Sc Ba Cr CuO
.. 5 0.5 1.5 0.5 8 7 ceramic material in air at 1100°C.

5時間焼結し、その後250℃、1時間のアニールを施
した。得られた酸化物セラミックスは、X線回折の結果
、ペロブスカイト構造を有することが確認された。臨界
温度はTc−97にであった。
It was sintered for 5 hours, and then annealed at 250°C for 1 hour. As a result of X-ray diffraction, it was confirmed that the obtained oxide ceramic had a perovskite structure. The critical temperature was at Tc-97.

この臨界温度付近で反磁性を示した。特性の安定性も優
れていることが確認された。
It exhibited diamagnetic properties near this critical temperature. It was confirmed that the stability of properties was also excellent.

〔発明の効果] 以上のように本発明によれば、95に以上の臨界温度を
示し、この臨界温度付近でマイスナー効果を示し、安定
した特性が得られる酸化物超電導セラミックスを提供す
ることができる。
[Effects of the Invention] As described above, according to the present invention, it is possible to provide an oxide superconducting ceramic that exhibits a critical temperature of 95 or higher, exhibits the Meissner effect near this critical temperature, and has stable characteristics. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例の酸化物セラミックスの磁化
率特性を示す。 出願人代理人 弁理士 鈴江武彦
FIG. 1 shows the magnetic susceptibility characteristics of the oxide ceramics of Examples of the present invention. Applicant's agent Patent attorney Takehiko Suzue

Claims (1)

【特許請求の範囲】[Claims]  Cu^+^+イオンの配位子位置に酸素欠陥を有する
A−B−Cu−O系の酸化物超電導セラミックスにおい
て、Aとして二種類以上の希土類元素を有し、且つBと
して二種類以上のアルカリ土類金属を有することを特徴
とする酸化物超電導セラミックス。
In A-B-Cu-O based oxide superconducting ceramics having oxygen defects at the ligand positions of Cu^+^+ ions, A contains two or more rare earth elements, and B contains two or more rare earth elements. An oxide superconducting ceramic characterized by containing an alkaline earth metal.
JP87305284A 1987-12-02 1987-12-02 Oxide-based superconducting ceramics Pending JPH01145366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP87305284A JPH01145366A (en) 1987-12-02 1987-12-02 Oxide-based superconducting ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP87305284A JPH01145366A (en) 1987-12-02 1987-12-02 Oxide-based superconducting ceramics

Publications (1)

Publication Number Publication Date
JPH01145366A true JPH01145366A (en) 1989-06-07

Family

ID=17943244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP87305284A Pending JPH01145366A (en) 1987-12-02 1987-12-02 Oxide-based superconducting ceramics

Country Status (1)

Country Link
JP (1) JPH01145366A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008204958A (en) * 2008-05-07 2008-09-04 Toshiba Corp Oxide superconductor and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008204958A (en) * 2008-05-07 2008-09-04 Toshiba Corp Oxide superconductor and its manufacturing method

Similar Documents

Publication Publication Date Title
Eylem et al. Structural, magnetic, and transport properties of RxBa1-xTiO3-. delta. solid solutions, where R= La, Nd, Gd, Er, and Y: rare-earth-dependent metal-to-semiconductor transitions
US5317007A (en) High-Tc oxide superconductor and method for producing the same
Majewski et al. Phase Diagram Studies in the Systems La2O3–SrO–Ga2O3, La2O3–MgO–Ga2O3, and SrO–MgO–Ga2O3 at 1400 C in Air
Sakai et al. Superconductivity in (Pb/Cu)-“1222” copper oxides
JP2719518B2 (en) Manufacturing method of oxide superconducting material
JPH01145366A (en) Oxide-based superconducting ceramics
KR900004047A (en) Deposition Method of Bi-based Composite Oxide Superconducting Thin Films
JPS63270317A (en) Oxide superconductor
JPS63301424A (en) Manufacture of oxide superconductor membrane
JPS63315566A (en) Perovskite type oxide superconducting material having high jc and tc
JPH0292819A (en) Oxide superconductor
JPH01133924A (en) Perovskite type oxide superconductor having silver-containing oxygen-defective triple structure
JPH01111766A (en) Ceramic superconductive at high temperature
JPH04357161A (en) Oxide superconductor material and its production
JP2854338B2 (en) Copper oxide superconductor
JPH02296760A (en) Porcelain composition of oxide superconductor and its production
JPH01140622A (en) Device having superconducting film
JPH0230618A (en) Oxide high-temperature superconductor
KR100265031B1 (en) A na-intervened superconductors and their preparing method
JPS63291815A (en) Production of superconductor
KR930002579B1 (en) Manufacturing method of thick film super conductor
JPS63230524A (en) Superconductive material
JPS63230525A (en) Superconductive material
JPH01111719A (en) Process for forming superconductive thin film
JPH02199022A (en) Oxide superconductor