JP2008204958A - Oxide superconductor and its manufacturing method - Google Patents

Oxide superconductor and its manufacturing method Download PDF

Info

Publication number
JP2008204958A
JP2008204958A JP2008121694A JP2008121694A JP2008204958A JP 2008204958 A JP2008204958 A JP 2008204958A JP 2008121694 A JP2008121694 A JP 2008121694A JP 2008121694 A JP2008121694 A JP 2008121694A JP 2008204958 A JP2008204958 A JP 2008204958A
Authority
JP
Japan
Prior art keywords
solution
gel
acetate
mixed
oxide superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008121694A
Other languages
Japanese (ja)
Other versions
JP5172456B2 (en
Inventor
Takeshi Araki
猛司 荒木
Koichi Nakao
公一 中尾
Izumi Hirabayashi
泉 平林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
International Superconductivity Technology Center
Original Assignee
Toshiba Corp
International Superconductivity Technology Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, International Superconductivity Technology Center filed Critical Toshiba Corp
Priority to JP2008121694A priority Critical patent/JP5172456B2/en
Publication of JP2008204958A publication Critical patent/JP2008204958A/en
Application granted granted Critical
Publication of JP5172456B2 publication Critical patent/JP5172456B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oxide superconductor, which includes c-axis oriented particles at a high rate when a thick film is formed on a substrate and shows high characteristics, capable of adjusting a lattice constant of a mixed superconductor film obtained by mixing raw material solution of a plurality of Ln system superconductors. <P>SOLUTION: The oxide superconductor, in which main components are represented by a general expression LnBa<SB>2</SB>Cu<SB>3</SB>O<SB>7-x</SB>(here, Ln is two elements or more selected from a group of Gd, Tb, Dy, Ho, Er, Tm, and Y, and a content of each element is 10 to 90 mol%), includes fluorine with a molar ratio of 10<SP>-2</SP>to 10<SP>-6</SP>of copper. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、酸化物超電導体及びその製造方法に関する。   The present invention relates to an oxide superconductor and a method for manufacturing the same.

最近実用化が進められている高臨界電流酸化物超電導材料は、核融合炉、磁気浮上列車、加速器、磁気診断装置(MRI)などへの有用な応用が期待され、一部は既に実用化がなされている。   High critical current oxide superconducting materials that have recently been put into practical use are expected to be usefully applied to fusion reactors, magnetic levitation trains, accelerators, magnetic diagnostic equipment (MRI), and some of them have already been put into practical use. Has been made.

酸化物超電導体には主にビスマス系、イットリウム系(以下、Y系と記載する)超電導体などがあるが、磁場中特性が良好なY系超電導体が実用化に近い材料として大いに注目を集めている。Y系超電導体とはYBa2Cu37-xで代表される酸化物のことであり、イットリウムをランタノイド族の一部元素で置換した構造の酸化物も磁場特性に優れた超電導体であることが知られている。そのランタノイド族元素としては、ランタン、ネオジウム、サマリウム、ガドリニウム、テルビウム、ディスプロシウム、ホルミウム、エルビウム、ツリウム、およびイッテルビウムなどが知られている。 Oxide superconductors mainly include bismuth-based and yttrium-based (hereinafter referred to as Y-based) superconductors, but Y-based superconductors with good magnetic field characteristics have attracted much attention as materials that are close to practical use. ing. The Y-based superconductor is an oxide represented by YBa 2 Cu 3 O 7-x , and an oxide having a structure in which yttrium is substituted with a partial element of the lanthanoid group is also a superconductor excellent in magnetic field characteristics. It is known. As the lanthanoid group elements, lanthanum, neodymium, samarium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and the like are known.

Y系超電導体の製造方法としてはパルスレーザー堆積(PLD)法、液相成長堆積(LPE)法、電子ビーム(EB)法、金属有機物堆積(MOD)法などが挙げられる。このうち、非真空で低コストのMOD法は近年脚光を浴び、米国や日本を中心に盛んに研究がなされている。そのMOD法の中でもトリフルオロ酢酸を用いるMOD法(以下、TFA−MOD法と称す)は、近年、高い特性を有する超電導体を製造できることが報告されている。   Examples of the method for producing the Y-based superconductor include a pulse laser deposition (PLD) method, a liquid phase growth deposition (LPE) method, an electron beam (EB) method, and a metal organic matter deposition (MOD) method. Among these, the non-vacuum and low-cost MOD method has been in the spotlight in recent years, and is actively researched mainly in the United States and Japan. Among the MOD methods, the MOD method using trifluoroacetic acid (hereinafter referred to as TFA-MOD method) has recently been reported to be able to produce a superconductor having high characteristics.

MOD法は、化学溶液をスピンコート法やディップコート法などで単結晶基板上へ溶液を塗布および乾燥することによりゲル膜を得て、そのゲル膜を仮焼および本焼の2回の常圧熱処理及び酸素アニールにより超電導体を得る方法である。この方法では、400〜500℃で行われる仮焼時に前駆体中の有機物を分解して酸化物とし、700〜900℃で行われる本焼時に酸化物層の2軸配向組織を形成する。   In the MOD method, a gel film is obtained by applying and drying a chemical solution onto a single crystal substrate by spin coating or dip coating, and the gel film is subjected to two normal pressures of calcination and main firing. In this method, a superconductor is obtained by heat treatment and oxygen annealing. In this method, the organic substance in the precursor is decomposed into an oxide during calcination performed at 400 to 500 ° C., and a biaxially oriented structure of the oxide layer is formed during the main calcination performed at 700 to 900 ° C.

MOD法では、仮焼後に微結晶が形成され、本焼時にその微結晶を起点として無秩序な配向組織が形成され、膜厚が100nm以上になるとその影響が特に大きくなる点が問題になる。この方法で、良好な配向組織を得るためには、仮焼後の膜中で熱分解後の酸化物などが結晶成長して微結晶が形成されないように、ごく短時間で急熱急冷することが重要になる。この急熱急冷は試料を電気炉に出し入れすることにより行うが、中央部と端部で加熱の度合が異なるために均一な膜を得るのが困難であった。そのためこの方法は精密な温度制御を可能とする大型の電気炉が必要となり、しかも少なからず存在する異相により高特性超電導体を再現性よく得るのが困難であった。   In the MOD method, microcrystals are formed after calcination, and a disorderly oriented structure is formed starting from the microcrystals during main calcination, and the influence becomes particularly large when the film thickness is 100 nm or more. In this method, in order to obtain a good orientation structure, rapid heating and quenching are performed in a very short time so that oxides after pyrolysis grow in the film after calcination and fine crystals are not formed. Becomes important. This rapid heating / cooling is performed by putting a sample in and out of an electric furnace, but it is difficult to obtain a uniform film because the degree of heating differs between the central portion and the end portion. For this reason, this method requires a large electric furnace capable of precise temperature control, and it is difficult to obtain a high-performance superconductor with good reproducibility due to the presence of a different phase.

上記MOD法を改良し、仮焼膜中の微結晶が本焼後の熱処理組織に影響しない方法として、トリフルオロ酢酸塩を用いるTFA−MOD法が開発された。TFA−MOD法は1988年にGuptaらによって最初に報告されたが、当時は出発原料の影響で溶液の純度が低かったと考えられ、他のMOD法と同様、さほど際立った特性や再現性を示さなかった。その後、TFA−MOD法はMcIntyreらにより改良され、77K,0Tでの超電導臨界電流値(Jc)が1MA/cm2を超えるまでに至った。 The TFA-MOD method using trifluoroacetate has been developed as a method for improving the MOD method so that the microcrystals in the calcined film do not affect the heat-treated structure after the main calcination. The TFA-MOD method was first reported by Gupta et al. In 1988, but at that time, it was considered that the purity of the solution was low due to the influence of the starting materials, and as with other MOD methods, it showed very remarkable characteristics and reproducibility. There wasn't. Thereafter, the TFA-MOD method was improved by McIntyre et al., And the superconducting critical current value (J c ) at 77 K, 0 T exceeded 1 MA / cm 2 .

TFA−MOD法はMOD法でありながら仮焼膜中微結晶が本焼後の配向に影響を及ぼさない。TEM観察によれば、仮焼膜の断面には多数のナノ微結晶が存在しているが、本焼後にはそれが全て解消し、再現性良く2軸配向組織が形成されることが確認されている(非特許文献1)。そのため通常のMOD法とは異なり、10時間以上に及ぶ仮焼で、超電導特性に有害な炭素をほぼ完全に追い出すことが可能であり、高い特性を有する超電導体が再現性よく得られる(非特許文献2)。当初は本焼時の成長機構が未解明であったが、最近になりフッ素が混入された結果として擬似液相ネットワークが形成され、仮焼膜中微結晶が解消されることが解明された。それによりTFA−MOD法が通常のMOD法にない再現性と高特性を示すことが原理的にも明らかになった(非特許文献3)。形成された疑似液相ネットワークによる成長では化学平衡反応が深く関与するため膜中に微量のフッ素が残留することもTFA−MOD法の特徴の一つとなっている。ただしこの微量の残留フッ素は超電導特性を低下させるものではないことも明らかになっている。   Although the TFA-MOD method is a MOD method, fine crystals in the calcined film do not affect the orientation after the main baking. According to the TEM observation, there are many nanocrystallites in the cross section of the calcined film, but it was confirmed that all of them disappeared after the firing and a biaxially oriented structure was formed with good reproducibility. (Non-Patent Document 1). Therefore, unlike the normal MOD method, carbon that is harmful to the superconducting properties can be almost completely removed by calcination for 10 hours or more, and a superconductor having high properties can be obtained with good reproducibility (non-patented). Reference 2). Initially, the growth mechanism during firing was unclear, but recently it was revealed that a pseudo liquid phase network was formed as a result of the inclusion of fluorine, and microcrystals in the calcined film were eliminated. As a result, it has been clarified in principle that the TFA-MOD method exhibits reproducibility and high characteristics not found in the normal MOD method (Non-patent Document 3). One of the characteristics of the TFA-MOD method is that a trace amount of fluorine remains in the film because the chemical equilibrium reaction is deeply involved in the growth by the formed pseudo liquid phase network. However, it has also been clarified that this small amount of residual fluorine does not deteriorate the superconducting properties.

TFA−MOD法によるY系超電導体成膜における高特性と驚異的な再現性は、a/b軸配向粒子の低減がその一因になっていると考えられている。a/b軸配向粒子は、基板面に平行な方向へ超電導電流が流れるc軸配向粒子が横倒しになったものであり、基板面の垂直方向に主として超電導電流が流れるため、基板面に平行な方向への超電導電流すなわち超電導特性を著しく低下させる原因となる。そのa/b軸配向粒子形成の原因として現時点で主に以下の3点が考えられている。すなわち、
(1)本焼条件(酸素分圧や温度)が最適でない、
(2)溶液中に不純物が存在する、
(3)c軸配向粒子の格子定数と単結晶基板との格子定数が合わない、
という要因である。
It is considered that the reduction in the number of a / b-axis oriented particles contributes to the high characteristics and surprising reproducibility in Y-based superconductor film formation by the TFA-MOD method. The a / b-axis oriented particles are c-axis oriented particles in which the superconducting current flows in a direction parallel to the substrate surface, and the superconducting current flows mainly in the direction perpendicular to the substrate surface. This causes the superconducting current in the direction, that is, the superconducting property, to be significantly reduced. At present, the following three points are considered as the causes of the formation of the a / b axis oriented particles. That is,
(1) The main firing conditions (oxygen partial pressure and temperature) are not optimal.
(2) Impurities are present in the solution.
(3) The lattice constant of c-axis oriented particles does not match the lattice constant of the single crystal substrate,
It is a factor.

(1)に関しては、HammondとBormannが超電導体の作製手法によらない最適な条件が存在することを報告している(非特許文献4)。それによれば焼成時の酸素分圧が半減するごとに最適焼成温度が約25℃程度低下している。MOD法及びTFA−MOD法の最適本焼条件はPLD法などの手法と同一である。   Regarding (1), Hammond and Bormann have reported that there are optimum conditions that do not depend on the superconductor fabrication method (Non-Patent Document 4). According to this, the optimum firing temperature decreases by about 25 ° C. every time the oxygen partial pressure during firing is reduced by half. The optimum firing conditions for the MOD method and the TFA-MOD method are the same as those for the PLD method.

(2)に関しては、不純物量が低減することによりc軸配向粒子の比率が上昇し、超電導特性が向上することが実験的に知られている。それにより特性が飛躍的に改善されることも開示されている(特許文献1)。   Regarding (2), it is experimentally known that the ratio of c-axis oriented particles increases and the superconducting properties are improved by reducing the amount of impurities. It has also been disclosed that the characteristics are dramatically improved (Patent Document 1).

(3)に関しては、超電導体は、本来的には物質固有のa,b,c軸長を持つはずであるが、単結晶基板上に薄膜を成膜する場合には基板の格子定数に合わせるように歪んだ状態でエピタキシャル成長すると考えられる。これは、一般的にこの手法で得られる超電導体の膜厚が0.1〜10μmであるのに対して、単結晶基板の厚みは0.4〜1.0mm程度と約1000倍の厚みがあって頑強であり、薄膜と基板で格子定数が異なる場合には超電導膜が歪みながら成長すると考えられるためである。基板直上では単結晶基板の格子定数とほぼ同じ格子定数が観測されると考えられ、0.1μm程度のごく薄い膜を成膜してXRDにより相同定を行うと、基板の格子定数に近い値が観測される。しかし膜厚が厚くなると超電導体が本来持つ格子定数に近づくと考えられる。a/b軸配向粒子ができやすいか、c軸配向粒子ができやすいかは、単結晶基板の格子定数により決定付けられることになる。   With regard to (3), the superconductor should have a-, b-, and c-axis lengths inherent to the substance, but when a thin film is formed on a single crystal substrate, it is adjusted to the lattice constant of the substrate. It is considered that the epitaxial growth occurs in such a distorted state. In general, the thickness of the superconductor obtained by this method is 0.1 to 10 μm, whereas the thickness of the single crystal substrate is about 0.4 to 1.0 mm, which is about 1000 times as thick. This is because the superconducting film grows while being distorted when the lattice constants of the thin film and the substrate are different. It is considered that a lattice constant almost the same as the lattice constant of the single crystal substrate is observed immediately above the substrate. When a very thin film of about 0.1 μm is formed and phase identification is performed by XRD, the value is close to the lattice constant of the substrate. Is observed. However, as the film thickness increases, it is considered that the superconductor approaches the inherent lattice constant. Whether a / b-axis oriented particles or c-axis oriented particles are easily formed is determined by the lattice constant of the single crystal substrate.

