JP2765832B2 - Method for manufacturing optical semiconductor device - Google Patents
Method for manufacturing optical semiconductor deviceInfo
- Publication number
- JP2765832B2 JP2765832B2 JP62006899A JP689987A JP2765832B2 JP 2765832 B2 JP2765832 B2 JP 2765832B2 JP 62006899 A JP62006899 A JP 62006899A JP 689987 A JP689987 A JP 689987A JP 2765832 B2 JP2765832 B2 JP 2765832B2
- Authority
- JP
- Japan
- Prior art keywords
- optical semiconductor
- light
- semiconductor device
- optical
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000003287 optical effect Effects 0.000 title claims description 104
- 239000004065 semiconductor Substances 0.000 title claims description 57
- 238000000034 method Methods 0.000 title claims description 19
- 238000004519 manufacturing process Methods 0.000 title claims description 15
- 229920005989 resin Polymers 0.000 claims description 51
- 239000011347 resin Substances 0.000 claims description 51
- 239000000853 adhesive Substances 0.000 claims description 21
- 230000001070 adhesive effect Effects 0.000 claims description 21
- 238000000465 moulding Methods 0.000 claims description 11
- 239000004519 grease Substances 0.000 claims description 9
- 238000007789 sealing Methods 0.000 claims description 8
- 239000000126 substance Substances 0.000 claims 2
- 239000002390 adhesive tape Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 8
- 229920001296 polysiloxane Polymers 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 230000002411 adverse Effects 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 5
- 230000001154 acute effect Effects 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000002834 transmittance Methods 0.000 description 4
- 230000001771 impaired effect Effects 0.000 description 3
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 2
- 230000002730 additional effect Effects 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229910001111 Fine metal Inorganic materials 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 235000013869 carnauba wax Nutrition 0.000 description 1
- 239000004203 carnauba wax Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0203—Containers; Encapsulations, e.g. encapsulation of photodiodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0232—Optical elements or arrangements associated with the device
- H01L31/02327—Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32245—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48247—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Light Receiving Elements (AREA)
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、光半導体装置の製造方法、特に光を電気信
号に変換する光半導体装置の製造方法に関する。
[従来技術]
この種の装置の製造方法の従来例を工程に添い説明す
ると次のようになる。ここに第8図は従来工程により完
成されたこの種の光半導体装置の断面図、第9図は封止
工程の断面図である。
(1)リードフレームの素子装着部1に、光を電気信号
に変換する光半導体素子4を装着材3を用いて固着す
る。
(2)リードフレームのリード部2と光半導体素子とを
金属細線5により、電気的、機械的に接続する。
(3)(1)及び(2)により構成された光半導体装置
主要部を下型12の適所に配置し、上型11を閉じる。
(4)光透過性樹脂6をランナ9及びゲート10より上型
成形キャビティ13及び下型成形キャビティ14に注入す
る。
(5)上型11及び下型12を介して熱を供給し、光透過性
