JPH013052A - superconductor - Google Patents
superconductorInfo
- Publication number
- JPH013052A JPH013052A JP63-66081A JP6608188A JPH013052A JP H013052 A JPH013052 A JP H013052A JP 6608188 A JP6608188 A JP 6608188A JP H013052 A JPH013052 A JP H013052A
- Authority
- JP
- Japan
- Prior art keywords
- crystal grains
- temperature
- critical temperature
- sintered body
- superconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002887 superconductor Substances 0.000 title claims description 17
- 239000013078 crystal Substances 0.000 claims description 29
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 7
- 229910052760 oxygen Inorganic materials 0.000 claims description 7
- 239000001301 oxygen Substances 0.000 claims description 7
- 239000011224 oxide ceramic Substances 0.000 claims description 6
- 229910052574 oxide ceramic Inorganic materials 0.000 claims description 6
- 239000010949 copper Substances 0.000 claims description 5
- 230000001747 exhibiting effect Effects 0.000 claims description 4
- 230000000737 periodic effect Effects 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000000463 material Substances 0.000 description 16
- 239000000126 substance Substances 0.000 description 9
- 238000000354 decomposition reaction Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 239000000919 ceramic Substances 0.000 description 4
- 229910052788 barium Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 229910052727 yttrium Inorganic materials 0.000 description 3
- 241001197925 Theila Species 0.000 description 2
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical group [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000002932 luster Substances 0.000 description 2
- 229910052706 scandium Inorganic materials 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- 238000012916 structural analysis Methods 0.000 description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 229910002561 K2NiF4 Inorganic materials 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical group [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 229910052705 radium Inorganic materials 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
[産業上の利用分野コ
この発明は、新規な超電導体に関するもので、特に酸化
物セラミックス系超電導体に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] This invention relates to a novel superconductor, and particularly to an oxide ceramic superconductor.
[従来の技術]
従来、超電導を示す材料として、金属系、セラミックス
系、有機物系のものがあるが、このうちセラミックス系
のものが近年脚光を浴びつつある。[Prior Art] Conventionally, there are metal-based, ceramic-based, and organic-based materials as materials exhibiting superconductivity, and among these, ceramic-based materials have been attracting attention in recent years.
このようなセラミックス系超電導材料としては、層状ペ
ロブスカイト型(K2NiF4型)の構造を有するもの
が知られている。たとえば、[LaS r] 2 Cu
b、または[L a B aコ、、Cub4のような酸
化物セラミックス系超電導材料では、30に以上の臨界
温度を示している。As such ceramic-based superconducting materials, those having a layered perovskite type (K2NiF4 type) structure are known. For example, [LaS r] 2 Cu
Oxide ceramic-based superconducting materials such as Cub4 or Cub4 exhibit a critical temperature of 30°C or higher.
[発明が解決しようとする課題]
この発明は、従来の層状ペロブスカイト型超電導材料に
より得られていた臨界温度よりも高い臨界温度を示し得
る酸化物セラミックス系超電導体を提供することを目的
とするものである。[Problems to be Solved by the Invention] An object of the present invention is to provide an oxide ceramic superconductor that can exhibit a higher critical temperature than that obtained with conventional layered perovskite superconducting materials. It is.