ここで、TFA−MOD法を用い、LaAlO3、NdGdO3、SrTiO3、CeO2/YSZの4種類の単結晶基板上に膜厚150から300nmのYBCO超電導体成膜を成膜すると、XRD測定におけるa/b軸配向粒子のピーク強度比率は膜厚によらず、常にNdGdO3、LaAlO3、SrTiO3、CeO2/YSZの順に弱くなる。すなわちCeO2/YSZ基板を用いた場合に最も高いJc値を持つ超電導膜が得られ、0.22μm厚で11MA/cm2(77K,0T)もの特性が得られる(非特許文献1)。c軸配向比率を高めるためには、基板か超電導体が本来持つ格子定数を変化させることが望ましいが、基板の格子定数を連続的に変化させることはできない。それは単結晶基板として用いることが可能な物質には限りがあり、またその格子定数も飛び飛びの値であるためである。 Here, when a TFA-MOD method is used to form a YBCO superconductor film having a thickness of 150 to 300 nm on four types of single crystal substrates of LaAlO 3 , NdGdO 3 , SrTiO 3 , and CeO 2 / YSZ, XRD measurement is performed. The peak intensity ratio of the a / b axis oriented particles in FIG. 4 is always weaker in the order of NdGdO 3 , LaAlO 3 , SrTiO 3 , CeO 2 / YSZ, regardless of the film thickness. That is, when a CeO 2 / YSZ substrate is used, a superconducting film having the highest J c value is obtained, and a characteristic of 11 MA / cm 2 (77K, 0T) is obtained with a thickness of 0.22 μm (Non-patent Document 1). In order to increase the c-axis orientation ratio, it is desirable to change the lattice constant inherent to the substrate or the superconductor, but it is not possible to continuously change the lattice constant of the substrate. This is because the number of substances that can be used as a single crystal substrate is limited, and the lattice constant thereof is also a jump value.

そこで、超電導体の軸長を調整してc軸配向粒子比率を向上させることが要望されている。上述したように、YBCO超電導体のYの位置に特定のLn族元素を置換することが可能である。Ln族元素については、原子番号と共にそのイオン半径が収縮するランタノイド収縮が見られ、現状では各Ln系超電導体のa,b,c軸長測定が困難であるが、本質的にその各々の超電導体の軸長は異なると考えられる。基板に応じて2種類以上のLn系超電導体を混合することによりc軸配向粒子が得られやすい超電導体作製が期待されている。   Therefore, it is desired to improve the c-axis oriented particle ratio by adjusting the axial length of the superconductor. As described above, a specific Ln group element can be substituted at the Y position of the YBCO superconductor. With regard to Ln group elements, lanthanoid contraction in which the ionic radius contracts with the atomic number is observed, and at present, it is difficult to measure the a, b, and c axis lengths of each Ln-based superconductor. The axial length of the body is considered to be different. It is expected to produce a superconductor in which c-axis oriented particles can be easily obtained by mixing two or more types of Ln-based superconductors depending on the substrate.

上述したように、Yと置換して超電導体を示すLn族元素としては、La,Nd,Sm,Gd,Tb,Dy,Ho,Er,Tm,Ybなどが知られている。しかし、これらのLn族元素のうちには、TFA−MOD法の適用が困難なものが含まれている。原子番号の小さいLa,Nd,Smの場合、トリフルオロ酢酸塩メタノール溶液を調整しようとするとエステル化反応が起きて塩が分解しやすく、エステル化反応が起きない条件で精製を行うと多量の不純物により良好な超電導特性が得られなくなる。原子番号の大きなYbの場合、溶解度が極端に低く、実用的な膜厚が得られる溶液を調製できないことがわかっている。   As described above, La, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, and the like are known as the Ln group element that represents a superconductor by replacing Y. However, some of these Ln group elements are difficult to apply the TFA-MOD method. In the case of La, Nd, and Sm with a small atomic number, if an attempt is made to prepare a trifluoroacetate methanol solution, an esterification reaction occurs and the salt is easily decomposed. If purification is performed under conditions where the esterification reaction does not occur, a large amount of impurities As a result, good superconducting properties cannot be obtained. In the case of Yb having a large atomic number, it has been found that the solubility is extremely low and a solution capable of obtaining a practical film thickness cannot be prepared.

その他のGd,Tb,Dy,Ho,Er,Tmに関しては、Yのトリフルオロ酢酸塩と同様に、SIG(Solvent-Into-Gel)法により高純度のメタノール溶液調整が可能であり(非特許文献5、特許文献1)、それぞれ単体の超電導体が得られる。これらの超電導体の臨界電流密度(Jc)は3−4MA/cm2(77K,0T)と実用的には十分に高い値である(非特許文献6、7)が、YBCO系超電導体のJc値である7MA/cm2(77K,0T)と比較すると半分程度の値である。各Ln系溶液を混合することにより、単体の超電導体が持つa,b,c軸長を一定範囲で自由に調整可能な超電導体が得られることが期待されていた。しかし、原料溶液の混合により得られる超電導体はどれもJc値が低下し、1:1の比率で溶液を混合した場合に得られる超電導体のJc値は1MA/cm2(77K,0T)程度に低下した。ここで用いられていたLn系原料であるランタノイド酢酸塩は純度が97−98%のものであり、不純物などによりa/b軸配向粒子の比率が増大し特性を下げていた可能性があった。
T. Araki and I. Hirabayashi, Supercond. Sci. Technol. 16, R71 (2003). T. Araki, Cryogenics 41, 675 (2002). T. Araki, et al, J. Appl. Phys. 92, 3318 (2002). R. H. Hammond and R. Bormann, Physica C 162-164, 703 (1989). 特許第3,556,586号 T. Araki, et al, Supercond. Sci. Technol. 14, L21 (2001). T. Iguchi et al. Physica C 392-396 900 (2003). T. Iguchi et al, Supercond. Sci. Technol. 15, 1415 (2002).
As for other Gd, Tb, Dy, Ho, Er, and Tm, a high-purity methanol solution can be prepared by a SIG (Solvent-Into-Gel) method as in the case of Y trifluoroacetate (non-patent literature). 5, Patent Document 1), a single superconductor is obtained. The critical current density (J c ) of these superconductors is practically high (3-4 MA / cm 2 (77K, 0T)) (Non-Patent Documents 6 and 7). Compared to the J c value of 7 MA / cm 2 (77K, 0T), it is about half the value. It was expected that by mixing each Ln-based solution, a superconductor capable of freely adjusting the a, b, and c axis lengths of a single superconductor within a certain range was obtained. But superconductor obtained by mixing the raw material solution none J c value is decreased, 1: J c values of the superconductor obtained when the solution was mixed with 1 ratio 1MA / cm 2 (77K, 0T ) Decreased to the extent. The lanthanoid acetate, which is the Ln-based raw material used here, has a purity of 97-98%, and there was a possibility that the ratio of a / b axis oriented particles was increased due to impurities and the characteristics were lowered. .
T. Araki and I. Hirabayashi, Supercond. Sci. Technol. 16, R71 (2003). T. Araki, Cryogenics 41, 675 (2002). T. Araki, et al, J. Appl. Phys. 92, 3318 (2002). RH Hammond and R. Bormann, Physica C 162-164, 703 (1989). Patent 3,556,586 T. Araki, et al, Supercond. Sci. Technol. 14, L21 (2001). T. Iguchi et al. Physica C 392-396 900 (2003). T. Iguchi et al, Supercond. Sci. Technol. 15, 1415 (2002).

本発明の目的は、複数のLn系超電導体の原料溶液を混合することによって得られる混合超電導体膜の格子定数を調整することができ、基板上に厚膜を形成したときにc軸配向粒子を高い比率で含み、高い特性を示す酸化物超電導体を提供することにある。   An object of the present invention is to adjust the lattice constant of a mixed superconductor film obtained by mixing a plurality of raw material solutions of Ln-based superconductors. When a thick film is formed on a substrate, c-axis oriented particles It is an object of the present invention to provide an oxide superconductor having a high ratio and high characteristics.

本発明の一態様に係る酸化物超電導体は、主成分が一般式LnBa2Cu37-x(ここで、LnはGd,Tb,Dy,Ho,Er,TmおよびYからなる群より選択される2種以上であり、各々の元素の含有率は10〜90モル%である)で表され、モル比で銅の10-2〜10-6のフッ素を含むことを特徴とする。 In the oxide superconductor according to one embodiment of the present invention, the main component is a general formula LnBa 2 Cu 3 O 7-x (where Ln is selected from the group consisting of Gd, Tb, Dy, Ho, Er, Tm, and Y). And the content of each element is 10 to 90 mol%), and is characterized by containing 10 −2 to 10 −6 fluorine of copper in a molar ratio.

本発明の他の態様に係る酸化物超電導体の製造方法は、金属Ln(ここで、LnはY,Gd,Tb,Dy,Ho,ErおよびTmからなる群より選択される2種以上であり、各々の元素の含有率は10〜90モル%である)の酢酸塩、酢酸バリウムおよび酢酸銅のそれぞれの溶液を、単独でまたは混合して、フルオロカルボン酸との反応および精製を行ってゲルを生成し、金属Ln、バリウムおよび銅を1:2:3のモル比で含むようにアルコールを主とした溶媒に溶解してコーティング溶液を調製し、前記コーティング溶液を基板上にコーティングして膜を形成し、仮焼および本焼を行い、酸化物超電導体を製造する方法において、1度目の精製で得られたゲルをアルコールに溶解して不純物入り溶液を得た後、その溶液を再び精製することにより不純物を減少させたゲルを得ることを特徴とする。   The method for producing an oxide superconductor according to another aspect of the present invention includes metal Ln (where Ln is two or more selected from the group consisting of Y, Gd, Tb, Dy, Ho, Er, and Tm). The content of each element is 10 to 90 mol%), and each solution of acetate, barium acetate and copper acetate alone or mixed is reacted with fluorocarboxylic acid and purified to gel A coating solution is prepared by dissolving alcohol in a solvent mainly containing metal Ln, barium and copper in a molar ratio of 1: 2: 3, and coating the coating solution on a substrate forms a film. In the method of manufacturing the oxide superconductor by performing calcination and main firing, the gel obtained in the first purification is dissolved in alcohol to obtain a solution containing impurities, and then the solution is purified again To do Characterized in that to obtain a gel having reduced impurities.

本発明によれば、Gd,Tb,Dy,Ho,Er,TmおよびYのうち2種以上を広範囲の比率で含む組成を有し、しかも良好な特性を示す酸化物超電導体が得られる。   According to the present invention, an oxide superconductor having a composition containing two or more of Gd, Tb, Dy, Ho, Er, Tm and Y in a wide range of ratios and exhibiting good characteristics can be obtained.

以下、本発明の実施形態について説明する。
本発明の実施形態に係る方法では、以下のような手順により酸化物超電導体を製造する。
まず、図1を参照して、混合金属酢酸塩をフルオロカルボン酸と反応させ、精製する工程を説明する。図1において、a1の混合金属酢酸塩とは、金属Lnを含む金属酢酸塩、酢酸バリウムおよび酢酸銅の総称として用いている。金属Lnとしては、ガドリニウム、テルビウム、ディスプロシウム、ホルミウム、エルビウム、ツリウムおよびイットリウムからなる群より選択される2種以上が用いられる。なお、各々の酢酸塩を個別に調製した後、混合して溶液を得ることもでき、各溶液の混合時期は特に限定されない。金属Ln、バリウム、銅のモル比はおよそ1:2:3である。ただし、これらのモル比が1:2:3から10%程度ずれても、得られる超電導体の特性に致命的な影響が及ぶことはない。
Hereinafter, embodiments of the present invention will be described.
In the method according to the embodiment of the present invention, an oxide superconductor is manufactured by the following procedure.
First, with reference to FIG. 1, the process of purifying by reacting mixed metal acetate with fluorocarboxylic acid will be described. In FIG. 1, the mixed metal acetate a1 is used as a general term for metal acetate containing metal Ln, barium acetate, and copper acetate. As the metal Ln, two or more selected from the group consisting of gadolinium, terbium, dysprosium, holmium, erbium, thulium and yttrium are used. In addition, after preparing each acetate separately, it can also mix and a solution can also be obtained, and the mixing time of each solution is not specifically limited. The molar ratio of metal Ln, barium, and copper is approximately 1: 2: 3. However, even if these molar ratios deviate by about 10% from 1: 2: 3, the properties of the resulting superconductor are not critically affected.

混合金属酢酸塩に対してa2のフルオロカルボン酸(a2)を混合して反応させ精製する。フルオロカルボン酸は、トリフルオロ酢酸(TFA)、ペンタフルオロプロピオン酸(PFP)、およびヘプタフルオロブタン酸(HFB)からなる群より選択される。ただし、酢酸バリウムはPFPまたはHFBとの反応により沈殿を生成するので、酢酸バリウムとPFPまたはHFBとの組み合わせは避ける必要がある。他の酢酸塩との反応にPFPまたはHFBを用いる場合には、少なくとも酢酸バリウムはTFAと反応させて精製しておき、その後に他の酢酸塩の反応生成物と混合する。酢酸バリウムとTFAで溶液を調製する場合、途中で得られる精製物は半透明白色の粉末となるが、そのほかは図1に示す通常の手法と大差はない。トリフルオロ酢酸バリウムとその他のペンタフルオロプロピオン酸金属塩は濃度を一定以上にしたときに沈殿が生じなくなる。   The mixed metal acetate is mixed and reacted with the fluorocarboxylic acid (a2) of a2 for purification. The fluorocarboxylic acid is selected from the group consisting of trifluoroacetic acid (TFA), pentafluoropropionic acid (PFP), and heptafluorobutanoic acid (HFB). However, since barium acetate produces a precipitate by reaction with PFP or HFB, it is necessary to avoid the combination of barium acetate and PFP or HFB. When PFP or HFB is used for the reaction with another acetate, at least barium acetate is purified by reacting with TFA, and then mixed with the reaction product of the other acetate. In the case of preparing a solution with barium acetate and TFA, the purified product obtained in the middle is a translucent white powder, but other than that, there is no big difference from the ordinary method shown in FIG. When barium trifluoroacetate and other metal salts of pentafluoropropionic acid are used at concentrations above a certain level, precipitation does not occur.

なお上記のフルオロカルボン酸は部分的にフッ素が水素に置換された物質を用いても大きな変化は見られない。ただ水素量が増大すると解離定数が小さくなり、未反応の酢酸塩が多量に残ることになるので、経験的に水素モル量は全フッ素量の10%程度以下が望ましいようである。フルオロカルボン酸にTFAを主としたもの、すなわち炭素数2のフルオロカルボン酸を用いる場合は沈殿を生じる物質がないため全ての酢酸塩を一度にイオン交換水に溶解・反応させることが可能である。TFA主体のフルオロカルボン酸内に部分的にフッ素が水素置換されたジフルオロ酢酸やモノフルオロ酢酸が合計10モル%程度の少量含まれる場合も超電導体の致命的特性低下は見られない。   Note that the fluorocarboxylic acid does not change significantly even when a substance in which fluorine is partially substituted with hydrogen is used. However, as the amount of hydrogen increases, the dissociation constant decreases and a large amount of unreacted acetate remains, so it is empirically found that the molar amount of hydrogen is preferably about 10% or less of the total fluorine amount. When TFA is used as the fluorocarboxylic acid, that is, when a fluorocarboxylic acid having 2 carbon atoms is used, since there is no substance that causes precipitation, all acetates can be dissolved and reacted in ion-exchanged water at once. . Even when a small amount of about 10 mol% of difluoroacetic acid or monofluoroacetic acid in which fluorine is partially substituted with hydrogen is contained in the TFA-based fluorocarboxylic acid, no critical deterioration of the superconductor is observed.