樹脂6により光半導体装置主要部を封止する。
(6)上型11と下型12を取りはずす。
(7)リードフレームリード部2の露出部をメッキす
る。
(8)リードフレームリード部2の不要部を切断除去す
る。
(9)外部リードを曲げ成形する。
(10)光半導体素子光路となる光透過性樹脂6面に接着
剤8を塗布し、光フィルター7を貼りつける。
(11)熱を供給し、接着剤8を硬化する。
[発明が解決しようとする問題点]
以上従来工程を説明したが、次のような問題点があ
る。
(1)光フィルター7の貼り付けに使用する接着材8
は、光半導体素子4の光学的要求を満足する事が必要で
あり、且つ、温度、湿度等に対する耐久性も要求され、
選定に関して、多くの試作が必要で、費用が嵩むもので
ある。
(2)光透過性樹脂面には、成形時に離型剤が付着した
り、成形型の凹凸転写が原因となりキズ等が形成され、
これらは光透過性を阻害する一因であり、光半導体素子
光特性に悪影響を及ぼす。又これらを取り除く為に洗
浄、研磨等の工程が必要であり、製品のコストを上げる
原因となっている。
(3)光フィルタ7の張り付けにおいて、液状の接着材
を使用する為、垂直方向の位置精度を向上させることは
困難である。又、平行方向の位置精度を向上させること
も、機械的又は光学的な位置検出を必要とし、機械装置
にてこの作業を行なう時、高度な装置となり、高価な投
資が必要である。
(4)接着材中に気泡が発生すると、光透過性を阻害
し、光半導体素子の光特性に悪影響を及ぼす。
(5)第10図に示すように、光フィルター7がレンズ15
のような場合には、光透過性樹脂6との接着面が平面状
ではなくなるので、光透過性樹脂6が鋭角部16を持つこ
とがある。このような場合には、離型時に離型しにくい
ばかりか、割れ等の不良発生の一因となり、製造効率を
低下させる。
本発明の目的は、光フィルタと光透過性樹脂とを接着
材を用いることなく直接に密着させた後に両者を一体と
して成形加工することにより光半導体素子の光特性に悪
影響を及ぼすことのない、しかも製造効率の良好な光半
導体装置の製造方法を提供することにある。
[問題点を解決するための手段]
上記目的を達成するための手段は、光を電気信号に変
換する光半導体素子に必要な電気接続を行った光半導体
主要部と、該主要部を封止する光透過性樹脂と、該光半
導体素子の光路上に位置する光透過性部材とを具備する
光半導体装置の製造方法において、上記光透過性部材を
該光透過性部材の高さ及び形状と実質的に同じとされた
成形型の凹部の一面に光入射側となる面側の全面が密着
するように挿入配置し、次に該光透過性部材に対し上記
光半導体装置主要部を対向させ、さらに、上記光透過性
樹脂を該成形型内に注入して光透過性部材に密着させる
とともに光半導体主要部を封止することを特徴とする光
半導体装置の製造方法である。
[作用]
上記のとおり、本発明によれば、光透過性部材と光透
過性樹脂を接着材を用いることなく直接に接着させてい
る。従って、接着材の選定に煩わされることなく、また
その中に発生する気泡を考慮することなく更に接着材に
伴う位置決めの精度といったことも考慮する必要がな
い。
また、本発明によれば光透過性部材と光透過性樹脂と
を一体として成形加工する。従って、光透過性部材と対
面している光透過性樹脂面が成形されることはないため
成形時の離型剤が付着したり鋭角部が形成されることに
より離型が困難なことはなくなった。
特に、光透過性部材は、光透過性部材の高さ及び形状
と実質的に同じ深さ及び形状とされた凹部に配置される
ため、注入された樹脂が光透過性部材の側面に回り込む
ことがない。その結果、注入された樹脂の流れを阻害す
るあるいは妨げる要因が低減するため、より均一に樹脂
を注入することが可能となる。従って、樹脂封止された
光半導体の光特性に悪影響を及ぼす、樹脂の不均一な注
入に起因した乱反射のような現象を改善することができ
る。
このため、従来よりも光半導体装置の光特性に悪影響
を及ぼすことはなくなりかつ製造効率が向上するように
なった。
[実施例]
以下、本発明を、実施例により添付図面を参照して説
明する。
第1図は本発明により製造された装置の断面図、第2
図から第7図まではそれぞれ本発明の第1実施例から第
5実施例による封止工程を示す断面図である。
なお、第1図から第7図において、第1図から第3図
までと同一の構成部分には、同一の参照符号を付してい
る。
即ち、1は光半導体素子4を接着するリードフレーム
の素子装着部、2は光透過性樹脂13から成る封止部と外
部とを電気的に接続するリードフレームのリード部、3
はリードフレーム素子装着部1に光半導体素子4を接着
する接着材。
4は、光を電気信号に変換する光半導体素子、5は、
光半導体素子4とリードフレームリード部2とを電気的
に接続する金属細線、6は、リードフレーム素子装着部
1と、リードフレームリード部2と接着材3と、光半導
体素子4と金属細線5から成る光半導体装置主要部を封
止する光透過性樹脂、7は、特定波長光をカットする光
フィルタ、9は、光透過性樹脂6を注入するキャビティ
13,14の近傍に至る通路であるランナ。10は光透過性樹
脂6を注入するキャビティ13,14に至る通路であるゲー
ト。11は、光透過性樹脂を成形する上型、12は、光透過
性樹脂を成形する下型、13は、上型キャビティ、14は下
型キャビティ、17は、キャビティに形成された凹部、18
はシリコーングリース、19は光フィルタ7を保持する凸
部である。
以下、第2図に基づいて、本発明の第1実施例を説明
する。
(1)先ず、リードフレーム素子装着部1の下面に、光
を電気信号に変換する光半導体素子4を、接着材3によ
り固着する。
(2)次に、リードフレームリード部2と光半導体素子
4の間を金属細線5により、電気的、機械的に接続す
る。この(1)と(2)により光半導体装置主要部が形
成される。
(3)光フィルタ7を、下型12のキャビティ14に形成し
た凹部17に挿入する。
(4)(1)及び(2)により構成された光半導体装置
主要部を下型12の内の上記光フィルタ7に対向する位置
に配置し、上型11を閉じる。
(5)光透過性樹脂6を、ランナ9及びゲート10から、
上型成形キャビティ13及び下型成形キャビティ14に注入
する。
(6)上型11及び下型12に熱を供給し、上記注入した光
透過性樹脂6により光半導体装置主要部を封止する。
(7)上型11と下型12を取りはずす。
(8)リードフレームリード部2の露出部をメッキす
る。
(9)リードフレームリード部2の不要部を切断除去す
る。
(10)外部リードを曲げ成形する。
以上の工程により第1図に示す光半導体装置が完成さ
れる。
上記のとおり、本発明の第1実施例によれば、従来の
ように接着材を用いることなく、又従来と異なり光透過