[課題を解決するため手段]
この発明は、周期律表Ua族元素から選ばれた少なくと
も1種、ma族元素から選ばれた少なくとも1種、銅お
よび酸素を含む焼結体からなる酸化物セラミックス系超
電導体において、結晶粒の表面および界面が、前記結晶
粒の内部よりも高い超電導臨界温度を示す成分で構成さ
れていて、前2高臨界温度成分が3次元網目状構造をな
していることを特徴とするものである。[Means for Solving the Problems] The present invention provides an oxide ceramic comprising a sintered body containing at least one element selected from the Ua group elements of the periodic table, at least one element selected from the Ma group elements, copper, and oxygen. In the system superconductor, the surfaces and interfaces of crystal grains are composed of components exhibiting a superconducting critical temperature higher than the interior of the crystal grains, and the first two high critical temperature components form a three-dimensional network structure. It is characterized by:
なお、上記「結晶粒の表面」とは、焼結体自体の表面を
なすもののみならず、焼結体内部に存在する多数の空孔
(外部と連絡しているか否かは問わない。)に接する面
をも含む概念である。また、「結晶粒の界面」とは、成
る結晶方位を持つ結晶粒と他の結晶方位を持つ結晶粒と
の境界を指すものとする。Note that the above-mentioned "surface of crystal grains" refers not only to the surface of the sintered body itself, but also to the large number of pores that exist inside the sintered body (regardless of whether or not they communicate with the outside). This is a concept that also includes surfaces that are in contact with. Furthermore, the term "crystal grain interface" refers to the boundary between a crystal grain having one crystal orientation and a crystal grain having another crystal orientation.
[発明の作用および効果]
この発明による焼結体からなる酸化物セラミックス系超
電導体は、高臨界温度成分が3次元網目状構造をなして
存在しているため、この網目状の中に多数の磁束線(フ
ラクソイド)を取込むことが可能であり、渦糸[Vor
tex]を人工的に作ったことに相当するため、非常に
高い臨界磁界(HC2)を持つことができる。[Operations and Effects of the Invention] In the oxide ceramic superconductor made of the sintered body according to the present invention, the high critical temperature component exists in a three-dimensional network structure. It is possible to incorporate magnetic flux lines (fluxoids), and vortex threads [Vor
tex], it can have a very high critical magnetic field (HC2).
また、3次元網目状構造は、それぞれがフィラメント状
あるいはシート状の細いあるいは薄い材料の集合構造で
あるとみなすことができるので、大量の超電導−常電導
界面を持つことになり、臨界温度(Tc)もいわゆる「
バルク」の状態よりも高くなる。In addition, since the three-dimensional network structure can be regarded as an aggregate structure of thin or thin filament-like or sheet-like materials, it has a large number of superconducting-normal conducting interfaces, and the critical temperature (Tc ) is also called “
higher than the "bulk" state.
たとえば、セラミックス酸化物超電導体の機構を理論的
に提唱しているP、W、Anders。For example, P., W. Anders theoretically proposed the mechanism of ceramic oxide superconductors.
n博士によるアンダーソンモデルによれば、物質の次元
性の低い方が、電子スピン間の磁気相互作用による電子
間引力が働きやすく、したが9て電子対を生成しやすい
と考えられる。このような理論に基づくと、この発明に
係る高臨界温度成分の構造である3次元網目状構造は、
フィラメント状またはシート状であり、次元性が低いの
で、この意味からも臨界温度が高くなるものと推定され
る。According to the Anderson model by Dr. N., it is thought that the lower the dimensionality of a material, the easier the attraction between electrons due to the magnetic interaction between electron spins will be, and the easier it will be to generate electron pairs. Based on this theory, the three-dimensional network structure that is the structure of the high critical temperature component according to the present invention is
Since it is filament-like or sheet-like and has low dimensionality, it is presumed that the critical temperature is high from this point of view as well.
第1図は、この発明に係る超電導体内に存在する結晶粒
を示すモデル図である。FIG. 1 is a model diagram showing crystal grains existing in a superconductor according to the present invention.
第1図を参照して、超電導体1には、多数の結晶粒2,
3.・・・が互いに接した状態で存在している。これら
結晶粒2,3.・・・は、焼結体自体の表面をなす表面
4および焼結体内部に存在する空孔5に接する表面6を
備える。また、結晶粒2と結晶粒3とが互いに異なる結
晶方位を持つものとすれば、これらの間の境界には界面
7が形成される。Referring to FIG. 1, a superconductor 1 includes a large number of crystal grains 2,
3. ...exist in contact with each other. These crystal grains 2, 3. ... includes a surface 4 forming the surface of the sintered body itself and a surface 6 in contact with the pores 5 existing inside the sintered body. Further, if crystal grains 2 and 3 have different crystal orientations, an interface 7 is formed at the boundary between them.