カルボン酸とフルオロカルボン酸はその化学的性質が著しく異なり、カルボン酸が弱酸であるのに対して、フルオロカルボン酸は非常に強い酸であることが知られている。これは酸が解離しイオンとなる時に対をなす酸素がマイナスに帯電しやすいが否かで決まるためである。フッ素のないカルボン酸では炭素に直結した水素が炭素を通して酸素に電子を供与するため解離時に酸素がマイナスに帯電しやすく、強力に水素と引き合うために解離定数は小さな値すなわち弱酸となる。一方、フルオロカルボン酸の場合は電気陰性度が酸素よりも強いフッ素が酸素の電子を炭素を経由して吸引するため、解離時に酸素が中性化し安定する。そのため水素イオンがイオン化したままの状態を維持しやすく強酸となる。このため例えば酢酸とトリフルオロ酢酸では解離定数が4桁も違うため、酢酸塩とトリフルオロ酢酸を混合した瞬間にほぼ全ての物質が置換すると考えられる。   It is known that carboxylic acid and fluorocarboxylic acid are remarkably different in chemical properties, and carboxylic acid is weak acid, whereas fluorocarboxylic acid is very strong acid. This is because when the acid is dissociated and becomes ions, the oxygen that forms a pair tends to be negatively charged. In a carboxylic acid having no fluorine, hydrogen directly bonded to carbon donates an electron to oxygen through carbon, so that oxygen is easily negatively charged at the time of dissociation. On the other hand, in the case of fluorocarboxylic acid, fluorine whose electronegativity is higher than that of oxygen attracts oxygen electrons through carbon, so that oxygen is neutralized and stabilized during dissociation. Therefore, it becomes a strong acid easily maintaining the ionized state of hydrogen ions. For this reason, for example, since acetic acid and trifluoroacetic acid have dissociation constants different by 4 digits, it is considered that almost all substances are replaced at the moment when acetate and trifluoroacetic acid are mixed.

また、金属Lnを含む金属酢酸塩を炭素数3以上のフルオロカルボン酸、例えばペンタフルオロプロピオン酸と反応させた後、より炭素数の少ないフルオロカルボン酸基たとえばトリフルオロ酢酸基で置換してもよい。TFA−MOD法では仮焼時に炭素追い出し機構が作用し、有害な炭素は除去されやすいが、少量の炭素は残留する可能性があるためペンタフルオロプロピオン酸よりもトリフルオロ酢酸が望ましい物質である。より炭素数の小さなフルオロカルボン酸に置換しても溶解度などで問題となることはなく、むしろ溶解度は改善する。すなわち、全ての塩をトリフルオロ酢酸塩とした後に混合すれば任意の濃度で沈殿は生じることはない。   Further, after reacting a metal acetate containing metal Ln with a fluorocarboxylic acid having 3 or more carbon atoms, such as pentafluoropropionic acid, it may be substituted with a fluorocarboxylic acid group having a lower carbon number, such as a trifluoroacetic acid group. . In the TFA-MOD method, a carbon driving mechanism acts at the time of calcination, and harmful carbon is easily removed. However, since a small amount of carbon may remain, trifluoroacetic acid is more desirable than pentafluoropropionic acid. Substituting with a fluorocarboxylic acid having a smaller carbon number does not cause a problem in solubility, but rather improves the solubility. That is, if all salts are converted to trifluoroacetate and then mixed, precipitation does not occur at any concentration.

酢酸塩とフルオロカルボン酸塩とを反応させた後に精製するが、この精製時にSolvent-Into-Gel(SIG)法を用いる。SIG法ではゲルに対して多量のメタノールを加えて、不純物(水と酢酸)を置換し、メタノールを敢えて取り込ませることにより不純物含有量が少ない粉末またはゲルを得る。このように粉末またはゲルを再びメタノールに溶解して高純度溶液を得るSIG法を用いることによって、TFA−MOD法に特に有害な水を1/20程度に低減することができる。   Purification is carried out after reacting acetate and fluorocarboxylate, and Solvent-Into-Gel (SIG) method is used for this purification. In the SIG method, a large amount of methanol is added to the gel to replace impurities (water and acetic acid), and the powder or gel having a low impurity content is obtained by intentionally taking in methanol. In this way, by using the SIG method in which the powder or gel is dissolved again in methanol to obtain a high-purity solution, water particularly harmful to the TFA-MOD method can be reduced to about 1/20.

次に、図2を参照して、複数の溶液を混合したコーティング溶液を調製し、このコーティング溶液を基板上に成膜してゲル膜を形成し、仮焼および本焼を行い、酸化物超電導体を得る工程を説明する。図2において、溶液Aと溶液Bで金属Lnに相当する元素が異なり、ここでは金属Mと金属Nとする。溶液AとBは任意の比率で混合することができ、得られるbのコーティング溶液中において、金属MとNの和、バリウムおよび銅のモル比がおよそ1:2:3となる。このコーティング溶液を基板上に成膜してゲル膜を形成する。その後、仮焼(一次熱処理)および本焼(二次熱処理)、さらに純酸素アニールを行い、酸化物超電導体を得る。この図2のaにおいて、溶液を3種類以上としても同じように酸化物超電導体が得られる。   Next, referring to FIG. 2, a coating solution in which a plurality of solutions are mixed is prepared, this coating solution is formed on a substrate to form a gel film, calcined and baked, and oxide superconductivity The process of obtaining a body will be described. In FIG. 2, the element corresponding to the metal Ln is different between the solution A and the solution B. Here, the metal M and the metal N are used. Solutions A and B can be mixed in any ratio, and in the resulting coating solution of b, the sum of metals M and N, the molar ratio of barium and copper is approximately 1: 2: 3. This coating solution is formed on a substrate to form a gel film. Thereafter, calcination (primary heat treatment) and main firing (secondary heat treatment) and further pure oxygen annealing are performed to obtain an oxide superconductor. In FIG. 2a, an oxide superconductor can be obtained in the same manner even when three or more types of solutions are used.

形成されたゲル膜は電気炉中にて仮焼を経ることにより金属酸化フッ化物からなる仮焼膜となる。図3に仮焼時の温度プロファイル(および雰囲気)の一例を示す。   The formed gel film undergoes calcination in an electric furnace to become a calcination film made of a metal oxyfluoride. FIG. 3 shows an example of a temperature profile (and atmosphere) during calcination.

(1)時刻0からta1(熱処理開始から7分程度)の間に熱処理炉内の温度を室温から100℃まで急激に上昇させる。このとき熱処理炉内を常圧の乾燥した酸素雰囲気に置く。なお、この後の熱処理工程は全て常圧下で行うことができる。 (1) The temperature in the heat treatment furnace is rapidly increased from room temperature to 100 ° C. from time 0 to t a1 (about 7 minutes from the start of heat treatment). At this time, the inside of the heat treatment furnace is placed in a dry oxygen atmosphere at normal pressure. All subsequent heat treatment steps can be performed under normal pressure.

(2)時刻ta1になったとき熱処理炉内の雰囲気を加湿した常圧の純酸素雰囲気に変更する。そして、時刻ta1からta2(熱処理開始から42分程度)の間に熱処理炉内の温度を100℃から200℃に上昇する。このとき加湿した純酸素雰囲気を、例えば、湿度1.2%〜12.1%の範囲に設定する。上記の湿度は露点10℃および50℃に相当する。湿度は所定の温度の水に雰囲気ガス(酸素ガス)の気泡を通すことで調整できる。すなわち、水中を通過したときの気泡内の飽和水蒸気圧によって湿度が決まる。飽和水蒸気圧は温度によって決定される。湿度の露点相当温度を室温よりも低く設定するにはガスを分流して一部のみ水に雰囲気ガスの気泡を通した後に混合する。なおこの加湿は主に最も昇華しやすいフルオロ酢酸銅の部分加水分解を行うことによりオリゴマーとし、見掛けの分子量を上げて昇華を防止することにある。フルオロ酢酸がトリフルオロ酢酸の場合には、下記のように加水分解が行われ、銅塩の両端のFとH原子で水素結合を作り、4〜5分子がつながることによりみかけの分子量が増大するため昇華が抑制される。
CF3COO-Cu-OCOCF3 + H2O → CF3COO-Cu-H + CF3COOH↑。
(2) When time t a1 is reached, the atmosphere in the heat treatment furnace is changed to a humidified atmospheric oxygen atmosphere. Then, the temperature in the heat treatment furnace is increased from 100 ° C. to 200 ° C. between time t a1 and t a2 (about 42 minutes from the start of heat treatment). At this time, the humidified pure oxygen atmosphere is set in a range of, for example, a humidity of 1.2% to 12.1%. The above humidity corresponds to dew points of 10 ° C and 50 ° C. The humidity can be adjusted by passing bubbles of atmospheric gas (oxygen gas) through water at a predetermined temperature. That is, the humidity is determined by the saturated water vapor pressure in the bubbles when passing through water. The saturated water vapor pressure is determined by temperature. In order to set the temperature corresponding to the dew point of humidity to be lower than room temperature, the gas is diverted and only a part of the water is passed through the bubbles of atmospheric gas and then mixed. This humidification mainly consists in partial hydrolysis of copper fluoroacetate, which is most easily sublimated, to make an oligomer and to increase the apparent molecular weight to prevent sublimation. When fluoroacetic acid is trifluoroacetic acid, hydrolysis is performed as described below, hydrogen bonds are formed between F and H atoms at both ends of the copper salt, and the apparent molecular weight is increased by connecting 4 to 5 molecules. Therefore, sublimation is suppressed.
CF 3 COO-Cu-OCOCF 3 + H 2 O → CF 3 COO-Cu-H + CF 3 COOH ↑.

(3)時刻ta2からta3(4時間10分から16時間40分程度)の間に炉内の温度を200℃から250℃に緩やかに上昇させる。緩やかに上昇させるのは部分加水分解された塩が急激な反応により燃焼し炭素成分が残ることを防止するためである。長時間の分解反応により塩の共有結合部が開き、一時的に金属原子と酸素の結合(Y−O,Ba−O,Cu−O)または金属酸化物(Y23、BaO、CuO)が形成され、YとBaに関しては非特許文献1に記載のとおりフッ素に置換され、酸素フッ素との不定比化合物を形成する。この状態で徐々に反応が進み温度が保持されるため、単一物質であるCuOのみが粒成長して数十nmのナノ微結晶となる。フッ素と酸素が不定比のYおよびBa成分は粒成長できずにアモルファスとなる。 (3) The temperature in the furnace is gradually increased from 200 ° C. to 250 ° C. between times t a2 and t a3 (about 4 hours 10 minutes to 16 hours 40 minutes). The reason for the moderate increase is to prevent the partially hydrolyzed salt from burning due to an abrupt reaction and leaving a carbon component. The covalent bond portion of the salt is opened by a long-time decomposition reaction, and the bond between the metal atom and oxygen (Y—O, Ba—O, Cu—O) or the metal oxide (Y 2 O 3 , BaO, CuO) temporarily And Y and Ba are substituted with fluorine as described in Non-Patent Document 1 to form a non-stoichiometric compound with oxygen fluorine. Since the reaction proceeds gradually in this state and the temperature is maintained, only CuO, which is a single substance, grows and becomes nano-crystals of several tens of nanometers. The Y and Ba components having an indefinite ratio of fluorine and oxygen cannot be grown and become amorphous.

(4)時刻ta3からta4およびta4からta5(この間2時間程度)の間に熱処理炉内の温度を250℃から400℃まで上昇させる。時刻ta2からta3の間に分解した不要な有機物が水素結合などで膜中に残存している。この工程では、不要な有機物を加熱により除去する。 (4) The temperature in the heat treatment furnace is increased from 250 ° C. to 400 ° C. during times t a3 to t a4 and t a4 to t a5 (about 2 hours during this period). Unnecessary organic substances decomposed between time t a2 and t a3 remain in the film due to hydrogen bonds or the like. In this step, unnecessary organic substances are removed by heating.

(5)時刻ta5以降はガスを流しながら炉冷を行う工程である。このようにして得られた仮焼膜は電気炉中で本焼熱処理と純酸素アニールを経て超電導体となる。 (5) After time t a5, the furnace is cooled while flowing gas. The calcined film thus obtained becomes a superconductor through a main heat treatment and pure oxygen annealing in an electric furnace.

図4に本焼時の温度プロファイル(および雰囲気)の一例を示す。
(6)時刻0からtb1(熱処理開始から7分程度)の間に熱処理炉内の温度を室温から100℃まで急激に上昇させる。このとき熱処理炉内を常圧の酸素混合アルゴンガス雰囲気中に置く。この時の酸素濃度は焼成を行う超電導体の金属種や焼成温度により最適濃度が決まる。従来のY系(YBa2Cu37-x)の最適焼成条件は、800℃焼成の場合の酸素分圧は1000ppmであり、温度を25℃低下させるたびに酸素濃度をほぼ半減させるのが好ましいとされていた。本発明における全ての溶液においても温度を25℃低下させるたびに酸素濃度はほぼ半減させるのが好ましいが、800℃焼成における酸素分圧はGd元素を含む場合とそうでない場合で異なる。Gdを含まない場合は従来のYと同じ1000ppmである。Gdを含む場合、Gdが0%および100%の時の酸素分圧を1000ppmおよび250ppmとし、その間は混合比率に応じて対数的に比例配分した酸素分圧を用いればほぼ最適な超電導体が得られる。250ppmとすべきところで1000ppmとしても超電導特性はゼロになるわけではなく、1/3程度に低下した超電導体が得られることがわかっている。なお、この後の熱処理工程は全て常圧下で行うことができる。
FIG. 4 shows an example of the temperature profile (and atmosphere) during the main firing.
(6) The temperature in the heat treatment furnace is rapidly increased from room temperature to 100 ° C. from time 0 to t b1 (about 7 minutes from the start of heat treatment). At this time, the inside of the heat treatment furnace is placed in an atmospheric pressure oxygen mixed argon gas atmosphere. The optimum oxygen concentration at this time is determined by the metal type of the superconductor to be fired and the firing temperature. The optimum firing condition of the conventional Y-based (YBa 2 Cu 3 O 7-x ) is that the oxygen partial pressure in the case of firing at 800 ° C. is 1000 ppm, and every time the temperature is lowered by 25 ° C., the oxygen concentration is almost halved. It was considered preferable. In all the solutions of the present invention, it is preferable that the oxygen concentration is almost halved every time the temperature is lowered by 25 ° C., but the oxygen partial pressure in baking at 800 ° C. is different depending on whether or not it contains Gd element. When Gd is not included, it is 1000 ppm as in the conventional Y. When Gd is included, the oxygen partial pressure when Gd is 0% and 100% is set to 1000 ppm and 250 ppm, and an oxygen partial pressure that is logarithmically proportionally distributed according to the mixing ratio is used to obtain an almost optimal superconductor. It is done. It has been found that the superconducting property does not become zero even if it is 1000 ppm where it should be 250 ppm, and a superconductor reduced to about 1/3 can be obtained. All subsequent heat treatment steps can be performed under normal pressure.