性樹脂と光フィルタが対になって成形される。従って、
次のような効果がある。
(1)接着材の材料コスト及び選定等の開発コスト及び
工程での工数の削減となる。
(2)キャビティ14内に注入された光透過性樹脂6は既
に配置されている光フィルタ7の上に積層される。従っ
て、光路となる光透過性樹脂面は光フィルタ7と密着し
ているので成形型により成形をされる事がない。このた
め、成形時に付着した離型剤や、凹凸転写によるキズ等
が光透過性を阻害する事がない。
(3)光フィルタ7は、下型12に配置する為、特別な位
置検出装置を使用することなく、位置決め精度が向上す
る。また型の形状により、高さ、縦、横方向の位置を任
意に決めることができるという付随的効果もある。
(4)光路に接着材層を有しない為、接着材中の気泡の
発生による光透過性の阻害も発生する事がない。
(5)レンズ等の光透過性部材を用いるために、光透過
性樹脂に鋭角部が形成されたとしても、光透過性樹脂と
レンズを対で、鋭角にて離型するので、離型時割れ等を
回避できる。
第3図は、本発明の第2実施例を示す断面図である。
本実施例によれば、光フィルタ7が、光透過性樹脂光
路面より小さい時でも、下型12に凹部17が形成されてい
るので、光フィルタ7は凹部17により位置が限定される
為、完成品での光フィルタ7の位置は、極めて高精度な
ものとなるという効果がある。
第4図は、本発明の第3実施例を示す断面図である。
本実施例によれば、凹部17の底部にシリコーングリース
18を塗付し、その上に光フィルタ7を載置せしめている
ので、下型12と光フィルタ7間に樹脂が浸入しないとい
う効果がある。
即ち、本発明における封止方法としては、一般にキャ
スティングモールド、トランスファモールド、インジェ
クションモールド等、様々な方法がある。しかし、製造
条件によっては、光フィルタ7と下型12の凹部17の間に
樹脂が浸入することがある。この時浸入した樹脂は、光
フィルタ7上に薄状に付着し、乱反射により、光透過性
の阻害となる。このような問題を防ぐ為に、第4図に示
す第3実施例は特に効果がある。
第5図は、本発明の第4実施例を示す断面図である。
本実施例によれば、下型12の底部に凸部19を設けたの
で、光フィルタ7をこの凸部19で保持することができ、
シリコーングリース18を用いても光フィルタ7の垂直方
向の位置が確定するという効果がある。
更に、この第4実施例によれば、光フィルタ7は、シ
リコーングリース18により粘着される為、光フィルタ7
を上型11に装着するような構成としても、光フィルタ7
が落下しないという効果がある。
上記第3と第4の実施例において、シリコーングリー
スを用いたが、粘性部材であれば良く、例えば、カルナ
ウバロウ等のロウ、シリコーンオイル等のオイル、シリ
コーングリース以外のグリースであっても良い。
第6図及び第7図に第5実施例を示す。本例では、第
1実施例(3)で示す光フィルタ7の片面(下型12側の
面)に粘着テープ30を付着せしめてある。すなわち、光
フィルターと下型12との界面に粘着テープ30を介在せし
める。
この粘着テープ30は第1実施例の第(7)工程の後に
光フィルター7から引き剥す。他の工程は第1実施例と
同様である。
かかる粘着テープ30を付着せしめておくと、光フィル
ター7と下型12との界面にたとえ樹脂が侵入し、バリの
発生をきたしたとしても、このバリは、光フィルター7
から粘着テープ30を剥す際に粘着テープ30とともに除去
されてしまう。
なお、粘着テープは耐熱性(樹脂注入時あるいは加熱
時には約150℃の熱にさらされるのでこの温度に耐えら
れる程度の耐熱性)を有していればよく、かかる耐熱性
を有していれば特に限定されない。粘着テープの粘着剤
としては例えば、エポキシ樹脂その他エポキシフェノー
ル系樹脂(連続でも180℃程度までの耐熱性を有す
る)、塩化ビニール樹脂あるいは、ポリイミド、ポリア
ミドイミド等を適宜使用すればよい。
また、一般的に、本発明においては、光半導体素子の
材質、受光面の分割、回路等は、光半導体装置の用途、
目的に応じ様々なものが使用されるものである。例え
ば、撮像用の面分割された、シリコン光半導体素子等で
ある。又、実施例において、光透過性樹脂上の光透過性
部材として、光フィルタ及びレンズについて記載した
が、光半導体装置の用途、目的に応じ、偏光板、凹レン
ズ等であってもよい。
本発明において、光透過性樹脂は、光半導体装置の用
途、目的に応じ、選択されるものであり、光透過性、接
着性の他、耐熱性、耐水性等の信頼性が要求される。
例えば、半導体装置の使用波長が約300μm〜1000μ
mの可視光域であり、光フィルタ7の素材がガラスであ
る時、上記光透過性、接着性、信頼性から、樹脂は、ビ
スフェノールAタイプエポキシ樹脂の酸無水物硬化のも
のがよい。
[発明の効果]
(1)上記の通り、本発明によれば接着材を用いていな
いので、接着材の材料コスト及び選定等の開発コスト及
び工程での工数の削減となる。
(2)キャビティ14内に注入された光透過性樹脂6は既
に配置されている光フィルタ7の上に積層される。従っ
て、光路となる光透過性樹脂面は光フィルタ7と密着し
ているので、成形時により成形される事がない。このた
め、成形時に付着した離型剤や、凹凸転写によるキズ等
が光透過性を阻害する事がない。
(3)光透過性部材7は、下型12に配置する為、特別な
位置検出装置を使用することなく、位置決め精度が向上
する。また型の形状により、高さ、縦、横方向の位置を
任意に決めることができるとういう付随的効果もある。
特に、光透過性部材は、光透過性部材の高さ及び形状
と実質的に同じ深さ及び形状とされた凹部に配置される
ため、注入された樹脂が光透過性部材の側面に回り込む
ことのを防ぐことができ、均一な樹脂モールドを行うこ
とができる。
(4)光路に接着材層を有しない為、接着材中の気泡の
発生による光透過性の阻害も発生する事がない。
(5)レンズ等の光透過性部材を用いるために、光透過
性樹脂に鋭角部が形成されたとしても、光透過性樹脂と
レンズを対で、鋭角にて離型するので、離型時割れ等を
