JP2765867B2 - Dielectric separation substrate and method of manufacturing the same - Google Patents
Dielectric separation substrate and method of manufacturing the sameInfo
- Publication number
- JP2765867B2 JP2765867B2 JP63229986A JP22998688A JP2765867B2 JP 2765867 B2 JP2765867 B2 JP 2765867B2 JP 63229986 A JP63229986 A JP 63229986A JP 22998688 A JP22998688 A JP 22998688A JP 2765867 B2 JP2765867 B2 JP 2765867B2
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- region
- substrate
- insulator
- dielectric isolation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Element Separation (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体集積装置(以下ICと呼ぶ)に係り、
特に高耐圧,大電流パワーICに好適な基板及び、その製
造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a semiconductor integrated device (hereinafter referred to as an IC),
In particular, the present invention relates to a substrate suitable for a high-voltage, high-current power IC and a method for manufacturing the same.
従来の基板は、公開特許公報昭60−80243記載の様
に、底面に絶縁物を形成しないことを特徴として、寄生
直列抵抗の増大を防ぎ、更に熱放散の改善を達成してい
た。The conventional substrate is characterized in that no insulator is formed on the bottom surface, as described in Japanese Patent Application Laid-Open No. 60-80243, thereby preventing an increase in parasitic series resistance and further improving heat dissipation.
しかし、この従来例では、縦形の素子を形成した場合
には、基板の裏面から電極を取出す必要があり、ICにし
た場合、裏面を加工したり、特別のパツケージを準備し
なければならないという問題があつた。However, in this conventional example, when a vertical element is formed, it is necessary to take out electrodes from the back surface of the substrate, and when an IC is used, it is necessary to process the back surface or prepare a special package. There was.
本発明の目的は、前記問題を解決し縦形単結晶領域に
形成する大電流出力素子の低抵抗化及び熱放散の向上を
計ることである。SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and reduce the resistance and improve the heat dissipation of a large current output element formed in a vertical single crystal region.
上記目的は、縦形単結晶領域が、誘電体分離基板の表
面に露出する第1の領域と、誘電体分離基板の表面及び
裏面に露出しかつ前記第1の領域よりも不純物濃度が高
い第2の領域とを有することにより達成される。The object is to provide a first region in which a vertical single crystal region is exposed on a front surface of a dielectric isolation substrate and a second region in which a vertical single crystal region is exposed on a front surface and a back surface of a dielectric isolation substrate and has a higher impurity concentration than the first region. This is achieved by having the following regions.
また、上記目的は、出力素子を形成する縦形単結晶領
域を取囲む分離溝の深さを、他の単結晶島を囲む分離溝
より深くし、その後絶縁物を除去して高濃度のSi層を堆
積し、研削,研磨することにより基板の表面側に高濃度
Si領域を露出させることで達成される。Further, the above object is to make the depth of the isolation trench surrounding the vertical single crystal region forming the output element deeper than the isolation trench surrounding other single crystal islands, and then remove the insulator to remove the high concentration Si layer. High concentration on the surface side of the substrate by depositing, grinding and polishing
This is achieved by exposing the Si region.
本発明は、素子を形成する縦形単結晶領域の高濃度領
域を基板の表面に露出させて電極を形成するので低抵抗
化が計られてボンデイングも通常のICと同じ方法ででき
る。According to the present invention, the electrode is formed by exposing the high-concentration region of the vertical single-crystal region forming the element to the surface of the substrate, so that the resistance is reduced and the bonding can be performed in the same manner as a normal IC.
以下、本発明の実施例を説明する。 Hereinafter, embodiments of the present invention will be described.
第1図(a)は新構造誘電体分離基板の平面図の一
部、図(b)はそのA−A′断面を示す。FIG. 1 (a) is a part of a plan view of a dielectric isolation substrate having a new structure, and FIG. 1 (b) is a sectional view taken along the line AA '.
基板は、分離溝101に沿つて形される絶縁物102により
他と電気的に絶縁分離された単結晶領域103(単結晶
島)と、Siの堆積により埋められた他の単結晶島の周囲
の分離溝より深くて広い分離溝108により囲まれ、更に
基板の表面110から裏面120まで単結晶Siとした縦形単結
晶領域104,絶縁物の上に堆積した多結晶Si領域105から
なる。表面に露出する堆積後のSiの領域幅は分離溝108
の幅で決定される。The substrate is composed of a single crystal region 103 (single crystal island) electrically insulated and separated from the other by an insulator 102 formed along the separation groove 101 and a periphery of another single crystal island buried by Si deposition. A vertical single-crystal region 104 made of single-crystal Si from the front surface 110 to the back surface 120 of the substrate and a polycrystalline Si region 105 deposited on an insulator. The width of the exposed Si region exposed on the surface is
Is determined by the width of
次に、本実施例の製造方法を第2図により順に説明す
る。Next, the manufacturing method of this embodiment will be described in order with reference to FIG.