(7)時刻tb1からtb2(33分間から37分間程度、最高到達温度まで20℃毎分程度で加熱)およびtb2からtb3(5分程度)で熱処理炉内温度を750℃〜825℃の熱処理最高温度まで上昇させる。時刻tb1において乾燥ガスを仮焼と同様の方法で加湿する。このときの加湿量は1.2%(露点10℃)から30.7%(露点70℃)まで広い範囲で選択できる。加湿量を増大させると反応速度が増大する。その増加量は0.5乗と見積もられている(非特許文献1に詳細記述)。tb2からtb3で昇温速度を小さくするのはtb3において電気炉温度の行き過ぎを小さくするためである。温度650℃程度で仮焼膜と水蒸気で膜内部に非特許文献3に記載される疑似液相形成が始まり、膜内部にそのネットワークが形成される。 (7) The temperature in the heat treatment furnace is changed from 750 ° C. to 825 from t b1 to t b2 (from 33 minutes to 37 minutes, heated to about 20 ° C. per minute until the maximum temperature is reached) and t b2 to t b3 (about 5 minutes). Increase to the maximum heat treatment temperature of ℃. At time t b1 , the dry gas is humidified in the same manner as in the calcination. The humidification amount at this time can be selected in a wide range from 1.2% (dew point 10 ° C.) to 30.7% (dew point 70 ° C.). Increasing the amount of humidification increases the reaction rate. The amount of increase is estimated to be 0.5 power (detailed description in Non-Patent Document 1). The reason for decreasing the rate of temperature increase from t b2 to t b3 is to reduce the excess of the electric furnace temperature at t b3 . The pseudo liquid phase formation described in Non-Patent Document 3 starts inside the film with the calcined film and water vapor at a temperature of about 650 ° C., and the network is formed inside the film.

(8)時刻tb3からtb4(45分から3時間40分程度、この時間は最高温度と最終膜厚に依存し温度が低く膜厚が厚いときに最長となる)の間に疑似液相ネットワークからLnBa2Cu36(LnはGd,Tb,Dy,Ho,Er,Tm,Yから選択される2種以上)が基板上に順次形成され、同時にHFガスなどが放出される。このときの簡略化された化学反応は以下のように記述される。 (8) Pseudo liquid phase network between time t b3 and t b4 (45 minutes to 3 hours and 40 minutes, this time depends on the maximum temperature and the final film thickness and becomes the longest when the temperature is low and the film thickness is thick) To LnBa 2 Cu 3 O 6 (Ln is two or more selected from Gd, Tb, Dy, Ho, Er, Tm, and Y) are sequentially formed on the substrate, and HF gas and the like are simultaneously released. The simplified chemical reaction at this time is described as follows.

(Ln-O-F:アモルファス) + H2O → Ln2O3 + HF↑
(Ba-O-F:アモルファス) + H2O → BaO + HF↑
(1/2)Ln2O3 + 2BaO + 3CuO → LnBa2Cu3O6
(9)時刻tb4からガスを乾燥ガスに切り替える。tb4までに形成された酸化物LnBa2Cu36は800℃付近の高温では水蒸気に安定であるが、600℃付近では水蒸気により分解してしまうため乾燥ガスに切り替える。
(Ln-OF: amorphous) + H 2 O → Ln 2 O 3 + HF ↑
(Ba-OF: Amorphous) + H 2 O → BaO + HF ↑
(1/2) Ln 2 O 3 + 2BaO + 3CuO → LnBa 2 Cu 3 O 6
(9) The gas is switched to the dry gas from time t b4 . The oxide LnBa 2 Cu 3 O 6 formed up to t b4 is stable to water vapor at a high temperature around 800 ° C., but is decomposed by water vapor at around 600 ° C., so it is switched to a dry gas.

(10)時刻tb4からtb5(10分間程度)に引き続き、時刻tb5からtb6(2時間から3時間30分程度)に至るまで熱処理炉内の温度を下げ続ける。この間、形成された酸化物に変化はない。 (10) Subsequent to time t b4 to t b5 (about 10 minutes), the temperature in the heat treatment furnace is continuously lowered from time t b5 to t b6 (about 2 hours to 3 hours 30 minutes). During this time, there is no change in the oxide formed.

(11)時刻tb6でガスを酸素混合アルゴンガスから乾燥純酸素ガスへ切り替える。この純酸素アニールにより、LnBa2Cu36は、LnBa2Cu37-x(x=0.07)となり超電導体が得られる。この純酸素切り替え温度は金属Lnにより異なる。従来のYの場合は525℃であったが、LnとしてGdを含む場合やや低めの425〜525℃からアニールを開始したほうがよい。 (11) At time t b6 , the gas is switched from oxygen-mixed argon gas to dry pure oxygen gas. By this pure oxygen annealing, LnBa 2 Cu 3 O 6 becomes LnBa 2 Cu 3 O 7-x (x = 0.07), and a superconductor is obtained. This pure oxygen switching temperature differs depending on the metal Ln. In the case of conventional Y, the temperature was 525 ° C. However, it is better to start annealing at a slightly lower 425 to 525 ° C. when Gd is included as Ln.

また、図5(A)および(B)を参照して、本焼時における超電導体の結晶粒子の成長機構について説明する。図5(A)は成長初期、(B)は成長中期を示している。図5(A)に示すように、成長初期において、基板1上に形成されている仮焼後の膜2を構成する超電導体の前駆体3中に均等に超電導粒子の核4が生成する。図1(B)に示すように、成長中期において、核4を起点として図の水平方向に結晶5が成長し、隣接する結晶5とぶつかったところに粒界6ができる。   In addition, with reference to FIGS. 5A and 5B, the growth mechanism of crystal grains of the superconductor during the main firing will be described. FIG. 5A shows the initial stage of growth, and FIG. 5B shows the middle stage of growth. As shown in FIG. 5A, in the initial stage of growth, nuclei 4 of superconducting particles are uniformly formed in the superconductor precursor 3 constituting the film 2 after calcination formed on the substrate 1. As shown in FIG. 1B, in the middle stage of growth, the crystal 5 grows in the horizontal direction in the figure starting from the nucleus 4, and a grain boundary 6 is formed where it hits the adjacent crystal 5.

このような機構で成長した超電導体においては、微結晶同士がぶつかり合うところで粒界が5〜50nm毎に規則正しく配列する。この粒界の周期は本焼時のアニール条件に応じて5〜50nmで変化するようである。この微視領域での周期的粒界形成は磁束捕捉に有効であり、本発明の方法により製造される超電導体の特性と再現性の両方を高めているものと考えられる。実際、10m級線材の両端間で200A程度の電流が高い再現性で得られた報告もなされている。   In a superconductor grown by such a mechanism, grain boundaries are regularly arranged every 5 to 50 nm where microcrystals collide with each other. The period of this grain boundary seems to change at 5 to 50 nm depending on the annealing conditions during the main firing. This periodic grain boundary formation in the microscopic region is effective for trapping magnetic flux, and is considered to enhance both the characteristics and reproducibility of the superconductor manufactured by the method of the present invention. In fact, it has been reported that a current of about 200 A is obtained with high reproducibility between both ends of a 10 m class wire.

なお、超電導特性を劣化させる要因として、上述したように残留炭素の直接的影響以外にも、熱処理条件や溶液中不純物に起因するc軸配向粒比の低下が挙げられる。Ln系の超電導体はY系と同様、基板面にc軸配向粒が形成されることにより面に水平な方向に超電導電流が流れる。しかし、a軸とb軸長はほぼ等しく、しかもc軸長のほぼ1/3であるため、c軸配向粒の横倒し組織であるa/b軸配向粒が条件によっては形成されやすい。この組織が形成されると基板面に垂直な方向にのみ電流が流れるため、平行な方向への超電導電流が遮断されて特性が低下する。更にc軸配向粒は基板面と平行な方向への成長速度が積層方向への速度の100倍近くあると考えられている。すなわちa/b軸配向粒の場合、基板面の垂直方向に速く成長し超電導特性を低下させる要因となる。   In addition to the direct influence of residual carbon as described above, factors that degrade the superconducting characteristics include a decrease in the c-axis oriented grain ratio due to heat treatment conditions and impurities in the solution. In the Ln-based superconductor, similarly to the Y-based, c-axis oriented grains are formed on the substrate surface, so that a superconducting current flows in a direction horizontal to the surface. However, since the a-axis and b-axis lengths are substantially equal and are about 1/3 of the c-axis length, a / b-axis oriented grains, which are side-by-side textures of c-axis oriented grains, are likely to be formed depending on conditions. When this structure is formed, current flows only in a direction perpendicular to the substrate surface, so that the superconducting current in the parallel direction is interrupted and the characteristics are degraded. Further, it is considered that the c-axis oriented grains have a growth rate in the direction parallel to the substrate surface that is nearly 100 times the rate in the stacking direction. That is, in the case of an a / b axis oriented grain, it grows fast in the direction perpendicular to the substrate surface and becomes a factor of deteriorating superconducting properties.

c軸配向粒とa/b軸配向粒の核生成確率は、基板面の格子定数との整合性によっても決まると考えられ、熱処理条件(酸素分圧や焼成温度)の選択によりc軸配向粒形成確率を極大化することが可能である。しかし、不純物の存在により、c軸配向粒が形成されやすい条件でもa/b軸配向粒が形成され、特性が低くなるという結果も一方で確認されている。SIG法を用いずに合成された溶液を用いて得られた厚膜のY系超電導膜では特に特性が低下する。a/b軸配向粒は核生成により表面付近まで組織が成長するが、厚膜では単位面積当たりのa/b軸配向粒生成率が高まるため、特性が低下しやすくなる。一方、SIG法による高純度溶液を用いてTFA−MOD法によりY系超電導膜を得た場合にはa/b軸配向粒の影響が小さく、上述したように良好な再現性で高いJc値が得られている。 The nucleation probability of the c-axis oriented grains and the a / b-axis oriented grains is considered to be determined by the consistency with the lattice constant of the substrate surface, and the c-axis oriented grains are selected by selecting the heat treatment conditions (oxygen partial pressure and firing temperature). It is possible to maximize the formation probability. However, it has also been confirmed on the other hand that the presence of impurities results in the formation of a / b-axis oriented grains even under conditions where c-axis oriented grains are likely to be formed, resulting in poor characteristics. The characteristics of the thick Y-based superconducting film obtained by using a solution synthesized without using the SIG method are particularly deteriorated. The structure of the a / b-axis oriented grains grows to the vicinity of the surface by nucleation. However, in the thick film, the a / b-axis oriented grain generation rate per unit area increases, and the characteristics are likely to deteriorate. On the other hand, when a Y-based superconducting film is obtained by the TFA-MOD method using a high-purity solution by the SIG method, the influence of the a / b axis oriented grains is small, and as described above, the J c value is high with good reproducibility. Is obtained.

本発明においても、SIG法による高純度溶液を用いることにより、a/b軸配向粒の影響が小さくすることができる。本発明においては特性低下を防ぐためにLn系の原料溶液を全てSIG法により高純度溶液としている。高純度化していない場合の特性はLn系単体でJc値が約半分程度に低下していることがわかった。これらの不純物を含む2種類の溶液を1:1で混合した場合に特に顕著にJc値が低下しており、その値は混合前の1/3程度にまで低下している。溶液を混合した場合にJc値が大きく低下する機構は現在のところわかっていないが、Ln系それぞれに固有の不純物が存在し、混合により種類が増えた不純物の相乗効果で大きくJc値が低下すると考えられる。 Also in the present invention, the influence of a / b axis oriented grains can be reduced by using a high purity solution by the SIG method. In the present invention, in order to prevent deterioration of characteristics, all the Ln-based raw material solutions are made into high purity solutions by the SIG method. It was found that the Jc value was reduced to about half in the Ln-based simple substance when the purity was not high. When two kinds of solutions containing these impurities are mixed at a ratio of 1: 1, the Jc value is particularly remarkably reduced, and the value is reduced to about 1/3 of that before mixing. Mechanism J c value is greatly reduced when the solution was mixed is not known at present, but there are inherent impurities Ln system respectively, large J c value in synergy impurity type is increased by mixing It is thought to decline.

本発明の実施形態に係る酸化物超電導体は、より詳細には以下のように規定できる。すなわち、基板上に膜として形成され、主成分がLnBa2Cu37-x(ここで、Lnはガドリニウム、テルビウム、ディスプロシウム、ホルミウム、エルビウム、ツリウムおよびイットリウムからなる群より選択される2種以上であり、各々の元素の含有率は10〜90モル%である)で表され、モル比で銅の10-2〜10-6のフッ素を含む。本明細書において、膜とは0.05μm以上10μm以下の厚さを有するものをいう。c軸配向粒のピーク強度をIcとa/b軸配向粒のピーク強度をIabとしたとき、a/b軸配向粒子の割合を示す目安としてrab=Iab/(Ic+Iab)と定義する。本発明の実施形態に係る酸化物超電導体では、全ての金属Lnについてrabは15%以下である。また、基板面に垂直な断面でのTEM観察で、基板とLnBa2Cu37-x界面における2軸配向層の比率が95%以上であり、かつ表面層の2軸配向比率が80%以下である。また、基板から垂直方向に50nm移動した基板と平行な面でのTEM観察で、結合角0.2〜1度程度の粒界が5〜50nmごとに規則正しく配列する構造を持つ。 More specifically, the oxide superconductor according to the embodiment of the present invention can be defined as follows. That is, it is formed as a film on the substrate, and the main component is LnBa 2 Cu 3 O 7-x (where Ln is selected from the group consisting of gadolinium, terbium, dysprosium, holmium, erbium, thulium and yttrium 2 And the content of each element is 10 to 90 mol%), and contains 10 −2 to 10 −6 fluorine of copper in a molar ratio. In this specification, the term “film” refers to a film having a thickness of 0.05 μm to 10 μm. Assuming that the peak intensity of the c-axis oriented grains is I c and the peak intensity of the a / b-axis oriented grains is I ab , rab = I ab / (I c + I ab ). In the oxide superconductor according to the embodiment of the present invention, rab is 15% or less for all metals Ln. Further, by TEM observation in a cross section perpendicular to the substrate surface, the ratio of the biaxially oriented layer at the interface between the substrate and the LnBa 2 Cu 3 O 7-x is 95% or more, and the biaxially oriented ratio of the surface layer is 80%. It is as follows. Further, by TEM observation on a plane parallel to the substrate moved by 50 nm in the vertical direction from the substrate, a grain boundary having a bond angle of about 0.2 to 1 degree is regularly arranged every 5 to 50 nm.