回避できる。The present invention relates to a method for manufacturing an optical semiconductor device, and more particularly, to a method for manufacturing an optical semiconductor device that converts light into an electric signal. [Prior Art] A conventional example of a method for manufacturing this type of apparatus will be described below with reference to steps. FIG. 8 is a cross-sectional view of this type of optical semiconductor device completed by a conventional process, and FIG. 9 is a cross-sectional view of a sealing process. (1) An optical semiconductor element 4 for converting light into an electric signal is fixed to an element mounting portion 1 of a lead frame using a mounting material 3. (2) The lead portion 2 of the lead frame and the optical semiconductor element are electrically and mechanically connected by the thin metal wire 5. (3) The main part of the optical semiconductor device constituted by (1) and (2) is arranged at an appropriate position of the lower mold 12 and the upper mold 11 is closed. (4) The light transmitting resin 6 is injected into the upper mold cavity 13 and the lower mold cavity 14 from the runner 9 and the gate 10. (5) Heat is supplied through the upper mold 11 and the lower mold 12 to seal the main part of the optical semiconductor device with the light transmitting resin 6. (6) Remove upper mold 11 and lower mold 12. (7) Plating the exposed part of the lead frame lead part 2. (8) Unnecessary portions of the lead frame lead portion 2 are cut and removed. (9) The external lead is formed by bending. (10) The adhesive 8 is applied to the surface of the optically transparent resin 6 serving as the optical path of the optical semiconductor element, and the optical filter 7 is attached. (11) Heat is supplied to cure the adhesive 8. [Problems to be Solved by the Invention] The conventional processes have been described above, but have the following problems. (1) Adhesive material 8 used for attaching optical filter 7
Is required to satisfy the optical requirements of the optical semiconductor element 4 and is also required to have durability against temperature, humidity, and the like.
As for the selection, many prototypes are required and the cost is high. (2) A release agent adheres to the light-transmitting resin surface during molding, and scratches or the like are formed due to transfer of unevenness of the mold,
These are one of the factors that impair the light transmittance, and adversely affect the optical characteristics of the optical semiconductor device. Further, steps such as cleaning and polishing are required to remove these, which causes an increase in product cost. (3) Since a liquid adhesive is used for attaching the optical filter 7, it is difficult to improve the positional accuracy in the vertical direction. Improving the positional accuracy in the parallel direction also requires mechanical or optical position detection, and when performing this operation using a mechanical device, the device becomes an advanced device and requires an expensive investment. (4) When air bubbles are generated in the adhesive, light transmission is impaired, and the optical characteristics of the optical semiconductor element are adversely affected. (5) As shown in FIG.
