JP3629529B2 - Sulfide spinel superconductor - Google Patents

Sulfide spinel superconductor Download PDF

Info

Publication number
JP3629529B2
JP3629529B2 JP2000107000A JP2000107000A JP3629529B2 JP 3629529 B2 JP3629529 B2 JP 3629529B2 JP 2000107000 A JP2000107000 A JP 2000107000A JP 2000107000 A JP2000107000 A JP 2000107000A JP 3629529 B2 JP3629529 B2 JP 3629529B2
Authority
JP
Japan
Prior art keywords
superconducting
spinel
sulfide
materials
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000107000A
Other languages
Japanese (ja)
Other versions
JP2000351632A (en
Inventor
博之 鈴木
英明 北澤
武彦 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2000107000A priority Critical patent/JP3629529B2/en
Publication of JP2000351632A publication Critical patent/JP2000351632A/en
Application granted granted Critical
Publication of JP3629529B2 publication Critical patent/JP3629529B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
この出願の発明は、硫化物スピネル系超伝導物質に関するものである。さらに詳しくは、この出願の発明は、新規超伝導物質であり、超伝導マグネット、ジョセフソン素子、磁気シールド、さらには、低温スイッチ素子、低温圧力素子等の各分野への利用が期待される硫化物スピネル系超伝導物質に関するものである。
【0002】
【従来の技術】
超伝導現象は、超伝導マグネット、超伝導電力貯蔵等の強電分野から、ジョセフソン素子、SQUID等のクライオエレクトロニクス素子、さらには磁気シールド等への広範囲な分野への応用展開が期待されている。これまでにNb−Ti、NbSn、VGe等の金属系超伝導物質は、液体ヘリウムを使用した応用に利用されており、近年では、Cu−O面を持つYBaCu7+δ(Y−Ba−Cu−O系)、BiSrCaCu10+ δ(Bi系)等のセラミックス系銅酸化物超伝導物質についてもその実用化に向けての検討が進められている。特にこの銅酸化物系超伝導物質は、高温で超伝導特性を示すことに加え、元素置換等によりキャリアをドープして超伝導温度を制御できるため、精力的な研究がなされている。
【0003】
【発明が解決しようとする課題】
しかしながら、硫化物系物質については、銅酸化物系超伝導物質と同じ構造を持ち、酸素のサイトがイオウに置き換わったY−Ba−Cu−S系超伝導物質等がこれまでに報告されているが、その超伝導特性は、銅酸化物系超伝導物質と比較すると、必ずしも満足できるものではない。
【0004】
一方、スピネル系物質は、磁性体の中でも最も詳しく調べられている物質であり、非常に多くの元素組成において存在が確認されている。実用的にもスピネル構造のフェライト磁石として、MFe(Mは2価金属)等が知られている。
【0005】
しかしながら、超伝導特性を示すスピネル系物質は、LiTi、CuRh、CuRhSe等の極僅かしか知られていない。しかも、キャリア注入等により超伝導特性が現れたという例はない。
【0006】
この出願の発明は、以上の通りの事情に鑑みてなされたものであり、従前の金属系及び銅酸化物系とは異なる、全く新しい硫化物スピネル系の超伝導物質を提供し、硫化物スピネル系物質のさらなる可能性を開くことを目的としている。
【0007】
【課題を解決するための手段】
この出願の発明は、上記の課題を解決するものとして、組成式Cu1-xZnxIr24(0.25≦x≦0.8(但し、0.25≦x<0.3、および、0.5<x≦0.8を除く))で示され、超伝導特性を有する硫化物スピネル系物質であることを特徴とする硫化物スピネル系超伝導物質を提供する。
【0009】
以下、この出願の発明の硫化物スピネル系超伝導物質についてさらに詳しく説明する。
【0010】
【発明の実施の形態】
この出願の発明の硫化物スピネル系超伝導物質は、前記組成式で示される。
【0011】
CuIrは、金属−絶縁体転移を示す硫化物スピネル系物質である。この出願の発明の発明者らは、その金属−絶縁体転移という特性に注目し、元素置換によりキャリア数の制御を行い、物性の変化を調べている過程においてこの出願の発明の硫化物スピネル系超伝導物質を見出した。
【0012】
すなわち、CuIrは、 230K付近で金属−絶縁体転移を示し、高温側が金属で、低温側が絶縁体である。また、低温側の絶縁体相では、Cuは1価である。この1価のCuサイトを2価のZnで置換した時に得られる組成式Cu1−x ZnIr( 0.25 ≦x≦0.8 )で示される硫化物スピネル系物質は、超伝導転移を起こし、超伝導転移温度Tcにおいてマイスナー効果を示す超伝導特性を有するのである。
【0013】
このように、この出願の発明の硫化物スピネル系超伝導物質は、元素置換によりキャリアをドープすることにより超伝導特性を発現する。従って、精力的に研究が行われている銅酸化物系超伝導物質にも共通する特性を有している。
【0014】
また、この出願の発明の硫化物スピネル系超伝導物質は、約5桁近い比較的大きな抵抗値から超伝導状態に変化し、しかも超伝導状態は、例えば100bar程度以下の微小な圧力変化によって壊れ、抵抗値が、約7桁までの半導体的な値にまで変化する。従って、この出願の発明の硫化物スピネル系超伝導物質は、低温におけるスイッチ素子、圧力センサ等への適用の可能性を有する。
【0015】
なお、これまでの研究によれば、この出願の発明の硫化物スピネル系超伝導物質の超伝導特性は、低温側の絶縁体相において出現していると考えられ、金属−絶縁体転移に関与している可能性があると推測される。
【0016】
そこで以下に実施例を示し、さらに詳しくこの発明について説明する。
【0017】
【実施例】
<実施例1>
Cu、Zn、Ir、及びSの粉末を出発原料にし、Cuの30%をZnで置換したCu0.7 Zn0.3 Irの化学量論組成が得られるように、それぞれの粉末を秤量した。これら粉末を石英管内部に真空封入した。石英管については、出発原料並びに生成物との反応を防止する目的で、その内部を弗酸処理した後に約1000Kで空焼きをし、不純物の除去を行った。