先ず、n形で(100)面の単結晶Siウエハ100を酸化し
て、酸化膜99を形成する。ホトエツチングにより酸化膜
を部分的に除去して、開口部を設け、アルカリ系のエツ
チング液にてV字形の溝を形成する。この時酸化膜の開
口部の幅Wで決まる溝の深さになるので幅を違えておけ
ば浅い溝101,深い溝108ができる((a)図)。First, an n-type (100) single crystal Si wafer 100 is oxidized to form an oxide film 99. The oxide film is partially removed by photoetching to provide an opening, and a V-shaped groove is formed with an alkaline etching solution. At this time, since the depth of the groove is determined by the width W of the opening of the oxide film, if the width is changed, a shallow groove 101 and a deep groove 108 can be formed (FIG. 7A).
次いで、必要な部分に埋込層(図示セズ)を形成し、
再び酸化した酸化膜102を形成する。この酸化膜が単結
晶島を電気的に絶縁分離する分離用の酸化膜である。次
いで、縦形単結晶領域104を形成する部分の酸化膜102を
除去する((b)図)。Next, a buried layer (shown in Sez) is formed in a necessary portion,
An oxidized oxide film 102 is formed again. This oxide film is a separation oxide film for electrically insulating and separating the single crystal island. Next, the portion of the oxide film 102 where the vertical single crystal region 104 is to be formed is removed (FIG. 2B).
次いで、Siをエピタキシヤル成長させると、酸化膜の
残つている部分には多結晶Si領域105が、酸化膜を除去
した部分には単結晶Si層が成長し、縦形単結晶領域104
ができる((c)図)。Next, when Si is epitaxially grown, a polycrystalline Si region 105 grows in the remaining portion of the oxide film, a single crystal Si layer grows in a portion where the oxide film is removed, and a vertical single crystal region 104 is grown.
(Fig. (C)).
次いで、研削及び研磨をすることにより第1図の基板
が完成する。Next, the substrate of FIG. 1 is completed by grinding and polishing.
本基板では、最初の単結晶Siウエハにn形で面方位
(100)、抵抗率20Ω−cmのSiウエハを、ヒ素を5×10
15cm-2打ち込んでn+埋込層を形成し、エピタキシヤル時
にはリン(P)を導入して、抵抗率0.05Ω−cm以下のn
++領域を形成した。In this substrate, an n-type Si wafer having a plane orientation (100) and a resistivity of 20 Ω-cm was placed on the first single-crystal Si wafer, and arsenic was added in an amount of 5 × 10
Implantation is performed at 15 cm −2 to form an n + buried layer, and at the time of epitaxy, phosphorus (P) is introduced so that n having a resistivity of 0.05 Ω-cm or less is formed.
++ region was formed.
以上で完成した基板の縦形単結晶領域に、npnトラン
ジスタを形成して特性を調べたところ、VCER400V、コ
レクタ抵抗5Ωと従来例にある構造の基板を使つた場
合と同等であつた。When an npn transistor was formed in the vertical single crystal region of the substrate completed as described above and its characteristics were examined, it was found that VCER was 400 V and collector resistance was 5 Ω, which was equivalent to the case where the substrate having the structure of the conventional example was used.
また、この出力素子を組込んだICは基板の表面から電
位がとれるので従来からあるパツケージを使用すること
ができる。Further, since an IC incorporating this output element can take a potential from the surface of the substrate, a conventional package can be used.
更に、本基板は最初に使う単結晶Siウエハの種類,埋
込層,エピタキヤル時の不純物の種類及び濃度により、
トランジスタ,MOSFET,等の出力素子に合つた基板,素子
に合つた構造が可能である。Furthermore, this substrate depends on the type of single-crystal Si wafer used first, the buried layer, and the type and concentration of impurities during epitaxy.
Substrates suitable for output devices such as transistors, MOSFETs, etc., and structures suitable for devices are possible.
第3図は、本発明の第2の実施例を説明する断面図を
示す。FIG. 3 is a sectional view illustrating a second embodiment of the present invention.