本発明の実施形態に係る方法により、フルオロカルボン酸を用いるMOD法においてSIG法により不純物量を低減した溶液を調製し、原料溶液の混合により本質的なa,b,c軸長が変化しTc値に反映された酸化物超電導薄膜を製造することができる。このため、単結晶上に厚膜の超電導体を作製したときはもちろん、格子定数が比較的自由に変えられる中間層付き金属基材上にc軸配向粒子を優先的に成膜することも可能であり従来よりも高いJc値の超電導体を得ることができる。また、Gd,Tb,Dy,Ho,Er,Tm,Yを任意の比率で混合しても特性が低下しない酸化物超電導体が得られる。 By the method according to the embodiment of the present invention, a solution in which the amount of impurities is reduced by the SIG method in the MOD method using a fluorocarboxylic acid is prepared, and the essential a, b, and c axis lengths are changed by mixing the raw material solutions. An oxide superconducting thin film reflected in the c value can be produced. For this reason, it is possible to preferentially form c-axis oriented particles on a metal substrate with an intermediate layer whose lattice constant can be changed relatively freely as well as when producing a thick superconductor on a single crystal. Therefore, it is possible to obtain a superconductor having a higher J c value than the conventional one. Further, an oxide superconductor whose characteristics are not deteriorated even when Gd, Tb, Dy, Ho, Er, Tm, and Y are mixed at an arbitrary ratio is obtained.

(実施例1)
(CH3OCO)3Yの約3.7水和物の粉末、(CH3OCO)2Ba無水物、および(CH3OCO)2Cuの約1.0水和物の青色粉末を、モル比でY:Ba:Cu=1:2:3になるようイオン交換水に溶解して酢酸塩溶液を調製し、合計反応等モル量のトリフルオロ酢酸(CF3COOH、TFA)とナス型フラスコ中で混合および攪拌した。ロータリーエバポレータを用い、この混合溶液を約10時間減圧下に置いて反応および精製を行い、濃青色のゲルSL1Yspg(system preliminary gel)を得た。
(Example 1)
About 3.7 hydrate powder of (CH 3 OCO) 3 Y, (CH 3 OCO) 2 Ba anhydride, and about 1.0 hydrate blue powder of (CH 3 OCO) 2 Cu An acetate solution was prepared by dissolving in ion-exchanged water so that the ratio was Y: Ba: Cu = 1: 2: 3, and the total reaction equimolar amount of trifluoroacetic acid (CF 3 COOH, TFA) and eggplant-shaped flask Mixed and stirred in. Using a rotary evaporator, this mixed solution was placed under reduced pressure for about 10 hours for reaction and purification to obtain a dark blue gel SL1Yspg (system preliminary gel).

このゲルSL1Yspgを、その約100倍の重量に相当するメタノールを加えることによって完全に溶解し、青色溶液を得た。ロータリーエバポレータを用い、この青色溶液を約12時間減圧下に置いて再び精製し、濃青色のゲルSL1Ysgを得た(以下、この手法をSIG(Solvent-Into-Gel)法と呼ぶ)。このゲルSL1Ysgを再びメタノールに溶解し、メスフラスコを用いて希釈し、金属イオン換算で1.50mol/Lのコーティング溶液SL1Ysを得た。   The gel SL1Yspg was completely dissolved by adding methanol corresponding to about 100 times its weight to obtain a blue solution. Using a rotary evaporator, this blue solution was placed under reduced pressure for about 12 hours and purified again to obtain a dark blue gel SL1Ysg (hereinafter, this method is referred to as SIG (Solvent-Into-Gel) method). This gel SL1Ysg was dissolved again in methanol and diluted with a measuring flask to obtain a coating solution SL1Ys of 1.50 mol / L in terms of metal ion.

メスフラスコを用いた濃度調整の前後に重量測定を行い溶液の密度を測定し、後述する溶液混合の際に重量管理により混合物質量を算出した。   Weight measurement was performed before and after concentration adjustment using a volumetric flask to measure the density of the solution, and the amount of the mixed substance was calculated by weight control during solution mixing described later.

(CH3OCO)3Yの約3.7水和物の代わりに、(CH3OCO)3Gdの約4.4水和物の粉末を用いた以外は上記と同様にして、金属イオン換算で1.50mol/Lのコーティング溶液SL1Gdsを得た。 Metal ion conversion in the same manner as above except that (CH 3 OCO) 3 Gd powder of about 4.4 hydrate was used instead of (CH 3 OCO) 3 Y about 3.7 hydrate. A 1.50 mol / L coating solution SL1Gds was obtained.

(CH3OCO)3Yの約3.7水和物の代わりに、(CH3OCO)3Hoの約5.1水和物の粉末を用いた以外は上記と同様にして、金属イオン換算で1.50mol/Lのコーティング溶液SL1Hosを得た。 (CH 3 OCO) instead of about 3.7 hydrate of 3 Y, (CH 3 OCO) 3 except for using a powder of about 5.1 hydrate of Ho is in the same manner as described above, terms of metal ions A 1.50 mol / L coating solution SL1Hos was obtained.

(CH3OCO)3Yの約3.7水和物の代わりに、(CH3OCO)3Tmの約4.3水和物の粉末を用いた以外は上記と同様にして、金属イオン換算で1.50mol/Lのコーティング溶液SL1Tmsを得た。 Metal ion conversion in the same manner as above except that (CH 3 OCO) 3 Tm about 4.3 hydrate powder was used instead of (CH 3 OCO) 3 Y about 3.7 hydrate. A coating solution SL1Tms of 1.50 mol / L was obtained.

コーティング溶液SL1Ysとコーティング溶液SL1Gdsを、9:1、8:2、7:3、6:4、5:5、4:6、3:7、2:8、または1:9の割合で混合して、混合コーティング溶液SL1x91YGd、SL1x82YGd、SL1x73YGd、SL1x64YGd、SL1x55YGd、SL1x46YGd、SL1x37YGd、SL1x28YGd、SL1x19YGdを得た。   Coating solution SL1Ys and coating solution SL1Gds are mixed at a ratio of 9: 1, 8: 2, 7: 3, 6: 4, 5: 5, 4: 6, 3: 7, 2: 8, or 1: 9. Thus, mixed coating solutions SL1x91YGd, SL1x82YGd, SL1x73YGd, SL1x64YGd, SL1x55YGd, SL1x46YGd, SL1x37YGd, SL1x28YGd, SL1x19YGd were obtained.

コーティング溶液SL1Ysとコーティング溶液SL1Hosを上記と同様に混合して、混合コーティング溶液SL1x91YHo、SL1x82YHo、SL1x73YHo、SL1x64YHo、SL1x55YHo、SL1x46YHo、SL1x37YHo、SL1x28YHo、SL1x19YHoを得た。   The coating solution SL1Ys and the coating solution SL1Hos were mixed as described above to obtain mixed coating solutions SL1x91YHo, SL1x82YHo, SL1x73YHo, SL1x64YHo, SL1x55YHo, SL1x46YHo, SL1x37YHo, SL1x28YHo, SL1x19YHo.

コーティング溶液SL1Ysとコーティング溶液SL1Tmsを上記と同様に混合して、混合コーティング溶液SL1x91YTm、SL1x82YTm、SL1x73YTm、SL1x64YTm、SL1x55YTm、SL1x46YTm、SL1x37YTm、SL1x28YTm、SL1x19YTmを得た。   The coating solution SL1Ys and the coating solution SL1Tms were mixed in the same manner as described above to obtain mixed coating solutions SL1x91YTm, SL1x82YTm, SL1x73YTm, SL1x64YTm, SL1x55YTm, SL1x46YTm, SL1x37YTm, SL1x28YTm, SL1x19YTm.

それぞれの単独コーティング溶液および混合コーティング溶液を、(100)LaAlO3単結晶配向基板上にスピンコートした。スピンコートの条件は、加速時間0.2秒、回転速度2,000rpm、保持時間150秒とした。次に、図3に示す方法で仮焼を行った。このとき、ta2〜ta3の熱処理を、4.2%加湿純酸素雰囲気中で200℃から250℃まで11h43mかけて行なった。続いて、図4に示す条件で本焼を行った。このとき、tb3〜tb4の4.2%加湿1000ppm酸素混合アルゴン雰囲気中での熱処理を800℃で行い、tb6以降の乾燥純酸素雰囲気中での熱処理を525℃以下で行った。こうしてそれぞれのコーティング溶液から超電導体を得た。得られた超電導体の試料については、コーティング溶液の末尾にFmを付すように命名した。例えば、コーティング溶液SL1Ysから得られた超電導体はSL1YsFm、コーティング溶液SL1x55YTmから得られた超電導体はSL1x55YTmFmとなる。 Each single coating solution and mixed coating solution was spin coated onto a (100) LaAlO 3 single crystal orientation substrate. The spin coating conditions were an acceleration time of 0.2 seconds, a rotational speed of 2,000 rpm, and a holding time of 150 seconds. Next, calcination was performed by the method shown in FIG. At this time, the heat treatment from t a2 to t a3 was performed from 200 ° C. to 250 ° C. over 11 h 43 m in a 4.2% humidified pure oxygen atmosphere. Subsequently, calcination was performed under the conditions shown in FIG. At this time, heat treatment in a 4.2% humidified 1000 ppm oxygen mixed argon atmosphere of t b3 to t b4 was performed at 800 ° C., and heat treatment in a dry pure oxygen atmosphere after t b6 was performed at 525 ° C. or less. Thus, a superconductor was obtained from each coating solution. The obtained superconductor samples were named so that Fm was added to the end of the coating solution. For example, the superconductor obtained from the coating solution SL1Ys is SL1YsFm, and the superconductor obtained from the coating solution SL1x55YTm is SL1x55YTmFm.

コーティング溶液SL1YsFmを仮焼した後の仮焼膜および本焼により得られた超電導膜SL1YsFmについて、SIMSにより膜表面から基板方向へ元素分布を測定した。これらの結果を図6および図7に示す。   Regarding the calcined film after calcining the coating solution SL1YsFm and the superconducting film SL1YsFm obtained by the main firing, the element distribution from the film surface to the substrate direction was measured by SIMS. These results are shown in FIG. 6 and FIG.

図6に示されるように、仮焼膜では膜全体にFが分布している。モル比でFはCuの1/10程度であり、かなり多い量である。   As shown in FIG. 6, in the calcined film, F is distributed throughout the film. In terms of molar ratio, F is about 1/10 of Cu, which is a considerably large amount.

一方、図7に示されるように、本焼により得られた超電導膜では、Fは膜表面(X軸のゼロ付近)には多く分布しているが、基板に近くなるほど減少している。このように膜中にフッ素が残留する現象は、本焼時の化学平衡反応において、フッ化水素の除去が反応律速となっていることと深くかかわっている。TFA−MOD法により製造された超電導膜は図7に示される独特なフッ素量分布を持ち、モル比でCuの10-2〜10-6程度の残留フッ素を含む。 On the other hand, as shown in FIG. 7, in the superconducting film obtained by firing, F is distributed in a large amount on the film surface (near zero on the X axis), but decreases as it gets closer to the substrate. Thus, the phenomenon of fluorine remaining in the film is deeply related to the fact that the removal of hydrogen fluoride is the reaction rate-limiting in the chemical equilibrium reaction during the main firing. The superconducting film manufactured by the TFA-MOD method has a unique fluorine amount distribution shown in FIG. 7 and contains residual fluorine of about 10 −2 to 10 −6 of Cu in molar ratio.

混合コーティング溶液から得られるLn系混合超電導体も、Yの一部がLnで置換されるだけで、基本的な化学反応は変わらないため、ほぼ同じ残留フッ素量分布を持つ。   The Ln-based mixed superconductor obtained from the mixed coating solution also has substantially the same residual fluorine amount distribution because the basic chemical reaction does not change only by replacing part of Y with Ln.

全ての試料について、誘導法により臨界電流密度(Jc)および臨界温度(Tc)を測定した。測定は全て77K、0Tの条件で行った。実験データの分布を調べるため、非混合のYBCO超電導膜は3種の混合系の系列ごとに製造し、それぞれJcおよびTcを測定した。誘導法によるJc測定に関する膜厚については、試料を3mm角程度の小片に分割し、ICP(誘導励起プラズマ発光分光法)による物質量から平均膜厚を計算した。膜厚は150〜220nmであった。 All samples were measured for critical current density (J c ) and critical temperature (T c ) by the induction method. All measurements were performed under conditions of 77K and 0T. In order to examine the distribution of the experimental data, unmixed YBCO superconducting films were manufactured for each of the three mixed systems, and J c and T c were measured, respectively. The thickness relates J c measured by the inductive method, the sample was divided into small pieces of approximately 3mm square to calculate the average film thickness of a material amount of ICP (inductively excited plasma emission spectroscopy). The film thickness was 150 to 220 nm.

表1にY−Gd混合超電導膜の特性を、表2にY−Ho混合超電導膜の特性を、表3にY−Tm混合超電導膜の特性を、それぞれまとめて示す。   Table 1 summarizes the characteristics of the Y-Gd mixed superconducting film, Table 2 summarizes the characteristics of the Y-Ho mixed superconducting film, and Table 3 summarizes the characteristics of the Y-Tm mixed superconducting film.

Figure 2008204958
Figure 2008204958

Figure 2008204958
Figure 2008204958

Figure 2008204958
Figure 2008204958

図8に金属Ln中のGd,HoまたはTm含有率とTcとの関係を示す。まず、非混合のYBCO超電導膜3試料の結果からわかるように、Tc値は±0.2〜0.3Kの誤差を含むと考えられる。YBCO/GdBCO混合超電導膜のTcは、誤差を考慮しても、YBCO超電導膜とGdBCO超電導膜との中間の値となっていることがわかる。他の2種の混合超電導膜についても、厳密には2つの単独超電導膜の中間値とはいえないが、大幅には外れていないTc値を示しているといえる。3種の混合超電導膜のうちでは、YBCO/TmBCO混合超電導膜のTcが最も低く、これは非混合のTmBCO超電導膜のTcが最も低いと考えられることを反映している。 FIG. 8 shows the relationship between the content of Gd, Ho or Tm in the metal Ln and T c . First, as can be seen from the result of the unmixed YBCO superconducting film 3 sample, it is considered that the T c value includes an error of ± 0.2 to 0.3K. T c of YBCO / GdBCO mixed superconducting films, even in consideration of an error, it is understood that the intermediate value between the YBCO superconducting film and GdBCO superconductor film. Strictly speaking, the other two types of mixed superconducting films cannot be said to be intermediate values of the two single superconducting films, but can be said to show Tc values that are not significantly deviated. Of the three mixed superconducting films, the most low T c of YBCO / TmBCO mixed superconducting films, which reflects that the Tc of TmBCO superconductor film unmixed is considered the lowest.

図8の結果は、超電導体のTc値がYサイトに入る金属の原子半径により決まる可能性を示唆しており、かつ混合超電導体でYサイトに入る金属元素が均一に混合していることも示している。というのはGd成分が50%混合されたY系超電導体ではGd系超電導体のみをつなぐネットワークが完成していることも考えられ、Tc値はそのネットワークが存在すればGd系の約92.5K、遮断されていればY系の約90.3Kを取りそうであるが、実際には中間値となっている。このことから原子は均一に分散し、平均原子半径でTc値が決定される可能性が高い。 The result of FIG. 8 suggests that the T c value of the superconductor may be determined by the atomic radius of the metal entering the Y site, and that the metal elements entering the Y site are uniformly mixed in the mixed superconductor. It also shows. This is because it is conceivable that a network connecting only the Gd-based superconductors is completed in the Y-based superconductor in which 50% of the Gd component is mixed, and if the network exists, the T c value is about 92. If it is shut off, it is likely to take about 90.3K of the Y system, but it is actually an intermediate value. From this, the atoms are uniformly dispersed, and it is highly possible that the T c value is determined by the average atomic radius.