In such a case, since the bonding surface with the light transmitting resin 6 is not planar, the light transmitting resin 6 may have the acute angle portion 16 in some cases. In such a case, not only is it difficult to release the mold at the time of release, but it also contributes to the occurrence of defects such as cracks, and reduces the manufacturing efficiency. An object of the present invention is to provide a light-transmitting resin and a light-transmitting resin in direct contact with each other without using an adhesive, and then integrally mold and process the two without adversely affecting the optical characteristics of the optical semiconductor element. In addition, it is an object of the present invention to provide a method for manufacturing an optical semiconductor device having good manufacturing efficiency. [Means for Solving the Problems] Means for achieving the above object are an optical semiconductor main part which performs an electrical connection necessary for an optical semiconductor element for converting light into an electric signal, and sealing the main part. A light-transmitting resin, and a light-transmitting member located on the optical path of the optical semiconductor element, the method for manufacturing an optical semiconductor device, wherein the light-transmitting member has the same height and shape as the light-transmitting member. It is inserted and arranged so that the entire surface on the light incident side is in close contact with one surface of the concave portion of the mold that is substantially the same, and then the main part of the optical semiconductor device is opposed to the light transmitting member. Further, there is provided a method for manufacturing an optical semiconductor device, wherein the optically transparent resin is injected into the mold so as to adhere to the optically transparent member and to seal a main part of the optical semiconductor. [Operation] As described above, according to the present invention, the light-transmitting member and the light-transmitting resin are directly bonded without using an adhesive. Therefore, it is not necessary to consider the accuracy of the positioning of the adhesive without having to worry about the selection of the adhesive and without considering the bubbles generated therein. Further, according to the present invention, the light transmitting member and the light transmitting resin are integrally formed and processed. Therefore, since the light-transmitting resin surface facing the light-transmitting member is not molded, the release agent is not adhered at the time of molding, and the mold is not difficult to be formed by forming an acute angle portion. Was. In particular, since the light-transmitting member is disposed in the concave portion having the same depth and shape as the height and shape of the light-transmitting member, the injected resin may flow around the side surface of the light-transmitting member. There is no. As a result, a factor that hinders or hinders the flow of the injected resin is reduced, so that the resin can be injected more uniformly. Therefore, it is possible to improve a phenomenon such as irregular reflection caused by uneven injection of the resin, which adversely affects the optical characteristics of the optical semiconductor sealed with the resin. For this reason, the optical characteristics of the optical semiconductor device are not adversely affected as compared with the related art, and the manufacturing efficiency is improved. [Example] Hereinafter, the present invention will be described by way of examples with reference to the accompanying drawings. FIG. 1 is a sectional view of an apparatus manufactured according to the present invention, and FIG.
FIG. 7 to FIG. 7 are cross-sectional views showing a sealing step according to the first to fifth embodiments of the present invention, respectively. 1 to 7, the same components as those in FIGS. 1 to 3 are denoted by the same reference numerals. That is, 1 is an element mounting portion of the lead frame to which the optical semiconductor element 4 is bonded, 2 is a lead portion of the lead frame which electrically connects the sealing portion made of the light transmitting resin 13 and the outside,
Is an adhesive for bonding the optical semiconductor element 4 to the lead frame element mounting portion 1. 4 is an optical semiconductor element for converting light into an electric signal, 5 is
A thin metal wire 6 for electrically connecting the optical semiconductor element 4 and the lead frame lead 2 is denoted by 6, a lead frame element mounting section 1, a lead frame lead 2 and an adhesive 3, an optical semiconductor element 4 and a thin metal wire 5. A light-transmitting resin for sealing a main part of the optical semiconductor device, comprising: an optical filter for cutting light of a specific wavelength; and a cavity for injecting the light-transmitting resin 6.
A runner that is a passage leading to the vicinity of 13,14. A gate 10 is a passage leading to the cavities 13 and 14 into which the light transmitting resin 6 is injected. 11 is an upper mold for molding the light transmitting resin, 12 is a lower mold for molding the light transmitting resin, 13 is an upper mold cavity, 14 is a lower mold cavity, 17 is a recess formed in the cavity, 18
Is a silicone grease, and 19 is a projection holding the optical filter 7. Hereinafter, a first embodiment of the present invention will be described with reference to FIG. (1) First, an optical semiconductor element 4 for converting light into an electric signal is fixed to the lower surface of the lead frame element mounting portion 1 with an adhesive 3. (2) Next, the lead frame lead portion 2 and the optical semiconductor element 4 are electrically and mechanically connected by the thin metal wire 5. The main parts of the optical semiconductor device are formed by these (1) and (2). (3) Insert the optical filter 7 into the concave portion 17 formed in the cavity 14 of the lower mold 12. (4) The main part of the optical semiconductor device constituted by (1) and (2) is arranged at a position facing the optical filter 7 in the lower mold 12, and the upper mold 11 is closed. (5) The light transmitting resin 6 is removed from the runner 9 and the gate 10