【0018】
そして、石英管を約2日間かけて 850Kまで加熱し、原料どうしを反応させた。
【0019】
得られた粉末試料は、図1に示したX線粉末回折の結果からスピネル系物質の単相であると確認される。この粉末試料からプレス機を用いてペレットを作製し、 850Kで2日間の熱処理を行った焼結体の電気抵抗、並びに粉末試料の帯磁率の温度依存性を調べた。その結果を示したのが、図2及び図3である。図3図中において、F.C.は、field cooling の略で、磁場をかけながら温度を降下して測定した結果を示し、一方、Z.F.C.は、zero field coolingの略であり、磁場をかけずに最低温度まで下げた後に磁場をかけて測定した結果を示している。
【0020】
図2に示した電気抵抗曲線より超伝導転移温度Tcは約 3.0Kであり、また、図3の帯磁率曲線から、超伝導転移温度Tc(= 3.0K)においてマイスナー効果が磁化率の測定で観測される。このことから、組成式Cu0.7 Zn0.3 Irで示される硫化物スピネル系物質は超伝導物質であると認められる。
【0021】
また、図2の電気抵抗曲線から確認されるように、約5桁近い比較的大きな抵抗値から超伝導状態に変化している。しかも超伝導状態は、100bar程度の微小な圧力を加えることにより壊れ、抵抗値が、約7桁までの半導体的な値にまで変化する。
<実施例2>
ZnによるCuの置換割合を代え、上記と同様にして試料を作製し、超伝導転移温度Tc並びに金属−絶縁体転移温度TM−I のZn濃度依存性について調べた。その結果を示したのが図4である。組成式Cu1−x ZnIrにおいて 0.25 ≦x≦0.8 の範囲で超伝導物質が得られることが確認された。
【0022】
図5および図6は、xが0.6 〜0.9 について温度−抵抗の関係の変化を示したものであるが、x=0.85、x=0.9 では超伝導特性は得られず、x=0.8 まで超伝導特性が得られることが示されている。
【0023】
もちろんこの出願の発明は、以上の実施例によって限定されるものではない。ZnによるCuの置換割合、超伝導物質の作製方法等の細部については様々な態様が可能であることは言うまでもない。
【0024】
【発明の効果】
以上詳しく説明した通り、この出願の発明によって、硫化物スピネル系の新規超伝導物質が提供される。この硫化物スピネル系伝導物質は、元素置換によりキャリアをドープすることにより超伝導特性を発現するため、銅酸化物系超伝導物質にも共通する特性を有しており、超伝導マグネット、ジョセフソン素子、磁気シールド、さらには、低温スイッチ素子、低温圧力素子等の各分野への利用が期待される。
【図面の簡単な説明】
【図1】組成式Cu0.7 Zn0.3 Irで示される硫化物スピネル系物質のX線粉末回線図である。
【図2】組成式Cu0.7 Zn0.3 Irで示される硫化物スピネル系物質の電気抵抗の温度依存性を示した図である。
【図3】組成式Cu0.7 Zn0.3 Irで示される硫化物スピネル系物質の帯磁率の温度依存性を示した図である。
【図4】組成式Cu1−x ZnIrで示される硫化物スピネル系物質の超伝導転移温度Tc並びに金属−絶縁体転移温度TM−I のZn濃度依存性を示す相関図である。
【図5】組成式Cu1−x nx Ir(X=0.6〜0.85)の硫化物スピネル系物質の電気抵抗の温度依存性を示した図である。
【図6】組成式Cu1−x nx Ir(X=0.6〜0.9)の硫化物スピネル系物質の電気抵抗の温度依存性を示した図である。
[0001]
BACKGROUND OF THE INVENTION
The invention of this application relates to a sulfide spinel superconducting material. More specifically, the invention of this application is a novel superconducting material, and is expected to be used in various fields such as superconducting magnets, Josephson elements, magnetic shields, and low-temperature switch elements, low-temperature pressure elements. Spinel superconducting material.
[0002]
[Prior art]
The superconducting phenomenon is expected to be applied in a wide range of fields from high electric fields such as superconducting magnets and superconducting power storage, to cryoelectronic elements such as Josephson elements and SQUIDs, and further to magnetic shields. So far, metallic superconducting materials such as Nb—Ti, Nb 3 Sn, and V 3 Ge have been used for applications using liquid helium. In recent years, YBa 2 Cu 3 O having a Cu—O 2 surface has been used. Further studies on the practical application of ceramic-based copper oxide superconducting materials such as 7 + δ (Y—Ba—Cu—O system) and Bi 2 Sr 2 CaCu 2 O 10 + δ (Bi system) are underway. Yes. In particular, the copper oxide-based superconducting material has been studied vigorously because it exhibits superconducting properties at high temperatures and can control the superconducting temperature by doping carriers by element substitution or the like.
[0003]
[Problems to be solved by the invention]