この発明によれば、第1図に基づいて説明すると、結晶
粒2.3の表面4,6および界面7が結晶粒2,3の内
部8,9よりも高い超電導臨界温度を示す成分で構成さ
れていて、この高臨界温度成分が3次元網目状構造をな
している。According to this invention, as explained based on FIG. 1, the surfaces 4, 6 and interface 7 of the crystal grains 2.3 are composed of a component exhibiting a higher superconducting critical temperature than the interiors 8, 9 of the crystal grains 2, 3. This high critical temperature component forms a three-dimensional network structure.
なお、上述した3次元網目状構造をなしている高臨界温
度成分は、実際には、結晶粒2.3の表面4,6および
界面7から、第1図に点線で示すように、所定の深さま
での領域に分布している。Incidentally, the high critical temperature component forming the three-dimensional network structure mentioned above actually flows from the surfaces 4 and 6 of the crystal grains 2.3 and the interface 7 to a predetermined point as shown by the dotted line in FIG. Distributed in areas up to depth.
前述した周期律表na族元素としては、Be。The above-mentioned group na element of the periodic table is Be.
Mg、Ca、Sr、Ba、Raが挙げられる。また、周
期律表ma族元素としては、Sc、 Y、 La、Ac
、Ce、Pr、Nd、Pm、Sm、Eu。Examples include Mg, Ca, Sr, Ba, and Ra. In addition, as group ma elements of the periodic table, Sc, Y, La, Ac
, Ce, Pr, Nd, Pm, Sm, Eu.
Gd、Tb、Dy、Ho、Er、Tm、YbおよびLu
が挙げられる。好ましくは、Ila族元素がバリウムま
たはストロンチウムであり、lIa族元素がランタン、
イツトリウムまたはスカンジウムである。Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu
can be mentioned. Preferably, the Ila group element is barium or strontium, and the Ila group element is lanthanum,
Yttrium or scandium.
なお、IIa族元素の一部は+2価をとり得る元素によ
って、また、I[[a族元素の一部は+3価をとり得る
元素によって置換えられるものとする。Note that some of the group IIa elements are replaced by elements that can have a valence of +2, and some of the group I[[a elements are replaced by elements that can have a valence of +3.
また、この発明に係る超電導体を構成する焼結体を得る
ため、たとえば、バリウム、イツトリウムおよび銅をそ
れぞれ含む混合粉末を、空気中で焼成すると、焼結体の
表面は、金属光沢を持った黒色であり、それが表面から
0. 1〜0. 5mm程度の深さまで現われた。この
ような黒色の金属光沢を持つ表面部分は、特定の酸素分
圧下で焼結した際に生じたものと推定され、このような
焼結体の表面部分をなす物質が、超電導の臨界温度を高
めるのにより重要であることもわかった。上述したこと
かられかるように、焼成時に存在している酸素が重要な
役割を果たしていると推定される。Furthermore, in order to obtain a sintered body constituting the superconductor according to the present invention, for example, when a mixed powder containing barium, yttrium, and copper is fired in air, the surface of the sintered body has a metallic luster. It is black, and it is 0.0 mm from the surface. 1~0. It appeared to a depth of about 5mm. It is presumed that this surface area with a black metallic luster was produced during sintering under a specific oxygen partial pressure, and the material that makes up the surface area of the sintered body has a temperature that exceeds the critical temperature of superconductivity. It was also found that it is more important to increase As can be seen from the above, it is presumed that oxygen present during firing plays an important role.