It is injected into the upper mold cavity 13 and the lower mold cavity 14. (6) Heat is supplied to the upper mold 11 and the lower mold 12 to seal the main part of the optical semiconductor device with the light transmitting resin 6 injected. (7) Remove upper mold 11 and lower mold 12. (8) Plating the exposed portion of the lead frame lead portion 2. (9) Unnecessary portions of the lead frame lead portion 2 are cut and removed. (10) Bend the external leads. Through the above steps, the optical semiconductor device shown in FIG. 1 is completed. As described above, according to the first embodiment of the present invention, a light-transmitting resin and an optical filter are formed as a pair without using an adhesive unlike the related art and different from the related art. Therefore,
The following effects are obtained. (1) It is possible to reduce the development cost such as the material cost and selection of the adhesive and the number of steps in the process. (2) The light transmitting resin 6 injected into the cavity 14 is laminated on the optical filter 7 already arranged. Therefore, since the light transmitting resin surface serving as an optical path is in close contact with the optical filter 7, it is not molded by a molding die. For this reason, the release agent adhered at the time of molding and the scratches due to the transfer of unevenness do not inhibit the light transmittance. (3) Since the optical filter 7 is arranged on the lower mold 12, the positioning accuracy is improved without using a special position detecting device. In addition, there is an additional effect that the height, vertical and horizontal positions can be arbitrarily determined depending on the shape of the mold. (4) Since there is no adhesive layer in the optical path, light transmission is not impaired due to generation of bubbles in the adhesive. (5) Even if an acute-angled portion is formed in the light-transmitting resin because the light-transmitting member such as a lens is used, the light-transmitting resin and the lens are released at an acute angle as a pair. Cracks and the like can be avoided. FIG. 3 is a sectional view showing a second embodiment of the present invention. According to the present embodiment, even when the optical filter 7 is smaller than the light-transmitting resin optical path surface, the concave portion 17 is formed in the lower mold 12, so that the position of the optical filter 7 is limited by the concave portion 17, There is an effect that the position of the optical filter 7 in the completed product is extremely accurate. FIG. 4 is a sectional view showing a third embodiment of the present invention.
According to the present embodiment, the silicone grease
18 is applied and the optical filter 7 is placed thereon, so that there is an effect that the resin does not enter between the lower mold 12 and the optical filter 7. That is, as the sealing method in the present invention, there are generally various methods such as a casting mold, a transfer mold, and an injection mold. However, resin may enter between the optical filter 7 and the concave portion 17 of the lower mold 12 depending on manufacturing conditions. The resin that has entered at this time adheres to the optical filter 7 in a thin shape and interferes with light transmission due to irregular reflection. In order to prevent such a problem, the third embodiment shown in FIG. 4 is particularly effective. FIG. 5 is a sectional view showing a fourth embodiment of the present invention. According to this embodiment, since the convex portion 19 is provided on the bottom of the lower mold 12, the optical filter 7 can be held by the convex portion 19,
The use of the silicone grease 18 has an effect that the position of the optical filter 7 in the vertical direction is determined. Further, according to the fourth embodiment, since the optical filter 7 is adhered by the silicone grease 18, the optical filter 7
The optical filter 7 may be mounted on the upper mold 11.
Has the effect of not falling. In the third and fourth embodiments, silicone grease is used. However, any viscous member may be used. For example, wax such as carnauba wax, oil such as silicone oil, or grease other than silicone grease may be used. FIGS. 6 and 7 show a fifth embodiment. In this example, an adhesive tape 30 is adhered to one surface (the surface on the lower mold 12 side) of the optical filter 7 shown in the first embodiment (3). That is, the adhesive tape 30 is interposed at the interface between the optical filter and the lower mold 12. The adhesive tape 30 is peeled off from the optical filter 7 after the step (7) of the first embodiment. Other steps are the same as in the first embodiment. If such an adhesive tape 30 is adhered, even if the resin enters the interface between the optical filter 7 and the lower mold 12 and burrs are generated, the burrs remain on the optical filter 7.
The adhesive tape 30 is removed together with the adhesive tape 30 when the adhesive tape 30 is peeled off. The adhesive tape only needs to have heat resistance (a heat resistance of about 150 ° C. when the resin is injected or heated so that it can withstand this temperature). There is no particular limitation. As the pressure-sensitive adhesive of the pressure-sensitive adhesive tape, for example, an epoxy resin or another epoxyphenol-based resin (having continuous heat resistance up to about 180 ° C.), a vinyl chloride resin, or a polyimide or polyamideimide may be used as appropriate. In general, in the present invention, the material of the optical semiconductor element, the division of the light receiving surface, the circuit, etc. are used for the optical semiconductor device,
Various things are used according to the purpose. For example, a surface-divided silicon optical semiconductor device for imaging is used. In the embodiments, the optical filter and the lens are described as the light transmitting members on the light transmitting resin. However, a polarizing plate, a concave lens, or the like may be used according to the use and purpose of the optical semiconductor device. In the present invention, the light-transmitting resin is selected according to the use and purpose of the optical semiconductor device, and is required to have reliability such as heat resistance and water resistance in addition to light transmission and adhesion. For example, the operating wavelength of a semiconductor device is about 300 μm to 1000 μm.