However, with regard to sulfide-based materials, Y-Ba-Cu-S-based superconducting materials having the same structure as copper oxide-based superconducting materials and oxygen sites replaced with sulfur have been reported so far. However, its superconducting properties are not always satisfactory when compared with copper oxide superconducting materials.
[0004]
On the other hand, spinel-based materials are the most studied materials among magnetic materials, and their existence has been confirmed in a large number of elemental compositions. MFe 2 O 4 (M is a divalent metal) and the like are known as a ferrite magnet having a spinel structure in practice.
[0005]
However, very few spinel materials exhibiting superconducting properties are known, such as LiTi 2 O 4 , CuRh 2 S 4 , and CuRh 2 Se 4 . In addition, there is no example in which superconducting characteristics appear due to carrier injection or the like.
[0006]
The invention of this application has been made in view of the circumstances as described above, and provides a completely new sulfide spinel-based superconducting material different from the conventional metal-based and copper oxide-based materials. The aim is to open up further possibilities of materials.
[0007]
[Means for Solving the Problems]
In order to solve the above-described problems, the invention of this application has a composition formula Cu 1-x Zn x Ir 2 S 4 (0.25 ≦ x ≦ 0.8 (provided that 0.25 ≦ x <0.3, and, except for 0.5 <x ≦ 0.8)) is indicated by, providing a sulfide spinel superconducting material which is a sulphide spinel material having superconducting properties.
[0009]
Hereinafter, the sulfide spinel superconducting material of the invention of this application will be described in more detail.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The sulfide spinel superconducting material of the invention of this application is represented by the above composition formula.
[0011]
CuIr 2 S 4 is a sulfide spinel material exhibiting a metal-insulator transition. The inventors of the invention of this application pay attention to the characteristic of the metal-insulator transition, control the number of carriers by element substitution, and in the process of investigating the change in physical properties, the sulfide spinel system of the invention of this application I found a superconducting material.
[0012]
That is, CuIr 2 S 4 exhibits a metal-insulator transition near 230K, with the high temperature side being a metal and the low temperature side being an insulator. In the insulator phase on the low temperature side, Cu is monovalent. Sulfide spinel substance represented by the 1 composition formula monovalent obtain a Cu site when substituted with the divalent Zn Cu 1-x Zn x Ir 2 S 4 (0.25 ≦ x ≦ 0.8) , the It has a superconducting characteristic that causes a superconducting transition and exhibits a Meissner effect at the superconducting transition temperature Tc.
[0013]