図9に金属Ln中のGd,HoまたはTm含有率とJcとの関係を示す。YBCO/GdBCO系の一部を除いて、他の超電導膜は約6.5MA/cm2(77K,0T)のJc値を示している。高純度溶液とすることにより高い特性の超電導体が得られていることがわかる。特性の低いYBCO/GdBCO系は、800℃、酸素分圧1000ppmという本焼の条件が適当でないと考えられる。GdBCO超電導膜の最適本焼条件は、800℃で酸素分圧250ppm程度である。YBCO/GdBCO混合超電導膜では、Gd成分の量に応じて1000ppmから250ppmまで酸素分圧を対数的に比例配分させることにより高い特性を得ることができる。 Gd in the metal Ln in Fig. 9 shows the relationship between Ho or Tm content and J c. Except for a part of the YBCO / GdBCO system, the other superconducting films show a J c value of about 6.5 MA / cm 2 (77K, 0T). It turns out that the superconductor of a high characteristic is obtained by setting it as a highly purified solution. In the YBCO / GdBCO system having low characteristics, it is considered that the conditions of firing at 800 ° C. and oxygen partial pressure of 1000 ppm are not suitable. The optimum firing condition for the GdBCO superconducting film is 800 ° C. and an oxygen partial pressure of about 250 ppm. In the YBCO / GdBCO mixed superconducting film, high characteristics can be obtained by logarithmically distributing the oxygen partial pressure from 1000 ppm to 250 ppm depending on the amount of the Gd component.

表4に、SL1x37YGdFm、SL1x19YGdFm、SL1GdsFmについて、800℃において最適な酸素分圧で本焼を行うことにより得られた超電導膜のJcおよびTcを示す。表4から明らかなように、最適な本焼条件を採用した場合には、6.5MA/cm2(77K,0T)程度のJc値が得られる。 Table 4 shows J c and T c of the superconducting films obtained by performing firing at an optimum oxygen partial pressure at 800 ° C. for SL1 × 37YGdFm, SL1 × 19YGdFm, and SL1GdsFm. As is apparent from Table 4, when the optimum firing condition is adopted, a J c value of about 6.5 MA / cm 2 (77K, 0T) is obtained.

Figure 2008204958
Figure 2008204958

c値の改善は、XRDの極図形においてa/b軸配向粒子の比率が低減することによっても確認されている。LaAlO3基板上への成膜ではa/b軸配向粒子が基板ピークと重なってしまうためその強度比を知ることができないが、極図形の(103)面を用いることにより、a/b軸配向粒子およびc軸配向粒子に起因する回折強度が測定可能となる。ここで、回折強度をIとしたとき、a/b軸配向粒子とc軸配向粒子の合計強度のうちa/b軸配向粒子の強度が占める割合を、rab=Iab/(Ic+Iab)と定義する。 Improvement of J c values are confirmed by the ratio of a / b-axis-oriented grains can be reduced in the XRD pole figure. In the film formation on the LaAlO 3 substrate, the intensity ratio cannot be known because the a / b-axis oriented particles overlap with the substrate peak. However, by using the (103) plane of the polar figure, the a / b-axis oriented The diffraction intensity caused by the particles and c-axis oriented particles can be measured. Here, when a diffraction intensity was I, the ratio of the intensity of a / b-axis-oriented grains of the total intensity of a / b-axis-oriented grains and c-axis-oriented grains, r ab = I ab / ( I c + I ab ).

従来の方法では、rabが0.15を下回ることはなく特性が低かった。例えば従来の方法によって製造したSL1x55YGdFm膜(3試料)では、rabはそれぞれ0.165、0.250、0.181であり、Jc値(77K,0T)は1MA/cm2程度の低い値であった。 In the conventional method, r ab was less are not characteristic to below 0.15. For example, in SL1x55YGdFm membranes prepared by conventional methods (3 samples), r ab are each 0.165,0.250,0.181, J c value (77K, 0T) is 1 MA / cm 2 as low value Met.

一方、本発明方法によって製造したSL1x55YGdFm膜では、rabは0.034、Jc値(77K,0T)は6.83MA/cm2であり、大幅な改善が確認された。 On the other hand, in the SL1x55YGdFm membrane produced by the method of the present invention, the r ab 0.034, J c value (77K, 0T) is 6.83MA / cm 2, significant improvement was observed.

(実施例2)
(CH3OCO)3Yの約3.7水和物の粉末、(CH3OCO)2Cuの約1.0水和物の青色粉末を、モル比でY:Cu=1:3になるようイオン交換水に溶解して酢酸塩溶液を調製し、合計反応等モル量のペンタフルオロプロピオン酸(CF3CF2COOH、PFP)とナス型フラスコ中で混合および攪拌した。ロータリーエバポレータを用い、この混合溶液を約10時間減圧下に置いて反応および精製を行い、濃青色のゲルSL2YCupg−PFPを得た。このゲルSL2YCupg−PFPをSIG法により精製してゲルSL2YCug−PFPを得た後、これをメタノールに溶解し、金属イオン換算で1.50mol/Lの溶液SL2YCu−PFPを得た。
(Example 2)
A powder of about 3.7 hydrate of (CH 3 OCO) 3 Y and a blue powder of about 1.0 hydrate of (CH 3 OCO) 2 Cu have a molar ratio of Y: Cu = 1: 3. An acetate solution was prepared by dissolving in ion-exchanged water and mixed and stirred in an eggplant type flask with a total reaction equimolar amount of pentafluoropropionic acid (CF 3 CF 2 COOH, PFP). Using a rotary evaporator, this mixed solution was placed under reduced pressure for about 10 hours for reaction and purification to obtain a dark blue gel SL2YCupg-PFP. This gel SL2YCupg-PFP was purified by the SIG method to obtain gel SL2YCug-PFP, which was then dissolved in methanol to obtain a solution SL2YCu-PFP of 1.50 mol / L in terms of metal ions.

ペンタフルオロプロピオン酸(CF3CF2COOH、PFP)の代わりに、ヘプタフルオロブタン酸(CF3CF2CF2COOH、HFB)を用いた以外は上記と同様にして、金属イオン換算で1.50mol/Lの溶液SL2YCu−HFBを得た。 1.50 mol in terms of metal ion in the same manner as above except that heptafluorobutanoic acid (CF 3 CF 2 CF 2 COOH, HFB) was used instead of pentafluoropropionic acid (CF 3 CF 2 COOH, PFP). / L solution SL2YCu-HFB was obtained.

(CH3OCO)2Ba無水物を反応等モル量のCF3COOHとナス型フラスコ中で混合および攪拌した。ロータリーエバポレータを用い、この混合溶液を約10時間減圧下に置いて反応および精製を行い、白色粉末SL2Bapgを得た。この粉末SL2BapgをSIG法により精製してSL2Bagを得た後、これをメタノールに溶解し、金属イオン換算で1.50mol/Lの溶液SL2Baを得た。この際、酢酸バリウムをペンタフルオロプロピオン酸やヘプタフルオロブタン酸と反応させると沈殿を生成するため、これらのフルオロカルボン酸は用いない。 (CH 3 OCO) 2 Ba anhydride was mixed and stirred in a reaction flask with an equimolar amount of CF 3 COOH. Using a rotary evaporator, the mixed solution was placed under reduced pressure for about 10 hours for reaction and purification to obtain a white powder SL2Bapg. After this powder SL2Bapg was purified by the SIG method to obtain SL2Bag, it was dissolved in methanol to obtain a solution SL2Ba of 1.50 mol / L in terms of metal ions. In this case, when barium acetate is reacted with pentafluoropropionic acid or heptafluorobutanoic acid, a precipitate is formed, and therefore these fluorocarboxylic acids are not used.

溶液SL2YCu−PFPと溶液SL2Baを、モル比でY:Ba:Cu=1:2:3になるよう混合し、コーティング溶液SL2YsPFPを得た。溶液SL2YCu−HFBと溶液SL2Baを上記と同様に混合してコーティング溶液SL2YsHFPを得た。また、フルオロカルボン酸としてTFAのみを用いてコーティング溶液SL2Ysを得た。   The solution SL2YCu-PFP and the solution SL2Ba were mixed at a molar ratio of Y: Ba: Cu = 1: 2: 3 to obtain a coating solution SL2YsPFP. The solution SL2YCu-HFB and the solution SL2Ba were mixed in the same manner as described above to obtain a coating solution SL2YsHFP. Moreover, coating solution SL2Ys was obtained using only TFA as fluorocarboxylic acid.

酢酸イットリウムに代わりに酢酸ホルミウムを用いた以外は上記と同様にして、モル比でY:Ba:Cu=1:2:3にしたコーティング溶液SL2HosPFP、SL2HosHFB、およびSL2Hosを得た。   Coating solutions SL2HosPFP, SL2HosHFB, and SL2Hos with a molar ratio of Y: Ba: Cu = 1: 2: 3 were obtained in the same manner as above except that holmium acetate was used instead of yttrium acetate.

Y系のコーティング溶液SL2Ys、SL2YsPFP、およびSL2YsHFBと、Ho系のコーティング溶液SL2Hos、SL2HosPFP、およびSL2HosHFBとを、それぞれ5:5の比率で混合して、9種類の混合コーティング溶液を調製した。SL2Ysを用いて調製した混合コーティング溶液をSL2YHoT(TFA)T(TFA)、SL2YHoTP(PFP)、SL2YHoTH(HFB)とする。SL2YsPFPを用いて調製した混合コーティング溶液をSL2YHoPT、SL2YHoPP、SL2YHoPHとする。SL2YsHFBを用いて調製した混合コーティング溶液をSL2YHoHT、SL2YHoHP、SL2YHoHHとする。   N-type mixed coating solutions were prepared by mixing Y-based coating solutions SL2Ys, SL2YsPFP, and SL2YsHFB with Ho-based coating solutions SL2Hos, SL2HosPFP, and SL2HosHFB at a ratio of 5: 5, respectively. The mixed coating solution prepared using SL2Ys is named SL2YHoT (TFA) T (TFA), SL2YHoTP (PFP), and SL2YHoTH (HFB). The mixed coating solution prepared using SL2YsPFP is named SL2YHoPT, SL2YHoPP, SL2YHoPH. The mixed coating solution prepared using SL2YsHFB is named SL2YHoHT, SL2YHoHP, SL2YHoHH.

実施例1と同様に、それぞれの混合コーティング溶液を(100)LaAlO3単結晶配向基板上にスピンコートして仮焼および本焼を行い、混合超電導膜を得た。得られた9種の混合超電導膜を、SL2YHoTTFm、SL2YHoTPFm、SL2YHoTHFm、SL2YHoPTFm、SL2YHoPPFm、SL2YHoPHFm、SL2YHoHTFm、SL2YHoHPFm、SL2YHoHHFmとする。 In the same manner as in Example 1, each of the mixed coating solutions was spin-coated on a (100) LaAlO 3 single crystal alignment substrate and calcined and baked to obtain a mixed superconducting film. The obtained nine types of mixed superconducting films are SL2YHoTTFm, SL2YHoTPFm, SL2YHoTHFm, SL2YHoPTFm, SL2YHoPPFm, SL2YHoPHFm, SL2YHoHTFm, SL2YHoHPFm, and SL2YHoHFm.

これらの混合超電導膜について、実施例1と同様の方法でJcおよびTcを測定した。表5にその結果を示す。表5に示されるように、フルオロカルボン酸としてPFPやHFBを用いて製造された混合超電導膜でも特性が大きく低下することはない。ただし、使用するフルオロカルボン酸の炭素鎖が長くなるほど、混合超電導膜の特性が低下する傾向が見られた。なお、表5の全ての混合超電導膜について、rabは0.15以下となっていた。 For these mixed superconducting films, J c and T c were measured in the same manner as in Example 1. Table 5 shows the results. As shown in Table 5, even in a mixed superconducting film manufactured using PFP or HFB as the fluorocarboxylic acid, the characteristics are not greatly deteriorated. However, the longer the carbon chain of the fluorocarboxylic acid used, the lower the characteristics of the mixed superconducting film. Note that rab was 0.15 or less for all the mixed superconducting films in Table 5.

Figure 2008204958
Figure 2008204958

(実施例3)
(CH3OCO)3Yの約3.7水和物の粉末をイオン交換水に溶解し、当モル量のトリフルオロ酢酸(CF3COOH、TFA)とナス型フラスコ中で混合し、ロータリーエバポレータを用いて約10時間減圧下に置いて反応および精製を行い、白色粉末SL3Ypgを得た。この粉末SL3YpgをSIG法により精製してSL3Ygを得た後、これをメタノールに溶解し、金属イオン換算で1.50mol/Lの溶液SL3Yを得た。
(Example 3)
A powder of about 3.7 hydrates of (CH 3 OCO) 3 Y is dissolved in ion-exchanged water, mixed with an equimolar amount of trifluoroacetic acid (CF 3 COOH, TFA) in an eggplant type flask, and a rotary evaporator. Was used for about 10 hours under reduced pressure for reaction and purification to obtain white powder SL3Ypg. This powder SL3Ypg was purified by the SIG method to obtain SL3Yg, which was then dissolved in methanol to obtain a solution SL3Y of 1.50 mol / L in terms of metal ions.

(CH3OCO)3Yの約3.7水和物の粉末の代わりに、(CH3OCO)3Gdの約4.4水和物の粉末を用いた以外は上記と同様にして白色粉末SL3Gdpgを得た後、SIG法により精製してSL3Ygとし、これをメタノールに溶解し、金属イオン換算で1.50mol/Lの溶液SL3Gdを得た。 A white powder was obtained in the same manner as above except that a powder of about 4.4 hydrate of (CH 3 OCO) 3 Gd was used instead of a powder of about 3.7 hydrate of (CH 3 OCO) 3 Y. After obtaining SL3Gdpg, it was purified by the SIG method to SL3Yg, which was dissolved in methanol to obtain a solution SL3Gd of 1.50 mol / L in terms of metal ions.

(CH3OCO)3Yの約3.7水和物の粉末の代わりに、(CH3OCO)3Hoの約5.1水和物の粉末を用いた以外は上記と同様にして淡燈色粉末SL3Hopgを得た後、SIG法により精製してSL3Hogとし、これをメタノールに溶解し、金属イオン換算で1.50mol/Lの溶液SL3Hoを得た。 In place of the powder of about 3.7 hydrate of (CH 3 OCO) 3 Y, powder of about 5.1 hydrate of (CH 3 OCO) 3 Ho was used in the same manner as above. After obtaining the color powder SL3Hopg, it was purified by the SIG method to obtain SL3Hog, which was dissolved in methanol to obtain a solution SL3Ho of 1.50 mol / L in terms of metal ions.

(CH3OCO)3Yの約3.7水和物の粉末の代わりに、(CH3OCO)3Tmの約4.3水和物の粉末を用いた以外は上記と同様にして、白色粒子SL3Tmpgを得た後、SIG法により精製してSL3Tmgとし、これをメタノールに溶解し、金属イオン換算で1.50mol/Lの溶液SL3Tmを得た。 Instead of (CH 3 OCO) 3 Y about 3.7 hydrate powder, (CH 3 OCO) 3 Tm about 4.3 hydrate powder was used in the same manner as described above. After obtaining particles SL3Tmpg, it was purified by the SIG method to SL3Tmg, which was dissolved in methanol to obtain a solution SL3Tm of 1.50 mol / L in terms of metal ions.