m in the visible light range, and when the material of the optical filter 7 is glass, the resin is preferably a bisphenol A type epoxy resin cured with an acid anhydride from the viewpoint of the light transmittance, adhesiveness and reliability. [Effects of the Invention] (1) As described above, according to the present invention, since an adhesive is not used, development costs such as material cost and selection of the adhesive, and man-hours in the process can be reduced. (2) The light transmitting resin 6 injected into the cavity 14 is laminated on the optical filter 7 already arranged. Therefore, since the light transmitting resin surface serving as an optical path is in close contact with the optical filter 7, there is no molding at the time of molding. For this reason, the release agent adhered at the time of molding and the scratches due to the transfer of unevenness do not inhibit the light transmittance. (3) Since the light transmitting member 7 is disposed on the lower mold 12, the positioning accuracy is improved without using a special position detecting device. There is also an additional effect that the height, vertical and horizontal positions can be arbitrarily determined by the shape of the mold. In particular, since the light-transmitting member is disposed in the concave portion having the same depth and shape as the height and shape of the light-transmitting member, the injected resin may flow around the side surface of the light-transmitting member. And uniform resin molding can be performed. (4) Since there is no adhesive layer in the optical path, light transmission is not impaired due to generation of bubbles in the adhesive. (5) Even if an acute-angled portion is formed in the light-transmitting resin because a light-transmitting member such as a lens is used, the light-transmitting resin and the lens are separated from each other at an acute angle. Cracks and the like can be avoided.
【図面の簡単な説明】
第1図は本発明により製造された光半導体装置の断面
図、第2図は本発明の第1実施例を示す断面図、第3図
は本発明の第2実施例を示す断面図、第4図は本発明の
第3実施例を示す断面図、第5図は本発明の第4実施例
を示す断面図、第6図及び第7図は本発明の第5実施例
を示す断面図、第8図は従来の光半導体装置の断面図、
第9図は従来の封止工程を示す断面図、第10図は従来の
光半導体装置の断面図。
1……リードフレーム素子装着部分、2……リードフレ
ームリード部、3……装着材、4……光半導体素子、5
……金属細線、6……光透過性樹脂、7……光フィル
タ、8……接着材、9……ランナ、10……ゲート、11…
…上型、12……下型、13……上型キャビティ、14……下
型キャビティ、15……レンズ、16……鋭角部、17……凹
部、18……シリコーングリース、19……凸部、30……粘
着テープ。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view of an optical semiconductor device manufactured according to the present invention, FIG. 2 is a sectional view showing a first embodiment of the present invention, and FIG. 3 is a second embodiment of the present invention. FIG. 4 is a cross-sectional view showing a third embodiment of the present invention, FIG. 5 is a cross-sectional view showing a fourth embodiment of the present invention, FIGS. 6 and 7 are cross-sectional views of the present invention. FIG. 8 is a sectional view showing a fifth embodiment, FIG. 8 is a sectional view of a conventional optical semiconductor device,
FIG. 9 is a sectional view showing a conventional sealing step, and FIG. 10 is a sectional view of a conventional optical semiconductor device. DESCRIPTION OF SYMBOLS 1 ... Lead frame element mounting part, 2 ... Lead frame lead part, 3 ... Mounting material, 4 ... Optical semiconductor element, 5
... Fine metal wires, 6... Light transmissive resin, 7... Optical filter, 8... Adhesive material, 9... Runner, 10... Gate, 11.
… Upper mold, 12… Lower mold, 13… Upper mold cavity, 14… Lower mold cavity, 15… Lens, 16… Sharp corner, 17… Concave, 18… Silicone grease, 19… Convex Part, 30 …… adhesive tape.