Thus, the sulfide spinel superconducting material of the invention of this application exhibits superconducting properties by doping carriers by element substitution. Therefore, it has characteristics common to copper oxide superconducting materials that have been intensively studied.
[0014]
Further, the sulfide spinel superconducting material of the invention of this application changes from a relatively large resistance value of about 5 digits to a superconducting state, and the superconducting state is broken by a small pressure change of about 100 bar or less, for example. The resistance value changes to a semiconductor value of up to about 7 digits. Therefore, the sulfide spinel superconducting material of the invention of this application has a possibility of being applied to a switch element, a pressure sensor and the like at a low temperature.
[0015]
According to previous studies, the superconducting properties of the sulfide spinel superconducting material of the invention of this application are considered to appear in the insulator phase on the low temperature side, and are involved in the metal-insulator transition. It is speculated that there is a possibility.
[0016]
Therefore, the present invention will be described in more detail with reference to the following examples.
[0017]
【Example】
<Example 1>
In order to obtain a stoichiometric composition of Cu 0.7 Zn 0.3 Ir 2 S 4 in which Cu, Zn, Ir, and S powder are used as starting materials and 30% of Cu is replaced with Zn, each powder is obtained. Was weighed. These powders were vacuum sealed inside the quartz tube. The quartz tube was subjected to hydrofluoric acid treatment for the purpose of preventing reaction with starting materials and products, and then baked at about 1000 K to remove impurities.
[0018]
And the quartz tube was heated to 850K over about 2 days, and the raw materials were made to react.
[0019]
The obtained powder sample is confirmed to be a single phase of the spinel material from the result of the X-ray powder diffraction shown in FIG. Pellets were produced from this powder sample using a press, and the temperature dependence of the electrical resistance of the sintered body that was heat-treated at 850 K for 2 days and the magnetic susceptibility of the powder sample were examined. The results are shown in FIG. 2 and FIG. In FIG. C. Is an abbreviation for field cooling, and shows the results of measurement by lowering the temperature while applying a magnetic field. F. C. Is an abbreviation for zero field cooling, and shows the result of measurement by applying a magnetic field after lowering to a minimum temperature without applying a magnetic field.
[0020]
From the electric resistance curve shown in FIG. 2, the superconducting transition temperature Tc is about 3.0 K. From the magnetic susceptibility curve of FIG. 3, the Meissner effect is the magnetic susceptibility at the superconducting transition temperature Tc (= 3.0 K). Observed by measurement. From this, it is recognized that the sulfide spinel material represented by the composition formula Cu 0.7 Zn 0.3 Ir 2 S 4 is a superconducting material.
[0021]
Further, as confirmed from the electric resistance curve of FIG. 2, the resistance value is changed from a relatively large resistance value of about 5 digits to the superconducting state. Moreover, the superconducting state is broken by applying a minute pressure of about 100 bar, and the resistance value changes to a semiconductor value of up to about 7 digits.
<Example 2>
Samples were prepared in the same manner as described above with the substitution ratio of Cu with Zn changed, and the Zn concentration dependence of the superconducting transition temperature Tc and the metal-insulator transition temperature T M-I was examined. The result is shown in FIG. It was confirmed that a superconducting material was obtained in the range of 0.25 ≦ x ≦ 0.8 in the composition formula Cu 1-x Zn x Ir 2 S 4 .
[0022]
5 and 6 show changes in the temperature-resistance relationship when x is 0.6 to 0.9, but superconducting characteristics are obtained when x = 0.85 and x = 0.9. It has been shown that superconducting properties can be obtained up to x = 0.8.
[0023]
Of course, the invention of this application is not limited to the above embodiments. It goes without saying that various aspects are possible with respect to details such as the substitution ratio of Cu with Zn and the method of manufacturing the superconducting material.
[0024]
【The invention's effect】
As described above in detail, the invention of this application provides a novel superconducting material based on sulfide spinel. This sulfide spinel-based conductive material develops superconducting properties by doping carriers by element substitution, and therefore has the same characteristics as copper oxide-based superconductive materials. Superconducting magnets, Josephson Use in various fields such as elements, magnetic shields, low-temperature switch elements, and low-temperature pressure elements is expected.
[Brief description of the drawings]
FIG. 1 is an X-ray powder line diagram of a sulfide spinel material represented by a composition formula Cu 0.7 Zn 0.3 Ir 2 S 4 .
FIG. 2 is a graph showing the temperature dependence of the electrical resistance of a sulfide spinel material represented by the composition formula Cu 0.7 Zn 0.3 Ir 2 S 4 .
FIG. 3 is a graph showing the temperature dependence of the magnetic susceptibility of a sulfide spinel material represented by the composition formula Cu 0.7 Zn 0.3 Ir 2 S 4 .
FIG. 4 is a correlation diagram showing the Zn concentration dependence of the superconducting transition temperature Tc and the metal-insulator transition temperature T M-I of a sulfide spinel material represented by the composition formula Cu 1-x Zn x Ir 2 S 4 . It is.
FIG. 5 is a graph showing the temperature dependence of the electrical resistance of a sulfide spinel material having a composition formula of Cu 1-x Z nx Ir 2 S 4 (X = 0.6 to 0.85).
FIG. 6 is a graph showing the temperature dependence of the electrical resistance of a sulfide spinel material having the composition formula Cu 1-x Z nx Ir 2 S 4 (X = 0.6 to 0.9).

Claims (1)

組成式Cu1-xZnxIr24(0.25≦x≦0.8(但し、0.25≦x<0.3、および、0.5<x≦0.8を除く))で示され、超伝導特性を有する硫化物スピネル系物質であることを特徴とする硫化物スピネル系超伝導物質。Composition formula Cu 1-x Zn x Ir 2 S 4 (0.25 ≦ x ≦ 0.8 (except 0.25 ≦ x <0.3 and 0.5 <x ≦ 0.8) ) A sulfide spinel superconducting material characterized by being a sulfide spinel material having superconducting properties.
JP2000107000A 1999-04-09 2000-04-07 Sulfide spinel superconductor Expired - Lifetime JP3629529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000107000A JP3629529B2 (en) 1999-04-09 2000-04-07 Sulfide spinel superconductor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10220299 1999-04-09
JP11-102202 1999-04-09
JP2000107000A JP3629529B2 (en) 1999-04-09 2000-04-07 Sulfide spinel superconductor

Publications (2)

Publication Number Publication Date
JP2000351632A JP2000351632A (en) 2000-12-19
JP3629529B2 true JP3629529B2 (en) 2005-03-16

Family

ID=26442935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000107000A Expired - Lifetime JP3629529B2 (en) 1999-04-09 2000-04-07 Sulfide spinel superconductor

Country Status (1)

Country Link
JP (1) JP3629529B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8338821B2 (en) 2008-07-31 2012-12-25 Hiroshima University Pressure detection apparatus, Josephson device, and superconducting quantum interference device that include superconductor thin film that undergoes transition from superconductor to insulator by pressure
CN113773082A (en) * 2021-08-04 2021-12-10 中山大学 Novel Pt-doped spinel structure superconducting material and preparation method thereof

Also Published As

Publication number Publication date
JP2000351632A (en) 2000-12-19

Similar Documents

Publication Publication Date Title
Chiba et al. Magnetic and electrical properties of Bi1− xSrxMnO3: hole-doping effect on ferromagnetic perovskite BiMnO3
Cava et al. Bulk superconductivity at 36 K in La 1.8 Sr 0.2 CuO 4
Oda et al. Superconductivity of Y1Ba2 (Cu1-xFex) 3Oy
Ichikawa et al. Superconducting properties of high-T c Bi-Sr-Ca-Cu-O thin films
Sreedhar et al. Electrical and magnetic properties of La2− xSrxNiO4: A tentative phase diagram
JP3629529B2 (en) Sulfide spinel superconductor
Sakai et al. Enhancement in thermoelectric characteristics of the misfit-layered cobalt oxide,[(Bi, Pb) 2Ba1. 8Co0. 2O4±ω] 0.5 CoO2, through Pb-for-Bi substitution
JP3217905B2 (en) Metal oxide material and method for producing the same
WO1989007087A1 (en) SUPERCONDUCTING Bi-Sr-Ca-Cu OXIDE COMPOSITONS AND PROCESS FOR MANUFACTURE
Ohtani et al. Phase Transitions in Quasi-one-dimensional Selenide BaNbSe3and Superconductivity in BaNb2Se5
Isawa et al. Synthesis of Superconducting Cuprates,(Pb (1+ x)/2 Cu (1− x)/2))(Sr 1− y Ca y) 2 (Y 1− x Ca x) Cu 2 O z by Means of Encapsulation and Post-Annealing (ECPA) Technique
Komatsu et al. High-T/sub c/superconducting glass ceramics based on the Bi-Ca-Sr-Cu-O system
Kato et al. First Synthesis of Bi2Sr2CaCu2Oy with the Highest Tc of 96 K
Yaroslavsky et al. Doping of BiSrCaCuO compounds with (V+ Y), As, Sb, Pb, Cr and Ge
AU632076B2 (en) Superconducting metal oxide compositions and processes for manufacture and use
AU632069B2 (en) Superconducting metal oxide compositions and processes for manufacture and use
JPH0769626A (en) Metal oxide and production thereof
JP3681768B2 (en) Layered copper oxide and method for producing the same
JPS63176353A (en) Superconductive raw material
JP2555505B2 (en) Metal oxide material
Nakano et al. Synthesis and physical properties of (Pb0. 5M0. 5)(Sr, La) 2CuOz (z∼ 5; M= Fe, Co, Cu, and Zn)
Suzuki et al. Synthesis of [Ca 2 (Co 1-x Cu x) 2 O 4] y CoO 2 Single Crystals and Their Intrinsic Properties
JPS63230525A (en) Superconductive material
JPH01164728A (en) Oxide superconducting material
Siddiqi et al. Effect of antimony addition in Bi (Pb)-Sr-Ca-Cu-0 on superconductivity

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041116

R150 Certificate of patent or registration of utility model

Ref document number: 3629529

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term