また、この発明に係る超電導体を構成する焼結体を得る
ための焼成温度は、焼成されるべき材料の溶融温度また
は分解温度のいずれか低い方の温度以下かつ焼結可能な
温度以上に選ぶことが好ましいこともわかっている。な
お、「溶融温度」とは、焼成時においてわずかでも液相
の生じる温度をいうものとする。また、「分解温度」と
は、少なくとも一部において元素または成分単位に分か
れてしまい、結晶構造をとり得ない温度をいうものとす
る。なお、「溶融温度」と「分解温度」との上下関係は
、材料成分、組成割合、等によって異なり、いずれが上
になるかは一律に決定できないことを指摘してお(。さ
らに、上述の焼成温度に関して、特に、溶融温度または
分解温度のいずれか低い方の温度直下に選ぶことがなお
好ましい。Furthermore, the firing temperature for obtaining the sintered body constituting the superconductor according to the present invention is selected to be lower than the melting temperature or decomposition temperature of the material to be fired, whichever is lower, and higher than the temperature at which sintering is possible. I also know that this is preferable. Note that the "melting temperature" refers to the temperature at which even a slight liquid phase occurs during firing. Furthermore, the term "decomposition temperature" refers to the temperature at which at least a portion of the material is separated into elemental or component units and a crystalline structure cannot be formed. It should be noted that the vertical relationship between "melting temperature" and "decomposition temperature" varies depending on material components, composition ratios, etc., and it is not possible to uniformly determine which one is higher. Regarding the calcination temperature, it is particularly preferable to select a temperature just below the melting temperature or the decomposition temperature, whichever is lower.
たとえば、溶融温度または分解温度のいずれか低い方の
温度と当該温度より30℃低い温度との間に焼成温度を
選ぶことにより、臨界温度の高い部分がより多く得るこ
とができることがわかった。For example, it has been found that by selecting the calcination temperature between the lower of the melting temperature or the decomposition temperature and a temperature 30° C. lower than the melting temperature or the decomposition temperature, a larger portion of the material having a higher critical temperature can be obtained.
しかしながら、さらに、この発明に係る焼結体の超電導
特性やその他の電磁気的性質、比熱などの熱的性質、比
重、X線構造解析などの物理化学的性質、ビッカース表
面硬度などの機械的性質を深く検討した結果、以下の知
見が得られた。However, in addition, the superconducting properties and other electromagnetic properties of the sintered body according to the present invention, thermal properties such as specific heat, specific gravity, physicochemical properties such as X-ray structural analysis, and mechanical properties such as Vickers surface hardness, etc. As a result of deep consideration, the following findings were obtained.
たとえば、前述のように、優れた超電導特性を持つ物質
は表面より深さ0.5mm程度までの部分に非常に多く
存在するが、これは、より本質的には、結晶粒が大気な
どの酸素含有雰囲気で焼結したときに、結晶粒の表面に
生じる物質であることがわかった。また、この発明に係
る超電導体は、焼結体であるため、内部に微小な空孔が
存在するので、微量ながら、上述した015mmより深
いところにも、優れた超電導特性を持つ物質が確認され
た。このようなことから、焼結体の表面に対しては常に
新しい酸素が所定の分圧をもって供給されるため、優れ
た超電導特性を持つ物質が表面部分により多く生成した
ものと考えられる。For example, as mentioned above, materials with excellent superconducting properties exist in large numbers at a depth of about 0.5 mm from the surface, but this is more essentially due to the fact that crystal grains are exposed to oxygen in the atmosphere. It was found that this is a substance that is generated on the surface of crystal grains when sintered in an atmosphere that contains it. In addition, since the superconductor according to the present invention is a sintered body, there are minute pores inside, so substances with excellent superconducting properties have been confirmed even in depths deeper than 0.15 mm, although in small amounts. Ta. For this reason, it is thought that since fresh oxygen is always supplied to the surface of the sintered body at a predetermined partial pressure, more substances with excellent superconducting properties are generated on the surface.
このように、結晶粒の表面および界面が、電気抵抗を決
定するファクタとして重要であり、結局、超電導電流は
、結晶粒の内部よりも高い超電導臨界温度を示す成分で
構成されている、結晶粒の表面および界面からなる3次
元網目状構造の部分を流れていることが明らかになった
。In this way, the surfaces and interfaces of crystal grains are important factors in determining electrical resistance, and in the end, superconducting current is generated by the crystal grains, which are composed of components that exhibit a higher superconducting critical temperature than the interior of the crystal grains. It has become clear that the water flows through a three-dimensional network structure consisting of surfaces and interfaces.
[実施例の説明]
この発明の実施例として、Ba5Y、Cuの酸化物を含
む微粉末を1000気圧で固めた後、大気中において9
40℃で24時間焼成し、最終的にB a Cuo、7
Y(、,30,になるように調整した試料を得た。[Explanation of Examples] As an example of the present invention, fine powder containing Ba5Y and Cu oxides was solidified at 1000 atmospheres, and then heated to 90% in the atmosphere.
Baked at 40°C for 24 hours, finally B a Cuo, 7
A sample was obtained which was adjusted so that Y(,,30,).
この試料について、電気抵抗の温度による変化を調べた
ところ、電気抵抗変化には、3つの変曲点が現われ、第
1の変曲点は100に付近にあり、第2の変曲点は20
0に付近にあり、第3の変曲点は300に付近にあった
。そして、82に付近で完全超電導状態となった。When we investigated the change in electrical resistance of this sample due to temperature, we found that three inflection points appeared in the electrical resistance change, the first inflection point was near 100, and the second inflection point was around 20.
The third inflection point was near 300. Then, it reached a completely superconducting state around 82.
前述した電気抵抗特性における3つの変曲点のうち、最
も高い温度に現われる第3の変曲点は、焼結体の表面部
分に多く分布する、結晶粒の表面および界面を構成する
高臨界温度成分が寄与していると推定される。Of the three inflection points in the electrical resistance characteristics mentioned above, the third inflection point that appears at the highest temperature is the high critical temperature that forms the surfaces and interfaces of crystal grains, which are mostly distributed on the surface of the sintered body. It is estimated that the components contribute.
上述のように、300に付近といった常温近傍において
超電導になるという極めて高い臨界温度を、結晶粒の表
面および界面を構成する物質が有していることは、次の
ように確認することができた。As mentioned above, it was confirmed as follows that the materials constituting the surfaces and interfaces of crystal grains have an extremely high critical temperature of around 300℃, which becomes superconducting at room temperature. .
すなわち、前述のようにして得られたバルクとしての試
料を、表面より0.5mmの深さまで研削したところ、
X線構造解析の結果はほぼ変わらなかったにもかかわら
ず、上述した極めて高い臨界温度が識別不可能なほどに
、このような臨界温度に寄与していた物質の量は減って
しまっていた。That is, when the bulk sample obtained as described above was ground to a depth of 0.5 mm from the surface,
Although the results of the X-ray structural analysis remained almost unchanged, the amount of the substance that contributed to the extremely high critical temperature mentioned above had decreased to such an extent that it was no longer discernible.
このことは、最も高い臨界温度を与える物質は、主とし
て焼結体の表面から0.5mmの深さまでに生成した物
質であり、常に新しい酸素が供給されて形成された結晶
粒の表面および界面を構成する物質であったことを示唆
するものである。This means that the substance that gives the highest critical temperature is mainly the substance that is formed up to a depth of 0.5 mm from the surface of the sintered body, and that new oxygen is constantly supplied to the surfaces and interfaces of the crystal grains formed. This suggests that it was a constituent substance.
また、帯磁率の測定によっても、最も高い臨界温度を与
える物質が焼結体の表面部分により多く形成されている
ことが確認される。通常の超電導体のように、バルク全
体が均一な超電導現象を示す物質では、電気抵抗が下が
り始めるところ、いわゆる“Tc on set“
といわれる点からマイスナー効果が認められるはずであ
るが、上述のようにして得られた試料では、電気抵抗が
完全に零になってからマイスナー効果が現われ始めた。Furthermore, measurement of magnetic susceptibility also confirms that the substance that provides the highest critical temperature is formed in a larger amount on the surface of the sintered body. In materials that exhibit uniform superconductivity throughout the bulk, such as ordinary superconductors, there is a point where the electrical resistance begins to decrease, the so-called "Tc on set."
Therefore, the Meissner effect should be recognized, but in the sample obtained as described above, the Meissner effect began to appear after the electrical resistance became completely zero.
このことは、最も高い臨界温度を与える物質が焼結体の
表面部分により多く分布していることを示唆しているも
のである。This suggests that the substance that gives the highest critical temperature is more distributed on the surface of the sintered body.
また、この試料の臨界磁界(HC2)を測定したところ
、100Tを越える極めて高い値を持っていることが確
認された。Furthermore, when the critical magnetic field (HC2) of this sample was measured, it was confirmed that it had an extremely high value exceeding 100T.
第1図は、この発明に係る超電導体内に存在する結晶粒
を示すモデル図である。
図において、1は超電導体、2.3は結晶粒、4.6は
表面、5は空孔、7は界面、8,9は内部である。FIG. 1 is a model diagram showing crystal grains existing in a superconductor according to the present invention. In the figure, 1 is a superconductor, 2.3 is a crystal grain, 4.6 is a surface, 5 is a hole, 7 is an interface, and 8 and 9 are the interior.
Claims (1)
、IIIa族元素から選ばれた少なくとも1種、銅および
酸素を含むとともに多数の結晶粒の集合を備える焼結体
からなる酸化物セラミックス系超電導体において、 前記結晶粒の表面および界面が、前記結晶粒の内部より
も高い超電導臨界温度を示す成分で構成されていて、前
記高臨界温度成分が3次元網目状構造をなしていること
を特徴とする、超電導体。(1) Oxide ceramics consisting of a sintered body containing at least one element selected from group IIa elements of the periodic table, at least one element selected from group IIIa elements, copper and oxygen, and containing a large number of crystal grains. system superconductor, the surfaces and interfaces of the crystal grains are composed of a component exhibiting a superconducting critical temperature higher than the interior of the crystal grains, and the high critical temperature component forms a three-dimensional network structure. A superconductor characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63-66081A JPH013052A (en) | 1987-03-18 | 1988-03-18 | superconductor |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6308487 | 1987-03-18 | ||
JP62-63084 | 1987-03-18 | ||
JP63-66081A JPH013052A (en) | 1987-03-18 | 1988-03-18 | superconductor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS643052A JPS643052A (en) | 1989-01-06 |
JPH013052A true JPH013052A (en) | 1989-01-06 |
Family
ID=
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0284062B1 (en) | Ceramic oxide superconductive composite material | |
KR910001345B1 (en) | Superconducting ceramics | |
EP0495677A1 (en) | Oxide superconducting material and process for producing the same | |
US6605569B2 (en) | Mg-doped high-temperature superconductor having low superconducting anisotropy and method for producing the superconductor | |
EP0286521B1 (en) | Superconducting composite | |
JP2567389B2 (en) | Oxide superconducting material | |
USH1683H (en) | Superconducting material | |
JPH013052A (en) | superconductor | |
Lynds et al. | Anisotropy in an oriented Ba2YCu3O7 superconductor | |
US5041414A (en) | Superconductor composite | |
EP0283023A2 (en) | Ceramic superconductor | |
US5512542A (en) | Metallic oxide with boron and process for manufacturing the same | |
JP3034267B2 (en) | Oxide superconductor | |
JP2519742B2 (en) | Manufacturing method of superconducting material | |
GB2223489A (en) | Oriented polycrystal superconductor | |
JP2698689B2 (en) | Oxide superconducting material and manufacturing method thereof | |
JP2760999B2 (en) | Oxide superconducting sintered body and method for producing the same | |
Koshy et al. | The structural and superconducting properties of the YBa2Cu3O7− δ‐HfO2 system | |
KR930002579B1 (en) | Manufacturing method of thick film super conductor | |
JP2590370B2 (en) | Superconducting material and manufacturing method thereof | |
JPS63276820A (en) | Manufacture of oxide superconductor | |
Ouchi | Preparation and superconducting properties of Ln-Ba-Cu-O ceramics | |
JPH01164762A (en) | Compound oxide type superconducting sintered body | |
JPS63274027A (en) | Manufacture of superconductive material | |
Park et al. | Effect of silver addition on the single-layer Tl superconductors |