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01L 31/02──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 6 , DB name) H01L 31/02
Claims (1)
接続を行った光半導体主要部と、該主要部を封止する光
透過性樹脂と、該光半導体素子の光路上に位置する光透
過性部材とを具備する光半導体装置の製造方法におい
て、上記光透過性部材を該光透過性部材の高さ及び形状
と実質的に同じとされた成形型の凹部の一面に光入射側
となる面側の全面が密着するように挿入配置し、次に該
光透過性部材に対し上記光半導体装置主要部を対向さ
せ、さらに、上記光透過性樹脂を該成形型内に注入して
光透過性部材に密着させるとともに光半導体主要部を封
止することを特徴とする光半導体装置の製造方法。 2.上記光透過性部材は上記凹部内に粘着物質を介して
装着されている特許請求の範囲第1項記載の光半導体装
置の製造方法。 3.上記粘着物質がロウ、オイル、又はグリースである
ことを特徴とする特許請求の範囲第2項記載の光半導体
装置の製造方法。(57) [Claims] An optical semiconductor main part for making an electrical connection necessary for an optical semiconductor element for converting light into an electric signal, a light-transmitting resin for sealing the main part, and a light-transmitting resin positioned on an optical path of the optical semiconductor element; In the method for manufacturing an optical semiconductor device having a member, the light transmitting member is provided on one surface of a concave portion of a molding die having substantially the same height and shape as the light transmitting member, the surface being a light incident side. The entire surface of the optical semiconductor device is inserted and arranged so that the entire surface of the optical semiconductor device is in close contact with the light transmitting member. Then, the main part of the optical semiconductor device is opposed to the light transmitting member. A method for manufacturing an optical semiconductor device, wherein the optical semiconductor device is adhered to a member and a main part of the optical semiconductor is sealed. 2. 2. The method for manufacturing an optical semiconductor device according to claim 1, wherein said light-transmitting member is mounted in said concave portion via an adhesive substance. 3. 3. The method for manufacturing an optical semiconductor device according to claim 2, wherein said adhesive substance is wax, oil, or grease.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62006899A JP2765832B2 (en) | 1987-01-14 | 1987-01-14 | Method for manufacturing optical semiconductor device |
EP87306304A EP0253664B1 (en) | 1986-07-16 | 1987-07-16 | Semiconductor photo-sensor and method for manufacturing the same |
DE8787306304T DE3782201T2 (en) | 1986-07-16 | 1987-07-16 | SEMICONDUCTOR PHOTOSENSOR AND METHOD FOR THE PRODUCTION THEREOF. |
US08/472,110 US5583076A (en) | 1986-07-16 | 1995-06-07 | Method for manufacturing a semiconductor photo-sensor |
US09/013,031 US5912504A (en) | 1986-07-16 | 1998-01-26 | Semiconductor photo-sensor and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62006899A JP2765832B2 (en) | 1987-01-14 | 1987-01-14 | Method for manufacturing optical semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63175483A JPS63175483A (en) | 1988-07-19 |
JP2765832B2 true JP2765832B2 (en) | 1998-06-18 |
Family
ID=11651071
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62006899A Expired - Fee Related JP2765832B2 (en) | 1986-07-16 | 1987-01-14 | Method for manufacturing optical semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2765832B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0893861A3 (en) * | 1997-07-25 | 2000-01-12 | Oki Electric Industry Co., Ltd. | Optical module |
AU2003235850A1 (en) * | 2002-05-15 | 2003-12-02 | Matsushita Electric Industrial Co., Ltd. | Optical detector, optical head device, optical information processing device, and optical information processing method |
JP2008078455A (en) * | 2006-09-22 | 2008-04-03 | Denso Corp | Car-mounted color sensor, and its manufacturing method |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61170074A (en) * | 1985-01-24 | 1986-07-31 | Canon Inc | Optical semiconductor device |
JPS611061A (en) * | 1985-05-13 | 1986-01-07 | Nec Corp | Manufacture of photodetector containing filter |
-
1987
- 1987-01-14 JP JP62006899A patent/JP2765832B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPS63175483A (en) | 1988-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI329924B (en) | Solid-state imaging device and method for manufacturing the same | |
JP3417079B2 (en) | Method for manufacturing semiconductor device | |
US6680491B2 (en) | Optical electronic apparatus and method for producing the same | |
JP3173586B2 (en) | All-mold solid-state imaging device and method of manufacturing the same | |
JP4618639B2 (en) | Manufacturing method of semiconductor device | |
US5583076A (en) | Method for manufacturing a semiconductor photo-sensor | |
JPH03155995A (en) | Ic module and ic card using the same | |
US8293572B2 (en) | Injection molding system and method of chip package | |
JP2003332542A (en) | Semiconductor device and method of manufacturing the same | |
JP2765832B2 (en) | Method for manufacturing optical semiconductor device | |
JPS62293749A (en) | Three-dimensional mounting structure of semiconductor device and manufacture thereof | |
JP3234905B2 (en) | LED display device, mold for manufacturing the same, and method of manufacturing LED display device | |
JPS58500921A (en) | Leads with self-aligning lenses | |
JP2002203920A (en) | Solid-state image pickup device and its manufacturing method | |
JP3166216B2 (en) | Solid-state imaging device with on-chip lens and method of manufacturing the same | |
CN115799279A (en) | Sensor packaging structure and manufacturing method thereof | |
JP2586296B2 (en) | Solid-state imaging device and method of manufacturing the same | |
JPH0620159B2 (en) | Method for manufacturing optical semiconductor device | |
JP2573080B2 (en) | Method for manufacturing solid-state imaging device | |
KR100196301B1 (en) | Fabricating method for solid-state image pickup device | |
JPH04114456A (en) | Photoelectric converter | |
JPH05206427A (en) | Solid-state image sensing device | |
JP2927602B2 (en) | Optical coupling device | |
US20220115425A1 (en) | Optical package structure and method for manufacturing the same | |
JPH06125019A (en) | Semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |