JPS63230525A - Superconductive material - Google Patents

Superconductive material

Info

Publication number
JPS63230525A
JPS63230525A JP62063226A JP6322687A JPS63230525A JP S63230525 A JPS63230525 A JP S63230525A JP 62063226 A JP62063226 A JP 62063226A JP 6322687 A JP6322687 A JP 6322687A JP S63230525 A JPS63230525 A JP S63230525A
Authority
JP
Japan
Prior art keywords
temperature
superconductive
crystal structure
superconductive material
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62063226A
Other languages
Japanese (ja)
Inventor
Shoji Tanaka
昭二 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP62063226A priority Critical patent/JPS63230525A/en
Publication of JPS63230525A publication Critical patent/JPS63230525A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/85Superconducting active materials
    • H10N60/855Ceramic superconductors
    • H10N60/857Ceramic superconductors comprising copper oxide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a superconductive material losing electric resistance at a temperature lower than inexpensive liquid N2 temperature, comprising rare earth metals consisting essentially of Ba and Er and O in a given component ratio, having crystal structure of oxygen deficient perovskite type. CONSTITUTION:A superconductive material which mainly comprises a composition shown by the formula (x=1-3, y=0.5-1.5, z=0-3) and has crystal structure of oxygen deficient perovskite type. The superconductive material may mostly have a composition close to (Ba2Er)Cu3O6.5. Since the superconductive material has high critical temperature and can be cooled with liquid N2, a scare and expensive cooling material is not required at all. Since the material is stable even if it is heated to a high temperature about 950 deg.C, the material has high degree of freedom in production as a superconductive wire material or electronic element material.

Description

【発明の詳細な説明】 イ6発明の目的 性素材に関するものである。[Detailed description of the invention] B6 Purpose of the invention It concerns sexual materials.

従来最高の臨界温度を有する超伝導物質として確認され
ているものは、一般式、 (La□−XMx)2CuO4 但しM=Ba、Sr、Ca で表わされる酸化物で、その臨界温度Tc(転移開始温
度)は最高で40にであり、液体水素(沸点20.3K
)または液体ネオン(沸点27.1K)の冷却下で使用
可能になっているものの、未だ液体窒素(沸点77K)
で使用可部な水準には達していなかった。
The superconducting material that has been confirmed to have the highest critical temperature is an oxide represented by the general formula (La□-XMx)2CuO4, where M=Ba, Sr, Ca. temperature) is up to 40°C, and liquid hydrogen (boiling point 20.3K)
) or liquid neon (boiling point 27.1K), but it is still possible to use liquid nitrogen (boiling point 77K)
However, it did not reach a usable level.

臨界温度が液体窒素温度(沸点77K)を越す可能性の
ある物質として指摘されたのは、米国ヒユーストン大学
C,W、Chuらのグループによるバリウム−イツトリ
ウム−銅−酸素系の酸化物(Phys。
A barium-yttrium-copper-oxygen oxide (Phys.

Rev、 Lett、 Vol、5B、 P2O3−9
09(1987))テ、電気抵抗が消滅する温度は94
にと主張されている。
Rev, Lett, Vol, 5B, P2O3-9
09 (1987)) Te, the temperature at which electrical resistance disappears is 94
It is claimed that

しかし作成されたものは幾つかの構造を有する混合物質
であり、超伝導を示す物質の組成式は同定されていない
However, what was created was a mixed material with several structures, and the compositional formula of the material exhibiting superconductivity has not been identified.

発明が解決しようとする問題点 本発明は、従来知られている超伝導性素材とは異った新
しい物質で、安価な液体窒素温度よりも高い温度で電気
抵抗が消滅する超伝導性素材を提供することを目的とす
る。
Problems to be Solved by the Invention The present invention uses a new superconducting material that is different from conventionally known superconducting materials, and whose electrical resistance disappears at temperatures higher than the temperature of inexpensive liquid nitrogen. The purpose is to provide.

口0発明の構成 問題点を解決するための手段 本発明に係る超伝導性素材は、一般式 %式% なる組成物を主体とし、酸素欠損ペロブスカイト型結晶
構造を有することを特徴とする。
Means for Solving the Constituent Problems of the Invention The superconducting material according to the present invention is mainly composed of a composition represented by the general formula %, and is characterized by having an oxygen-deficient perovskite crystal structure.

ここでMはEr(エルビウム)を主成分とする希土類金
属元素であり、Xは1〜3、yは0.5〜1.5.zは
θ〜3の範囲の数値であり、好ましくはXは2程度、y
は1程度である。
Here, M is a rare earth metal element whose main component is Er (erbium), X is 1 to 3, and y is 0.5 to 1.5. z is a numerical value in the range of θ to 3, preferably X is about 2, and y
is about 1.

Cuは大部分が2価の状態で存在し1Mがほぼ3価、H
aが2価である結果、0の組成は約6゜5となるが、前
記組成物を結晶化する際の焼成温度や雰囲気次第でCu
の一部が3価、の状態となったものが共存する場合もあ
り、その場合、総合的な0組成は6.5よりも若干高め
に表れるが1本発明においてはかかる場合を除外するも
のではない。
Most of Cu exists in a divalent state, and 1M is almost trivalent, H
As a result of a being divalent, the composition of 0 is approximately 6°5, but depending on the firing temperature and atmosphere when crystallizing the composition, Cu
In some cases, a part of which is in a trivalent state coexists, and in that case, the overall 0 composition appears to be slightly higher than 6.5, but this invention excludes such cases. isn't it.

即ち、(Ba2Er)Cu30,5 に近い組成物が大
部分を占めていればよい。
That is, it is only necessary that the composition close to (Ba2Er)Cu30,5 occupies the majority.

酸素雰囲気下で高温焼成を行っても3価のCuの生成は
それほど大ではなく、通常10%以下である。
Even if high-temperature firing is performed in an oxygen atmosphere, the production of trivalent Cu is not so large, usually 10% or less.

またMはErを主体とするが、他の希土類金属を若干含
んでいてもよい。
Further, although M is mainly composed of Er, it may contain a small amount of other rare earth metals.

本発明において「主体とし」と言うのは、前記組成物が
大部分を占めている状態を指し、結晶構造及び本発明の
目的の達成に悪影響を与えない限り、前記組成物以外の
組成物乃至金属が共存する場合を除外するものではない
In the present invention, the term "mainly composed" refers to a state in which the above-mentioned composition occupies the majority, and as long as it does not adversely affect the crystal structure and the achievement of the object of the present invention, compositions other than the above-mentioned composition may not be used. This does not exclude cases where metals coexist.

1月 前記一般式の組成物を主体とし、酸素欠損ペロブスカイ
ト型結晶構造を有する素材は、液体窒素温度よりも高い
温度で超伝導転移を開始する。
A material mainly composed of the composition of the above general formula and having an oxygen-deficient perovskite crystal structure starts superconducting transition at a temperature higher than the liquid nitrogen temperature.

以下、実施例により本発明を具体的に説明するが、本発
明はこれら実施例に限定されるものではない。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to these Examples.

実施例1 前記一般式において、Xが1.5〜t、g、yが1.5
〜1.2のバリウム−エルビウム−銅−酸素系組成物を
調製した。
Example 1 In the general formula, X is 1.5 to t, g and y are 1.5
A barium-erbium-copper-oxygen composition of ~1.2 was prepared.

計算量の試薬特級Er20s 、BaCO3及びCuO
の各粉末をエタノール中でメノウ乳鉢により混合、ルツ
ボに入れて950℃で5時間予備焼成し、炉から取り出
したのち再び粉砕し、約1000 K g / c m
 2の圧力でプレスしてベレットとし、950℃の炉中
で5時間焼結した。
Calculated reagent special grade Er20s, BaCO3 and CuO
The powders were mixed in ethanol in an agate mortar, placed in a crucible, pre-calcined at 950°C for 5 hours, taken out from the furnace, and ground again to yield approximately 1000 kg/cm
It was pressed into a pellet at a pressure of 2.2 and sintered in a furnace at 950° C. for 5 hours.

各焼結物は、X線回折により、酸素欠損ペロブスカイト
型結晶構造を有することことが認められた。
It was confirmed by X-ray diffraction that each sintered product had an oxygen-deficient perovskite crystal structure.

各々について、超伝導転移開始温度Tc(磁化率ないし
電気抵抗率が超伝導転移を示し始める温度)及び転移温
度幅ΔTc(磁化率ないし電気抵抗率が通常の値(Tc
近傍)から変化する時の変化率が90%及び10%にな
る時の温度間隔)を測定した結果を第1表に示す。
For each, the superconducting transition starting temperature Tc (the temperature at which the magnetic susceptibility or electrical resistivity begins to show a superconducting transition) and the transition temperature width ΔTc (the temperature at which the magnetic susceptibility or electrical resistivity is the normal value (Tc)
Table 1 shows the results of measuring the temperature interval when the rate of change is 90% and 10% when changing from the vicinity).

第  1  表 ハ0発明の効果 本発明の超伝導性素材は下記の利点を有する。Table 1 Effect of invention The superconducting material of the present invention has the following advantages.

■臨界温度が高く液体窒素による冷却が可能になったた
め、稀少で高価な冷却剤の使用を全く必要としない。
■Since the critical temperature is high and cooling with liquid nitrogen is possible, there is no need to use rare and expensive coolants.

■空気中で950℃程度の高温まで加熱しても安定であ
るために、超伝導線材やエレクトロニクス素子素材とし
ての製造上の自由度が大きい。
■Since it is stable even when heated to a high temperature of about 950°C in air, it has great flexibility in manufacturing as a superconducting wire or electronic device material.

■セラミックス系の超伝導体であるために、その電気的
、磁気的、機械的性質が従来の金属系超伝導体と異なる
と考えられ、そのためにジョセフソン素子や超伝導量子
干渉素子として応用された時に、それらの特性の多様性
を増す。
■Since it is a ceramic-based superconductor, its electrical, magnetic, and mechanical properties are thought to be different from conventional metal-based superconductors, and for this reason it has been applied as Josephson devices and superconducting quantum interference devices. increase the diversity of those characteristics.

Claims (1)

【特許請求の範囲】 一般式 (Ba_xM_y)Cu_3O_9_−_z但しM=E
rを主成分とする希土類金属 x=1〜3 y=0.5〜1.5 z=0〜3 なる組成物を主体とし、酸素欠損ペロブスカイト型結晶
構造を有することを特徴とする超伝導性素材。
[Claims] General formula (Ba_xM_y)Cu_3O_9_-_zwhere M=E
A superconductor characterized by having an oxygen-deficient perovskite crystal structure, which is mainly composed of a rare earth metal containing r as the main component, x = 1 to 3, y = 0.5 to 1.5, and z = 0 to 3. material.
JP62063226A 1987-03-18 1987-03-18 Superconductive material Pending JPS63230525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62063226A JPS63230525A (en) 1987-03-18 1987-03-18 Superconductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62063226A JPS63230525A (en) 1987-03-18 1987-03-18 Superconductive material

Publications (1)

Publication Number Publication Date
JPS63230525A true JPS63230525A (en) 1988-09-27

Family

ID=13223083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62063226A Pending JPS63230525A (en) 1987-03-18 1987-03-18 Superconductive material

Country Status (1)

Country Link
JP (1) JPS63230525A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63236712A (en) * 1987-03-24 1988-10-03 Kazuo Fueki Superconductive material
JPS643055A (en) * 1987-03-22 1989-01-06 Sumitomo Electric Ind Ltd Production of superconducting material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS643055A (en) * 1987-03-22 1989-01-06 Sumitomo Electric Ind Ltd Production of superconducting material
JPS63236712A (en) * 1987-03-24 1988-10-03 Kazuo Fueki Superconductive material

Similar Documents

Publication Publication Date Title
Cava et al. Bulk superconductivity at 36 K in La 1.8 Sr 0.2 CuO 4
Tarascon et al. Chemical doping and physical properties of the new high temperature superconducting perovskites
US7132388B1 (en) High-temperature oxide superconductor
US5145831A (en) High-tc oxide superconductor and method for producing the same
EP0800494B1 (en) LOW TEMPERATURE (T LOWER THAN 950 oC) PREPARATION OF MELT TEXTURE YBCO SUPERCONDUCTORS
JP2719518B2 (en) Manufacturing method of oxide superconducting material
JPS63230525A (en) Superconductive material
JPS63225572A (en) Superconductive base material
US5169830A (en) Superconducting material
JP3629529B2 (en) Sulfide spinel superconductor
JPS63176353A (en) Superconductive raw material
JP2656531B2 (en) Oxide superconductor
JPH06263441A (en) Metal oxide material and its production
JP3121001B2 (en) Method for producing Tl-based oxide superconductor
Lee et al. (Pb, Ti), a new superconductor in the Pb-1212 family
JPS63260853A (en) Superconductive material
JPS63230524A (en) Superconductive material
JPS63315566A (en) Perovskite type oxide superconducting material having high jc and tc
KR100928553B1 (en) SUPERCONDUCTING COMPOSITIONS WITH HIGH Tc AND PROCESSES FOR PREPARING BULK MATERIALS COMPRISED OF THE SAME
JP2819883B2 (en) Method for producing thallium-based oxide superconductor
JP2523928B2 (en) Oxide superconductor and method for producing the same
JP2555505B2 (en) Metal oxide material
JPH0769626A (en) Metal oxide and production thereof
JPH10330117A (en) Oxide superconductor, its production and current lead using the same
JPH0230618A (en) Oxide high-temperature superconductor