(CH3OCO)2Ba無水物、および(CH3OCO)2Cuの約1.0水和物の青色粉末を、モル比でBa:Cu=2:3となるようイオン交換水に溶解し、合計反応等モル量のトリフルオロ酢酸(CF3COOH、TFA)とナス型フラスコ中で混合および攪拌した。ロータリーエバポレータを用い、この混合溶液を約10時間減圧下に置いて反応および精製を行い、濃青色のゲルSL3BaCupgを得た。このゲルSL3BaCupgをSIG法により精製して濃青色のゲルSL3BaCugを得た後、これをメタノールに溶解し、金属イオン換算で1.50mol/Lの溶液SL3BaCuを得た。 A blue powder of about 1.0 hydrate of (CH 3 OCO) 2 Ba anhydride and (CH 3 OCO) 2 Cu is dissolved in ion-exchanged water so that the molar ratio is Ba: Cu = 2: 3. The total reaction equimolar amount of trifluoroacetic acid (CF 3 COOH, TFA) was mixed and stirred in an eggplant type flask. Using a rotary evaporator, this mixed solution was placed under reduced pressure for about 10 hours for reaction and purification to obtain a dark blue gel SL3BaCupg. The gel SL3BaCupg was purified by the SIG method to obtain a dark blue gel SL3BaCug, which was then dissolved in methanol to obtain a 1.50 mol / L solution SL3BaCu in terms of metal ions.

溶液SL3Yと溶液SL3BaCuを、モル比でY:Ba:Cu=1:2:3になるよう混合し、コーティング溶液SL3Ysを得た。溶液SL3Gdと溶液SL3BaCuを上記と同様に混合してコーティング溶液SL3Gdsを得た。溶液SL3Hoと溶液SL3BaCuを上記と同様に混合してコーティング溶液SL3Hosを得た。溶液SL3Tmと溶液SL3BaCuを上記と同様に混合してコーティング溶液SL3Tmsを得た。   The solution SL3Y and the solution SL3BaCu were mixed at a molar ratio of Y: Ba: Cu = 1: 2: 3 to obtain a coating solution SL3Ys. The solution SL3Gd and the solution SL3BaCu were mixed in the same manner as described above to obtain a coating solution SL3Gds. Solution SL3Ho and solution SL3BaCu were mixed in the same manner as described above to obtain a coating solution SL3Hos. The solution SL3Tm and the solution SL3BaCu were mixed in the same manner as described above to obtain a coating solution SL3Tms.

コーティング溶液SL3Ysとコーティング溶液SL3Gdsを、9:1、7:3、3:7、または1:9の割合で混合し、混合コーティング溶液SL3x91YGd、SL3x73YGd、SL3x37YGd、SL3x19YGdを得た。   The coating solution SL3Ys and the coating solution SL3Gds were mixed at a ratio of 9: 1, 7: 3, 3: 7, or 1: 9 to obtain mixed coating solutions SL3x91YGd, SL3x73YGd, SL3x37YGd, SL3x19YGd.

コーティング溶液SL3Ysとコーティング溶液SL3Hosを上記と同様に混合して、混合コーティング溶液SL3x91YHo、SL3x73YHo、SL3x37YHo、SL3x19YHoを得た。   The coating solution SL3Ys and the coating solution SL3Hos were mixed in the same manner as described above to obtain mixed coating solutions SL3x91YHo, SL3x73YHo, SL3x37YHo, SL3x19YHo.

コーティング溶液SL3Ysとコーティング溶液SL3Tmsを上記と同様に混合して、混合コーティング溶液SL3x91YTm、SL3x73YTmo、SL3x37YTm、SL3x19YTmを得た。   The coating solution SL3Ys and the coating solution SL3Tms were mixed in the same manner as described above to obtain mixed coating solutions SL3 × 91YTm, SL3 × 73YTmo, SL3 × 37YTm, and SL3 × 19YTm.

コーティング溶液SL3Gdsとコーティング溶液SL3Hosを上記と同様に混合して、混合コーティング溶液SL3x91GdHo、SL3x37GdHo、SL3x37GdHo、SL3x19GdHoを得た。   The coating solution SL3Gds and the coating solution SL3Hos were mixed in the same manner as described above to obtain mixed coating solutions SL3 × 91GdHo, SL3 × 37GdHo, SL3 × 37GdHo, SL3 × 19GdHo.

コーティング溶液SL3Gdsとコーティング溶液SL3Tmsを上記と同様に混合して、混合コーティング溶液SL3x91GdTm、SL3x73GdTm、SL3x37GdTm、SL3x19GdTmを得た。   The coating solution SL3Gds and the coating solution SL3Tms were mixed in the same manner as described above to obtain mixed coating solutions SL3x91GdTm, SL3x73GdTm, SL3x37GdTm, SL3x19GdTm.

コーティング溶液SL3Hosとコーティング溶液SL3Tmsを上記と同様に混合して、混合コーティング溶液SL3x91HoTm、SL3x73HoTm、SL3x37HoTm、SL3x19HoTmを得た。   The coating solution SL3Hos and the coating solution SL3Tms were mixed in the same manner as described above to obtain mixed coating solutions SL3 × 91HoTm, SL3 × 73HoTm, SL3 × 37HoTm, SL3 × 19HoTm.

実施例1と同様に、それぞれの混合コーティング溶液を(100)LaAlO3単結晶配向基板上にスピンコートして仮焼および本焼を行い、混合超電導膜を得た。なお、Gdを含む混合超電導膜を製造する場合には、実施例1に記載したようにGd成分の量に応じて本焼時の最適酸素分圧を計算により求め、その酸素分圧条件を採用した。これらの混合超電導膜について、実施例1と同様の方法でJcおよびTcを測定した。 In the same manner as in Example 1, each of the mixed coating solutions was spin-coated on a (100) LaAlO 3 single crystal alignment substrate and calcined and baked to obtain a mixed superconducting film. When producing a mixed superconducting film containing Gd, as described in Example 1, the optimum oxygen partial pressure during firing is calculated according to the amount of the Gd component, and the oxygen partial pressure condition is adopted. did. For these mixed superconducting films, J c and T c were measured in the same manner as in Example 1.

表6にY−Gd混合超電導膜の特性を、表7にY−Ho混合超電導膜の特性を、表8にY−Tm混合超電導膜の特性を、それぞれまとめて示す。表6〜表8に示される特性値は、表1〜表3と比べて多少低下しているように見えるが、実験誤差の可能性もある。全般的に良好な特性が得られていることが確認された。   Table 6 summarizes the characteristics of the Y-Gd mixed superconducting film, Table 7 summarizes the characteristics of the Y-Ho mixed superconducting film, and Table 8 summarizes the characteristics of the Y-Tm mixed superconducting film. Although the characteristic values shown in Tables 6 to 8 seem to be somewhat lower than those in Tables 1 to 3, there is a possibility of experimental error. It was confirmed that generally good characteristics were obtained.

Figure 2008204958
Figure 2008204958

Figure 2008204958
Figure 2008204958

Figure 2008204958
Figure 2008204958

表9にGd−Ho混合超電導膜の特性を、表10にGd−Tm混合超電導膜の特性を、表11にHo−Tm混合超電導膜の特性を、それぞれまとめて示す。非混合のGdBCO超電導膜、HoBCO超電導膜、およびTmBCO超電導膜の特性は似通っているため、混合超電導膜でも同じような特性が得られている。しかし、本発明の方法で、従来の方法と異なり、混合超電導膜でも特性が大きく劣化しないことが確認された。   Table 9 summarizes the characteristics of the Gd—Ho mixed superconducting film, Table 10 summarizes the characteristics of the Gd—Tm mixed superconducting film, and Table 11 summarizes the characteristics of the Ho—Tm mixed superconducting film. Since the characteristics of the unmixed GdBCO superconducting film, the HoBCO superconducting film, and the TmBCO superconducting film are similar, the mixed superconducting film has similar characteristics. However, in the method of the present invention, unlike the conventional method, it was confirmed that the characteristics were not greatly deteriorated even in the mixed superconducting film.

Figure 2008204958
Figure 2008204958

Figure 2008204958
Figure 2008204958

Figure 2008204958
Figure 2008204958

(実施例4)
(CH3OCO)3Yの約3.7水和物の粉末、(CH3OCO)2Cuの約1.0水和物の青色粉末を、モル比でY:Cu=1:3となるようイオン交換水に溶解して酢酸塩溶液を調製し、合計反応等モル量のペンタフルオロプロピオン酸(CF3CF2COOH、PFP)とナス型フラスコ中で混合および攪拌した。ロータリーエバポレータを用い、この混合溶液を約10時間減圧下に置いて反応および精製を行い、濃青色のゲルSL4YCupg−PFPを得た。このゲルSL4YCupg−PFPをSIG法により精製してゲルSL4YCug−PFPを得た後、これをメタノールに溶解し、金属イオン換算で1.50mol/Lの溶液SL4YCu−PFPを得た。この溶液に反応等モル量のトリフルオロ酢酸(CF3COOH、TFA)を加え、SIG法により精製して、溶液SL4YCuを得た。
Example 4
A powder of about 3.7 hydrate of (CH 3 OCO) 3 Y and a blue powder of about 1.0 hydrate of (CH 3 OCO) 2 Cu have a molar ratio of Y: Cu = 1: 3. An acetate solution was prepared by dissolving in ion-exchanged water and mixed and stirred in an eggplant type flask with a total reaction equimolar amount of pentafluoropropionic acid (CF 3 CF 2 COOH, PFP). Using a rotary evaporator, the mixed solution was placed under reduced pressure for about 10 hours for reaction and purification to obtain a dark blue gel SL4YCupg-PFP. After this gel SL4YCupg-PFP was purified by SIG method to obtain gel SL4YCug-PFP, this was dissolved in methanol to obtain 1.50 mol / L solution SL4YCu-PFP in terms of metal ions. A reaction equimolar amount of trifluoroacetic acid (CF 3 COOH, TFA) was added to this solution and purified by the SIG method to obtain a solution SL4YCu.

(CH3OCO)2Ba無水物を反応等モル量のCF3COOHとナス型フラスコ中で混合および攪拌した。ロータリーエバポレータを用い、この混合溶液を約10時間減圧下に置いて反応および精製を行い、白色粉末SL4Bapgを得た。この粉末SL2BapgをSIG法により精製してSL4Bagを得た後、これをメタノールに溶解し、金属イオン換算で1.50mol/Lの溶液SL4Baを得た。この際、酢酸バリウムをペンタフルオロプロピオン酸と反応させると沈殿を生成するため、これらのフルオロカルボン酸は用いない。 (CH 3 OCO) 2 Ba anhydride was mixed and stirred in a reaction flask with an equimolar amount of CF 3 COOH. Using the rotary evaporator, this mixed solution was placed under reduced pressure for about 10 hours for reaction and purification to obtain white powder SL4Bapg. This powder SL2Bapg was purified by the SIG method to obtain SL4Bag, which was then dissolved in methanol to obtain a solution SL4Ba of 1.50 mol / L in terms of metal ions. At this time, when barium acetate is reacted with pentafluoropropionic acid, a precipitate is formed. Therefore, these fluorocarboxylic acids are not used.

溶液SL4YCuと溶液SL4Baを、モル比でY:Ba:Cu=1:2:3になるよう混合し、コーティング溶液SL4Ysを得た。   The solution SL4YCu and the solution SL4Ba were mixed at a molar ratio of Y: Ba: Cu = 1: 2: 3 to obtain a coating solution SL4Ys.

酢酸イットリウムの代わりに酢酸ホルミウムを用いた以外は上記と同様にして、モル比でHo:Ba:Cu=1:2:3にしたコーティング溶液SL4Hosを得た。   A coating solution SL4Hos having a molar ratio of Ho: Ba: Cu = 1: 2: 3 was obtained in the same manner as above except that holmium acetate was used instead of yttrium acetate.

コーティング溶液SL42Ysとコーティング溶液SL4Hosを、9:1、7:3、3:7、または1:9の割合で混合し、混合コーティング溶液SL4x91YHo、SL4x73YHo、SL42x37YHo、SL4x19YHoを得た。   The coating solution SL42Ys and the coating solution SL4Hos were mixed at a ratio of 9: 1, 7: 3, 3: 7, or 1: 9 to obtain mixed coating solutions SL4x91YHo, SL4x73YHo, SL42x37YHo, SL4x19YHo.

実施例1に記載した成膜・仮焼・本焼条件を用いて(100)LaAlO3単結晶配向基板上に成膜を行い、スピンコート法により、加速時間0.2秒、回転速度2,000rpm、保持時間150秒の条件で成膜を行い、SL4x91YHoFm、SL4x73YHoFm、SL4x37YHoFm、SL4x19YHoFmを得た。 Film formation is performed on a (100) LaAlO 3 single crystal alignment substrate using the film formation, calcination, and main baking conditions described in Example 1, and an acceleration time of 0.2 seconds, a rotation speed of 2, Film formation was performed under the conditions of 000 rpm and holding time of 150 seconds to obtain SL4x91YHoFm, SL4x73YHoFm, SL4x37YHoFm, and SL4x19YHoFm.

実施例1と同様に、それぞれの混合コーティング溶液を(100)LaAlO3単結晶配向基板上にスピンコートして仮焼および本焼を行い、混合超電導膜を得た。これらの混合超電導膜について、実施例1と同様の方法でJc、Tcおよびrabを測定した。表12にこれらの結果をまとめて示す。 In the same manner as in Example 1, each of the mixed coating solutions was spin-coated on a (100) LaAlO 3 single crystal alignment substrate and calcined and baked to obtain a mixed superconducting film. For these mixed superconducting films, J c , T c and rab were measured in the same manner as in Example 1. Table 12 summarizes these results.

Figure 2008204958
Figure 2008204958

本発明の実施形態におけるコーティング溶液調製のためのフローチャート。The flowchart for the coating solution preparation in embodiment of this invention. 本発明の実施形態における超電導体製造のためのフローチャート。The flowchart for superconductor manufacture in embodiment of this invention. 本発明の実施形態における仮焼時の温度プロファイルを示す図。The figure which shows the temperature profile at the time of calcination in embodiment of this invention. 本発明の実施形態における本焼時の温度プロファイルを示す図。The figure which shows the temperature profile at the time of the main baking in embodiment of this invention. 本発明の実施形態における結晶成長機構を示す図。The figure which shows the crystal growth mechanism in embodiment of this invention. 実施例1において仮焼により得られた仮焼膜のSIMS分析結果を示す図。The figure which shows the SIMS analysis result of the calcined film obtained by calcining in Example 1. FIG. 実施例1において本焼により得られた酸化物超電導膜のSIMS分析結果を示す図。The figure which shows the SIMS analysis result of the oxide superconducting film obtained by baking in Example 1. 実施例1における酸化物超電導膜について、金属Ln中のGd,HoまたはTm含有率とTcとの関係を示す図。Shows the oxide superconductor film, Gd in the metal Ln, the relation between Ho or Tm content and T c in the first embodiment. 実施例1における酸化物超電導膜について、金属Ln中のGd,HoまたはTm含有率とJcとの関係を示す図。Shows the oxide superconductor film, Gd in the metal Ln, the relation between Ho or Tm content and J c of Example 1.

符号の説明Explanation of symbols

1…基板、2…膜、3…超電導体の前駆体、4…超電導粒子の核、5…結晶、6…粒界。   DESCRIPTION OF SYMBOLS 1 ... Substrate, 2 ... Film, 3 ... Precursor of superconductor, 4 ... Core of superconducting particle, 5 ... Crystal, 6 ... Grain boundary.

Claims (10)

主成分が一般式LnBa2Cu37-x(ここで、LnはGd,Tb,Dy,Ho,Er,TmおよびYからなる群より選択される2種以上であり、各々の元素の含有率は10〜90モル%である)で表され、モル比で銅の10-2〜10-6のフッ素を含むことを特徴とする酸化物超電導体。 The main component is a general formula LnBa 2 Cu 3 O 7-x (where Ln is two or more selected from the group consisting of Gd, Tb, Dy, Ho, Er, Tm and Y, and each element contains The oxide superconductor is characterized in that it contains 10 −2 to 10 −6 fluorine of copper in a molar ratio. 基板上に厚さ0.05〜10μmの膜として形成されていることを特徴とする請求項1に記載の酸化物超電導体。   The oxide superconductor according to claim 1, wherein the oxide superconductor is formed as a film having a thickness of 0.05 to 10 μm on the substrate. X線回折で観測されるa/b軸配向粒子とc軸配向粒子の合計強度のうちa/b軸配向粒子の強度が占める割合が15%以下であることを特徴とする請求項1または2に記載の酸化物超電導体。   The ratio of the intensity of a / b-axis oriented particles to the total intensity of a / b-axis oriented particles and c-axis oriented particles observed by X-ray diffraction is 15% or less. The oxide superconductor described in 1. 基板面に垂直な断面でのTEM観察で、基板とLnBa2Cu37-x界面における2軸配向層の比率が95%以上であり、かつ表面層の2軸配向比率が80%以下であることを特徴とする請求項1または2に記載の酸化物超電導体。 According to TEM observation in a cross section perpendicular to the substrate surface, the ratio of the biaxial orientation layer at the interface between the substrate and the LnBa 2 Cu 3 O 7-x is 95% or more, and the biaxial orientation ratio of the surface layer is 80% or less. The oxide superconductor according to claim 1, wherein the oxide superconductor is provided. 基板から垂直方向に50nm移動した基板と平行な面でのTEM観察で、結合角0.2〜1度程度の粒界が5〜50nmごとに規則正しく配列する構造を持つことを特徴とする請求項1または2に記載の酸化物超電導体。   The TEM observation on a plane parallel to the substrate moved by 50 nm in the vertical direction from the substrate has a structure in which grain boundaries with a bond angle of about 0.2 to 1 degree are regularly arranged every 5 to 50 nm. 3. The oxide superconductor according to 1 or 2. Ln(LnはY,Gd,Tb,Dy,Ho,ErおよびTmからなる群より選択される1種)の酢酸塩、酢酸バリウムおよび酢酸銅の群から選択される一の溶液をフルオロカルボン酸と反応および精製を行ってゲルを生成し、1度目の精製で得られたゲルをアルコールに溶解して不純物入り溶液を得た後、その溶液を再び精製することにより不純物を減少させたゲルを得て、さらにこのゲルをアルコールを主とした溶媒に溶解して第1の溶液を調製する第1の溶液調製工程と、
前記第1の溶液調製工程で選択されたLn以外のLn(ここで、LnはY,Gd,Tb,Dy,Ho,ErおよびTmからなる群より選択される1種)の酢酸塩、酢酸バリウムおよび酢酸銅の群から選択される一の溶液をフルオロカルボン酸と反応および精製を行ってゲルを生成し、1度目の精製で得られたゲルをアルコールに溶解して不純物入り溶液を得た後、その溶液を再び精製することにより不純物を減少させたゲルを得て、さらにこのゲルをアルコールを主とした溶媒に溶解して第2の溶液を調製する第2の溶液調製工程と、
前記第1の溶液と前記第2の溶液を前記2種のLnの各々の含有率が10〜90モル%となるように混合し、前記Ln、バリウムおよび銅を1:2:3のモル比で含む溶液とした後、この溶液を基板上にコーティングして膜を形成し、仮焼および本焼する工程と
を有することを特徴とする酸化物超電導体の製造方法。
One solution selected from the group consisting of acetate, barium acetate and copper acetate of Ln (Ln is one selected from the group consisting of Y, Gd, Tb, Dy, Ho, Er and Tm) and fluorocarboxylic acid A gel is produced by reaction and purification, and the gel obtained in the first purification is dissolved in alcohol to obtain a solution containing impurities, and then the solution is purified again to obtain a gel with reduced impurities. Further, a first solution preparation step of preparing the first solution by dissolving the gel in a solvent mainly containing alcohol,
Ln other than Ln selected in the first solution preparation step (where Ln is one selected from the group consisting of Y, Gd, Tb, Dy, Ho, Er and Tm), acetate, barium acetate A solution selected from the group consisting of copper acetate and copper acetate is reacted and purified with fluorocarboxylic acid to form a gel, and the gel obtained in the first purification is dissolved in alcohol to obtain an impurity-containing solution. Obtaining a gel with reduced impurities by repurifying the solution, and further dissolving the gel in a solvent mainly comprising alcohol to prepare a second solution;
The first solution and the second solution are mixed so that the content of each of the two types of Ln is 10 to 90 mol%, and the molar ratio of Ln, barium and copper is 1: 2: 3. And a step of coating the solution on a substrate to form a film, calcining and firing.
前記フルオロカルボン酸はトリフルオロ酢酸、ペンタフルオロプロピオン酸およびヘプタフルオロブタン酸からなる群より選択されることを特徴とする請求項6に記載の酸化物超電導体の製造方法。   The method for producing an oxide superconductor according to claim 6, wherein the fluorocarboxylic acid is selected from the group consisting of trifluoroacetic acid, pentafluoropropionic acid and heptafluorobutanoic acid. 前記溶媒はメタノールを主成分とすることを特徴とする請求項6に記載の酸化物超電導体の製造方法。   The method for producing an oxide superconductor according to claim 6, wherein the solvent contains methanol as a main component. 反応時に用いたフルオロカルボン酸を、反応後に炭素数の少ないフルオロカルボン酸で置換することを特徴とする請求項6ないし8のいずれか1項に記載の酸化物超電導体の製造方法。   The method for producing an oxide superconductor according to any one of claims 6 to 8, wherein the fluorocarboxylic acid used in the reaction is substituted with a fluorocarboxylic acid having a small number of carbons after the reaction. Ln(LnはY,Gd,Tb,Dy,Ho,ErおよびTmからなる群より選択される1種)の酢酸塩、酢酸バリウムおよび酢酸銅の群から選択される一の溶液をフルオロカルボン酸と反応および精製を行ってゲルを生成し、1度目の精製で得られたゲルをアルコールに溶解して不純物入り溶液を得た後、その溶液を再び精製することにより不純物を減少させたゲルを得て、さらにこのゲルをアルコールを主とした溶媒に溶解して第1の溶液を調製する第1の溶液調製工程と、
前記第1の溶液調製工程で選択されたLn以外のLn(ここで、LnはY,Gd,Tb,Dy,Ho,ErおよびTmからなる群より選択される1種)の酢酸塩、酢酸バリウムおよび酢酸銅の群から選択される一の溶液をフルオロカルボン酸と反応および精製を行ってゲルを生成し、1度目の精製で得られたゲルをアルコールに溶解して不純物入り溶液を得た後、その溶液を再び精製することにより不純物を減少させたゲルを得て、さらにこのゲルをアルコールを主とした溶媒に溶解して第2の溶液を調製する第2の溶液調製工程と、
前記第1の溶液と前記第2の溶液を混合し、前記Ln、バリウムおよび銅を1:2:3のモル比で含む溶液とした後、この溶液を基板上にコーティングして膜を形成し、仮焼および本焼する工程と
を有することを特徴とする酸化物超電導体の製造方法。
One solution selected from the group consisting of acetate, barium acetate and copper acetate of Ln (Ln is one selected from the group consisting of Y, Gd, Tb, Dy, Ho, Er and Tm) and fluorocarboxylic acid A gel is produced by reaction and purification, and the gel obtained in the first purification is dissolved in alcohol to obtain a solution containing impurities, and then the solution is purified again to obtain a gel with reduced impurities. Further, a first solution preparation step of preparing the first solution by dissolving the gel in a solvent mainly containing alcohol,
Ln other than Ln selected in the first solution preparation step (where Ln is one selected from the group consisting of Y, Gd, Tb, Dy, Ho, Er and Tm), acetate, barium acetate A solution selected from the group consisting of copper acetate and copper acetate is reacted and purified with fluorocarboxylic acid to form a gel, and the gel obtained in the first purification is dissolved in alcohol to obtain an impurity-containing solution. Obtaining a gel with reduced impurities by repurifying the solution, and further dissolving the gel in a solvent mainly comprising alcohol to prepare a second solution;
The first solution and the second solution are mixed to form a solution containing the Ln, barium and copper in a molar ratio of 1: 2: 3, and then the solution is coated on a substrate to form a film. And a method for producing an oxide superconductor, comprising the steps of calcining and calcination.
JP2008121694A 2008-05-07 2008-05-07 Manufacturing method of oxide superconductor Expired - Lifetime JP5172456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008121694A JP5172456B2 (en) 2008-05-07 2008-05-07 Manufacturing method of oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008121694A JP5172456B2 (en) 2008-05-07 2008-05-07 Manufacturing method of oxide superconductor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004270113A Division JP4208806B2 (en) 2004-09-16 2004-09-16 Manufacturing method of oxide superconductor

Publications (2)

Publication Number Publication Date
JP2008204958A true JP2008204958A (en) 2008-09-04
JP5172456B2 JP5172456B2 (en) 2013-03-27

Family

ID=39782201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008121694A Expired - Lifetime JP5172456B2 (en) 2008-05-07 2008-05-07 Manufacturing method of oxide superconductor

Country Status (1)

Country Link
JP (1) JP5172456B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007234531A (en) * 2006-03-03 2007-09-13 Internatl Superconductivity Technology Center Manufacturing method of tape-like oxide superconductive wire rod and heat treatment device for its intermediate layer
JP2011048914A (en) * 2009-08-25 2011-03-10 Furukawa Electric Co Ltd:The Superconducting wire rod and manufacturing method of the same
US10741743B2 (en) 2015-09-16 2020-08-11 Kabushiki Kaisha Toshiba Oxide superconductor and method for manufacturing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01145366A (en) * 1987-12-02 1989-06-07 Toshiba Corp Oxide-based superconducting ceramics
JPH0259467A (en) * 1988-04-01 1990-02-28 Rhone Poulenc Chim Stable superconductive substance and its production
JPH0558626A (en) * 1991-01-18 1993-03-09 Ngk Insulators Ltd Oxide superconductor and its production
JPH05286718A (en) * 1992-04-10 1993-11-02 Nippon Steel Corp Oxide superconductor containing rare-earth element and its production
JP2002080297A (en) * 2000-09-05 2002-03-19 Toshiba Corp Method of manufacturing oxide superconductor, raw material for oxide superconductor and method of manufacturing raw material for oxide superconductor
JP2002527345A (en) * 1998-09-14 2002-08-27 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Superconducting structure containing mixed rare earth barium-copper composition
JP2003257259A (en) * 2002-03-05 2003-09-12 Toshiba Corp Superconductive layer and its manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01145366A (en) * 1987-12-02 1989-06-07 Toshiba Corp Oxide-based superconducting ceramics
JPH0259467A (en) * 1988-04-01 1990-02-28 Rhone Poulenc Chim Stable superconductive substance and its production
JPH0558626A (en) * 1991-01-18 1993-03-09 Ngk Insulators Ltd Oxide superconductor and its production
JPH05286718A (en) * 1992-04-10 1993-11-02 Nippon Steel Corp Oxide superconductor containing rare-earth element and its production
JP2002527345A (en) * 1998-09-14 2002-08-27 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Superconducting structure containing mixed rare earth barium-copper composition
JP2002080297A (en) * 2000-09-05 2002-03-19 Toshiba Corp Method of manufacturing oxide superconductor, raw material for oxide superconductor and method of manufacturing raw material for oxide superconductor
JP2003257259A (en) * 2002-03-05 2003-09-12 Toshiba Corp Superconductive layer and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007234531A (en) * 2006-03-03 2007-09-13 Internatl Superconductivity Technology Center Manufacturing method of tape-like oxide superconductive wire rod and heat treatment device for its intermediate layer
JP2011048914A (en) * 2009-08-25 2011-03-10 Furukawa Electric Co Ltd:The Superconducting wire rod and manufacturing method of the same
US10741743B2 (en) 2015-09-16 2020-08-11 Kabushiki Kaisha Toshiba Oxide superconductor and method for manufacturing the same
US11417820B2 (en) 2015-09-16 2022-08-16 Kabushiki Kaisha Toshiba Oxide superconductor and method for manufacturing the same

Also Published As

Publication number Publication date
JP5172456B2 (en) 2013-03-27

Similar Documents

Publication Publication Date Title
US7615515B2 (en) Oxide superconductor and method of preparing the same
Araki et al. Review of a chemical approach to YBa2Cu3O7− x-coated superconductors—metalorganic deposition using trifluoroacetates
JP3556586B2 (en) Method for producing oxide superconductor, raw material for oxide superconductor, and method for producing raw material for oxide superconductor
AU2005270368B2 (en) Method for producing highly textured, strip-shaped high-temperature superconductors
US7919434B2 (en) Oxide superconducting film and method of preparing the same
US8389045B2 (en) Method for producing oxide superconductor
US20060199741A1 (en) Superconductor layer and method of manufacturing the same
JP2003526905A (en) Multilayer body and method for producing the same
JP2009035479A (en) Controlled conversion of metal oxyfluorides into superconducting oxides
US20030050195A1 (en) Synthesis of YBa2Cu3O7 using sub-atmospheric processing
KR100665587B1 (en) Method for providing metal organic precursor solution and oxide superconducting film fabricated thereof
JP5172456B2 (en) Manufacturing method of oxide superconductor
JP2003034527A (en) Thick film of tape-like oxide superconductor and method for manufacturing it
JP2011201712A (en) Method for producing oriented oxide film, oriented oxide film, and oxide superconductor
CN103435338B (en) Method for preparing high temperature superconductive membrane by means of controlling fluorine-barium ratio of precursor
WO2002093590A1 (en) Oxide supercoductor in the form of tape and method for preparation thereof
KR20090093618A (en) Method of forming a precursor solution for metal organic deposition and mothod of forming a superconducting thick film using thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111021

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121024

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121226

R150 Certificate of patent or registration of utility model

Ref document number: 5172456

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350