基板は、分離溝101に沿つて形成される絶縁物102によ
り他と電気的に絶縁分離されたn形の単結晶Si島103と
第1のエピタキシヤルにより堆積させたn+単結晶層104
a,第2のエピタキシヤルにより堆積させたp+単結晶層10
4bからなるn-−n+−p+層が重なつた縦形単結晶領域、及
び第1,第2のエピタキシヤルで単結晶層と同時に堆積し
たn+多結晶領域105a,p+多結晶領域105bからなる。The substrate is composed of an n-type single crystal Si island 103 electrically insulated and separated from the other by an insulator 102 formed along the separation groove 101 and an n + single crystal layer 104 deposited by the first epitaxial.
a, p + single crystal layer 10 deposited by second epitaxy
A vertical single crystal region in which n − −n + −p + layers of 4b overlap, and an n + polycrystalline region 105a, p + polycrystalline region deposited simultaneously with the single crystal layer by the first and second epitaxials Consists of 105b.
本基板はIGBT(Insulated Gate Bipolar Tronsisto
r)を形成するのに適しており、誘電体分離基板に縦形
のIGBTを形成できる。更にその電位を基板の表,裏どち
らからでもとれる。This board uses IGBT (Insulated Gate Bipolar Tronsisto)
It is suitable for forming r) and can form a vertical IGBT on a dielectric isolation substrate. Further, the potential can be obtained from both the front and back of the substrate.
本発明によれば、低抵抗層を形成したことで、出力素
子のオン抵抗の低減,熱抵抗の低減及び、基板表面から
電位をとれる構造としたことで、裏面の加工工程を省
き、パツケージも通常のものを使える。According to the present invention, by forming the low resistance layer, the on-resistance of the output element is reduced, the thermal resistance is reduced, and the potential is obtained from the surface of the substrate. You can use normal ones.
第1図(a)及び(b)は本発明の第1の実施例の平面
図及び断面図、第2図は第1の実施例の製造方法の説明
図、第3図は第2の実施例の断面図を示す。 99……酸化膜、100……出発母材、101……分離溝、102
……酸化膜、103……単結晶島、104……縦形単結晶領
域、104a……n+形単結晶層、104b……n+形多結晶層、10
5a……p+形単結晶層、105b……p+形多結晶層、108……
分離溝、110……表面、120……裏面。1 (a) and 1 (b) are a plan view and a sectional view of a first embodiment of the present invention, FIG. 2 is an explanatory view of a manufacturing method of the first embodiment, and FIG. 3 is a second embodiment. FIG. 3 shows a cross-sectional view of an example. 99 ... oxide film, 100 ... starting base material, 101 ... separation groove, 102
... oxide film, 103 single crystal island, 104 vertical single crystal region, 104a n + single crystal layer, 104b n + polycrystalline layer, 10
5a …… p + type single crystal layer, 105b …… p + type polycrystal layer, 108 ……
Separation groove, 110 … front side, 120 … back side.
フロントページの続き (72)発明者 石川 透 茨城県日立市久慈町4026番地 株式会社 日立製作所日立研究所内 (56)参考文献 特開 昭63−199454(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01L 21/76 - 21/765 H01L 21/336 H01L 29/78Continuation of the front page (72) Inventor Toru Ishikawa 4026 Kuji-cho, Hitachi City, Ibaraki Prefecture Within Hitachi Research Laboratory, Hitachi, Ltd. (56) References JP-A-63-199454 (JP, A) (58) Fields investigated (Int) .Cl. 6 , DB name) H01L 21/76-21/765 H01L 21/336 H01L 29/78
Claims (3)
面に露出する単結晶島と、 前記誘電体分離基板の前記表面から裏面まで突き抜けた
縦形単結晶領域と、 を備え、 前記縦形単結晶領域は、前記表面に露出する第1の領域
と、前記表面及び前記裏面に露出しかつ前記第1の領域
よりも不純物濃度が高い第2の領域と、を有することを
特徴とする誘電体分離基板。1. A dielectric isolation substrate, comprising: a single crystal island that is insulated and separated by an insulator and is exposed on a surface of the dielectric isolation substrate; and a vertical single island penetrating from the front surface to the rear surface of the dielectric isolation substrate. A first region exposed on the front surface, and a second region exposed on the front surface and the back surface and having a higher impurity concentration than the first region. And a dielectric separation substrate.
は、前記表面から、前記第1の領域であるn-層,n+層,
前記第2の領域であるp+層であり、全て前記表面から電
位がとれる構造としたことを特徴とする誘電体分離基
板。2. The vertical single crystal region according to claim 1, wherein the vertical single crystal region is an n − layer, an n + layer,
The dielectric isolation substrate, wherein the second region is the p + layer, and the structure is such that a potential can be all taken from the surface.
の工程を有することを特徴とする誘電体分離基板の製造
方法。 (イ)単結晶Siウェハにエッチングに対する保護膜を形
成する工程。 (ロ)前記保護膜を部分的に除去して、幅の異なる複数
の開口部を設ける工程。 (ハ)前記複数の開口部に、エッチングによって、深さ
の異なる複数の分離溝を形成する工程。 (ニ)前記分離溝が形成された側の単結晶面に分離用の
絶縁物を形成する工程。 (ホ)前記複数の分離溝の内、深さの深い分離溝で囲ま
れた単結晶面及び前記深さの深い分離溝内の単結晶面に
おける前記絶縁物を除去する工程。 (ヘ)前記工程(ホ)の後、前記絶縁物上及び前記絶縁
物が除去された前記単結晶面上にSiを成長させる工程。 (ト)研削及び研磨により誘電体分離基板を完成させる
工程。3. A method for manufacturing a dielectric isolation substrate, comprising the following steps: (A) A step of forming a protective film for etching on a single crystal Si wafer. (B) a step of partially removing the protective film to provide a plurality of openings having different widths; (C) forming a plurality of separation grooves having different depths in the plurality of openings by etching; (D) forming a separation insulator on the single crystal surface on the side where the separation groove is formed; (E) a step of removing the insulator on a single crystal surface surrounded by the deep separation groove and a single crystal surface in the deep separation groove among the plurality of separation grooves. (F) a step of, after the step (e), growing Si on the insulator and on the single crystal surface from which the insulator has been removed. (G) A step of completing a dielectric isolation substrate by grinding and polishing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63229986A JP2765867B2 (en) | 1988-09-16 | 1988-09-16 | Dielectric separation substrate and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63229986A JP2765867B2 (en) | 1988-09-16 | 1988-09-16 | Dielectric separation substrate and method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0279443A JPH0279443A (en) | 1990-03-20 |
JP2765867B2 true JP2765867B2 (en) | 1998-06-18 |
Family
ID=16900808
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63229986A Expired - Lifetime JP2765867B2 (en) | 1988-09-16 | 1988-09-16 | Dielectric separation substrate and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2765867B2 (en) |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63199454A (en) * | 1987-02-16 | 1988-08-17 | Nec Corp | Semiconductor device |
-
1988
- 1988-09-16 JP JP63229986A patent/JP2765867B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0279443A (en) | 1990-03-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0355984B2 (en) | ||
JPH04106932A (en) | Manufacture of bipolar transistor | |
JPH0671043B2 (en) | Method for manufacturing silicon crystal structure | |
JPH06334030A (en) | Semiconductor device and its manufacture | |
US4857479A (en) | Method of making poly-sidewall contact transistors | |
JPS63157475A (en) | Semiconductor device and manufacture thereof | |
JP2765867B2 (en) | Dielectric separation substrate and method of manufacturing the same | |
JPS6097659A (en) | Semiconductor integrated circuit | |
JPS5984435A (en) | Semiconductor integrated circuit and manufacture thereof | |
JPS6095969A (en) | Manufacture of semiconductor integrated circuit | |
JP3257523B2 (en) | Method for manufacturing semiconductor device | |
JP2760401B2 (en) | Dielectric separation substrate and semiconductor device | |
JP3116609B2 (en) | Method for manufacturing semiconductor device | |
JPH1051010A (en) | Manufacture of semiconductor device | |
JPS63199454A (en) | Semiconductor device | |
JPS6095967A (en) | Semiconductor integrated circuit | |
EP0032016A2 (en) | Method of manufacturing a semiconductor device | |
JPS63138767A (en) | Semiconductor substrate for vertical type semi-conductor device and manufacture thereof | |
JPS60244036A (en) | Semiconductor device and manufacture thereof | |
JPS61225866A (en) | Semiconductor device | |
JPS5951545A (en) | Semiconductor device | |
JPS6095968A (en) | Manufacture of semiconductor integrated circuit | |
JPH0766284A (en) | Manufacture of semiconductor device | |
JPS61269377A (en) | Semiconductor device | |
JPH0653310A (en) | Semiconductor device and its manufacture method |