JP2762017B2 - Ceramic substrate filled with through holes and conductor paste for filling through holes - Google Patents

Ceramic substrate filled with through holes and conductor paste for filling through holes

Info

Publication number
JP2762017B2
JP2762017B2 JP5167439A JP16743993A JP2762017B2 JP 2762017 B2 JP2762017 B2 JP 2762017B2 JP 5167439 A JP5167439 A JP 5167439A JP 16743993 A JP16743993 A JP 16743993A JP 2762017 B2 JP2762017 B2 JP 2762017B2
Authority
JP
Japan
Prior art keywords
powder
conductor
holes
hole
paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5167439A
Other languages
Japanese (ja)
Other versions
JPH0794840A (en
Inventor
護 毛利
基晴 宮越
和夫 手取屋
実 江端
清 水島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NITSUKOO KK
Original Assignee
NITSUKOO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NITSUKOO KK filed Critical NITSUKOO KK
Priority to JP5167439A priority Critical patent/JP2762017B2/en
Publication of JPH0794840A publication Critical patent/JPH0794840A/en
Application granted granted Critical
Publication of JP2762017B2 publication Critical patent/JP2762017B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections
    • H05K3/4053Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques
    • H05K3/4061Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques for via connections in inorganic insulating substrates

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は導体ペーストをスルーホ
ールに充填してなるセラミック基板、および焼成収縮率
を可能な限り低減したスルーホール充填用導体ペースト
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic substrate in which a conductive paste is filled in through holes, and a conductive paste for filling through holes in which the firing shrinkage is reduced as much as possible.

【0002】[0002]

【従来技術】従来より、両面に配線を備えたセラミック
基板が各種電子機器に使用されており、その基板の両面
に形成された配線間の導通をとる方法として、スルーホ
ールが利用されている。上記スルーホールによる配線の
接続は、従来、図7に示すように、セラミック基板2に
設けたスルーホール1の孔壁にスクリーン印刷方法など
により導体膜4を印刷・焼成することによって行なわれ
ているが、孔壁から基板表面の配線路に至るコーナー部
分の膜厚が薄くなり易く、導通不良となり信頼性にかけ
る問題がある。また、スルーホールの大きさは配線密度
の関係から、従来、0.4mm程度の小径のものが標準的
サイズであり、孔壁に形成する導体量が限られるために
スルーホール部の導体抵抗が大きくなる問題がある。こ
れらの欠点のため、電流容量の大きな配線を必要とする
分野や、高信頼性を求める分野、高性能な信号伝達を必
要とする分野では、スルーホールを用いた層間の電気的
接続が避けられてきた。ところが、電子機器の小形化、
高性能化が進むにつれて電子部品の高密度実装が可能な
信頼性の高い多層配線セラミック基板が求められてい
る。
2. Description of the Related Art Conventionally, ceramic substrates having wirings on both surfaces have been used for various electronic devices, and through holes have been used as a method of establishing conduction between the wirings formed on both surfaces of the substrate. Conventionally, the connection of the wiring by the through hole is performed by printing and firing a conductive film 4 on a hole wall of the through hole 1 provided in the ceramic substrate 2 by a screen printing method or the like as shown in FIG. However, there is a problem that the thickness of the corner portion from the hole wall to the wiring path on the surface of the substrate is easily reduced, resulting in poor conduction and reliability. Also, the size of the through-hole is conventionally a standard one with a small diameter of about 0.4 mm due to the wiring density, and the conductor resistance of the through-hole is limited because the amount of conductor formed on the hole wall is limited. There is a problem of growing. Due to these drawbacks, electrical connection between layers using through holes cannot be avoided in fields that require large current capacity wiring, fields that require high reliability, and fields that require high-performance signal transmission. Have been. However, downsizing of electronic devices,
As the performance is improved, a highly reliable multilayer wiring ceramic substrate capable of mounting electronic components at high density is required.

【0003】また多層配線基板の製法として、印刷多層
法やグリーンシート多層法が知られているが、印刷多層
法の場合、スルーホールの孔を避けて配線を印刷する必
要があり、高密度化に支障をきたす。一方、図8に示す
ように、セラミック基板2上にガラスセラミックからな
るグリーンシート5を積層し、これを焼成してシート間
あるいはシート上に高密度配線3を形成するグリーンシ
ート多層法の場合にはスルーホールが空洞であるため、
積層したガラスセラミックがスルーホール内に窪み周囲
に亀裂が生じてシート表面に設けた配線が断線するなど
の不都合を生じる虞れがある。
As a method of manufacturing a multilayer wiring board, a printing multilayer method and a green sheet multilayer method are known. In the case of the printing multilayer method, it is necessary to print wiring while avoiding through-holes, thereby increasing the density. Cause trouble. On the other hand, as shown in FIG. 8, in the case of a green sheet multilayer method in which green sheets 5 made of glass ceramic are laminated on a ceramic substrate 2 and fired to form high-density wiring 3 between the sheets or on the sheets. Is a hollow through hole,
There is a possibility that the laminated glass ceramic may be depressed in the through-hole and cracks may be generated around the sheet to cause inconvenience such as disconnection of the wiring provided on the sheet surface.

【0004】[0004]

【発明の解決課題】本発明は、セラミック基板のスルー
ホールに関する上記問題を解決したセラミック基板とス
ルーホール充填用導体ペーストを提供することを目的と
する。スルーホール全体に導体材料を充填すればスルー
ホールの導体量が増大して導体抵抗が低下し、しかも、
スルーホール導体とセラミック基板上の配線とを同一平
面上で接続でき、その接続の信頼性を向上させ得る。ま
たグリーンシート多層法においては、スルーホール内部
に導体を充填しておけば亀裂の発生原因となるスルーホ
ールへの沈み込みがなくなり、断線などを生じない信頼
性の高い多層配線基板が得られ、また印刷多層法では孔
の位置に制約されずに配線を印刷できる利点がある。と
ころが、現在使用されている導体ペーストは焼成時の熱
収縮率が大きいため、このようなスルーホールを充填し
たセラミック基板について満足した結果が得られていな
い。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a ceramic substrate and a conductive paste for filling the through-hole which have solved the above-mentioned problems concerning the through-hole of the ceramic substrate. If the entire through hole is filled with a conductive material, the amount of conductor in the through hole increases and the conductor resistance decreases.
The through-hole conductor and the wiring on the ceramic substrate can be connected on the same plane, and the reliability of the connection can be improved. Also, in the green sheet multilayer method, if a conductor is filled inside the through hole, sinking into the through hole which causes cracks will be eliminated, and a highly reliable multilayer wiring board that does not cause disconnection etc. will be obtained, In addition, the printed multilayer method has an advantage that the wiring can be printed without being restricted by the positions of the holes. However, since the conductor paste used at present has a large heat shrinkage during firing, satisfactory results have not been obtained for such a ceramic substrate filled with through holes.

【0005】本発明者等は焼成時の熱収縮の小さい導体
ペーストについて検討し、導電材料として一般に用いら
れている銀粉末ないし銅粉末に特定量の酸化ルテニウム
粉末(RuO2 )を混合したものは焼成収縮が格段に小
さく、導体抵抗の増加も小さいことを見い出し、この導
体ペーストをスルーホールに充填し、焼成してなるセラ
ミック基板は基板配線の接続の信頼性が高く、かつ低抵
抗であることを確認した。本発明はかかる知見に基づ
く。
[0005] The present inventors have studied a conductive paste having a small heat shrinkage at the time of sintering, and found that a mixture of a specific amount of ruthenium oxide powder (RuO 2 ) with silver powder or copper powder generally used as a conductive material is used. We found that firing shrinkage was remarkably small and the increase in conductor resistance was also small, and that this conductor paste was filled into through holes and fired. It was confirmed. The present invention is based on such findings.

【0007】[0007]

【課題の解決手段】(1)銀粉末または銅粉末を主成分
とする導電粉末に、該導電粉末に対して0.1〜15重
量%の酸化ルテニウム粉末を添加した低収縮性導体ペー
ストによってスルーホールを充填し、焼成してなるセラ
ミック基板。 (2)導電粉末に対する酸化ルテニウム粉末の添加量が
2.5〜15重量%である低収縮性導体ペーストによっ
てスルーホールを充填し、焼成してなる前記1に記載の
セラミック基板。 (3)銀粉末または銅粉末を主成分とする導電粉末に、
該導電粉末に対して0.1〜15重量%の酸化ルテニウ
ム粉末を添加した低収縮性のスルーホール充填用導体ペ
ースト。 (4)導電粉末に対する酸化ルテニウム粉末の添加量が
2.5〜15重量%である前記3に記載の低収縮性導体
ペースト。
(1) A low-shrinkable conductive paste obtained by adding 0.1 to 15% by weight of ruthenium oxide powder to a conductive powder containing silver powder or copper powder as a main component is added to the conductive powder. A ceramic substrate filled with holes and fired. (2) The ceramic substrate as described in (1) above, wherein the through-holes are filled with a low-shrinkable conductive paste in which the amount of the ruthenium oxide powder added to the conductive powder is 2.5 to 15% by weight and fired. (3) To a conductive powder mainly composed of silver powder or copper powder,
A low-shrinkage conductive paste for filling through-holes, wherein 0.1 to 15% by weight of ruthenium oxide powder is added to the conductive powder. (4) The low-shrinkable conductive paste according to (3), wherein the amount of the ruthenium oxide powder added to the conductive powder is 2.5 to 15% by weight.

【0008】本発明のセラミック基板は、そのスルーホ
ールに低収縮性の導体ペーストを充填して焼成したもの
である。ここで低収縮性の導体ペーストとは、焼成時の
収縮率が小さい導体ペーストを云い、スルーホール全体
にこのような低収縮性導体ペーストを充填して焼成する
ことにより、基板配線の接続信頼性が高いセラミック基
板を得た。低収縮性導体ペーストは銀粉末または銅粉末
を主成分とする導体粉末に酸化ルテニウム粉末を添加す
ることにより得られる。この導体ペーストは後述する実
施例に示すように、酸化ルテニウム粉末の添加により焼
成収縮率が大幅に低下している。
The ceramic substrate of the present invention is obtained by filling a through-hole with a conductive paste having low shrinkage and firing the paste. Here, the low-shrinkage conductive paste refers to a conductive paste having a small shrinkage rate during firing, and the through-hole is filled with such low-shrinkage conductive paste and fired to obtain the connection reliability of the substrate wiring. High ceramic substrate was obtained. The low-shrinkable conductor paste is obtained by adding a ruthenium oxide powder to a conductor powder containing silver powder or copper powder as a main component. As shown in Examples described later, the conductor shrinkage of the conductive paste is significantly reduced by the addition of ruthenium oxide powder.

【0009】具体的には、銀粉末に酸化ルテニウム粉末
を添加した導体ペーストの焼成収縮率は、850℃で焼
成した場合、含有量によっても僅かに異なるが、図1に
示すように、0.1重量%で焼成収縮率の低下が認めら
れ、2.5〜15重量%の範囲で焼成収縮率はほぼゼロ
である。また、銅粉末に酸化ルテニウム粉末を添加した
導体ペーストの焼成収縮率は、図3に示すように、0.
1重量%で焼成収縮率の低下が認められ、2.5〜15
重量%の範囲で概ね10%未満である。従って、本発明
において低収縮性導体ペーストとは、銀粉末を主成分と
し、これに酸化ルテニウム粉末を添加したものは、添加
量が2.5〜15重量%の範囲で850℃における焼成
収縮率がゼロに近いものを云い、銅粉末を主成分とし、
これに酸化ルテニウム粉末を添加したものは、添加量が
2.5〜15重量%の範囲で850℃における焼成収縮
率が概ね10%未満のものを云う。導体ペースト中の酸
化ルテニウムの含有量は、図1および図2に示すよう
に、約0.1重量%の添加によって効果が認められ、
2.5〜15重量%の範囲で焼成収縮率が顕著に低下す
るが、添加量が増加すると相対的に導体ペースト中の導
体粉の量が少なくなるので、導体抵抗値は増加する傾向
になる。従って、酸化ルテニウム粉末の添加量は15重
量%以下が好ましい。
More specifically, the firing shrinkage of the conductor paste obtained by adding ruthenium oxide powder to silver powder slightly varies depending on the content when fired at 850 ° C., but as shown in FIG. A decrease in the firing shrinkage is observed at 1% by weight, and the firing shrinkage is almost zero in the range of 2.5 to 15% by weight. Further, as shown in FIG. 3, the firing shrinkage of the conductor paste obtained by adding ruthenium oxide powder to copper powder was 0.1% as shown in FIG.
A decrease in firing shrinkage was observed at 1% by weight,
It is generally less than 10% in the range of weight%. Therefore, in the present invention, the low-shrinkable conductor paste is a paste containing silver powder as a main component, to which ruthenium oxide powder is added, in a range of 2.5 to 15% by weight at 850 ° C. Is near zero, with copper powder as the main component,
When the ruthenium oxide powder is added to this, the amount of addition is in the range of 2.5 to 15% by weight, and the firing shrinkage at 850 ° C. is generally less than 10%. As shown in FIGS. 1 and 2, the content of ruthenium oxide in the conductor paste was confirmed to be effective by adding about 0.1% by weight.
The firing shrinkage rate is remarkably reduced in the range of 2.5 to 15% by weight, but as the added amount increases, the amount of the conductive powder in the conductive paste relatively decreases, and the conductive resistance value tends to increase. . Therefore, the amount of ruthenium oxide powder added is preferably 15% by weight or less.

【0010】本発明のスルーホール充填用導体ペースト
は、銀粉末または銅粉末と酸化ルテニウム粉末とを上記
量比となるように混合し、既知の結合剤やその溶剤等を
適宜配合し混練することによって得ることができる。
銀、銅および酸化ルテニウムの各粉末は、例えば球状、
塊状、針状、鱗片状などの任意の形状のものを用いるこ
とができる。粒径も特に限定されないが、一例として、
銀粉末では平均粒径が5〜10μm 程度のもの、銅粉末
では平均粒径5〜10μm 程度のもの、酸化ルテニウム
粉末としては0.5〜2μm 程度の平均粒径のものが使
用される
The conductive paste for filling a through-hole of the present invention is prepared by mixing silver powder or copper powder and ruthenium oxide powder in the above-mentioned ratio, and appropriately mixing and kneading a known binder and its solvent. Can be obtained by
Silver, copper and ruthenium oxide powders, for example, spherical,
Any shape such as a lump, a needle, and a scale can be used. Although the particle size is not particularly limited, as an example,
Silver powder having an average particle diameter of about 5 to 10 μm, copper powder having an average particle diameter of about 5 to 10 μm, and ruthenium oxide powder having an average particle diameter of about 0.5 to 2 μm are used.

【0011】結合剤としては、エチルセルロース、アク
リル樹脂等が用いられる。結合剤の使用量は上記粉末を
均一に分散保持し、ペースト状態を維持し得る程度の量
であればよい。具体的には、銀粉末または銅粉末と、酸
化ルテニウム粉末とからなる混合粉末100重量部に対
して、2〜10重量部程度の割合で使用される。溶剤と
しては、アセテート、テルピネオール等が挙げられる。
溶剤の使用量は結合剤の種類によっても異るが、導体ペ
ーストに適度の粘性が付与される量であればよい。具体
的には、結合剤100重量部に対して、10〜30重量
部程度の割合で使用される。これら結合剤や溶剤以外に
も、例えば導体ペーストに適度の流動性を付与する等の
目的で脂肪酸エステルなどの他の添加剤を既知の導体ペ
ーストにおけると同様に使用することもできる。また、
熱収縮をさらに防止するためにガラス粒子などの酸化物
粒子を少量添加してもよい。因みに、ルテニウムと同族
元素であるパラジウム粉末や白金粉末を酸化ルテニウム
粉末に代えて用いても導体ペーストの焼成収縮率を抑え
る効果は小さく、従って、従来用いられている銀−Pd
導体ペーストなどは本発明と同等の効果が得られない。
但し、パラジウム粉末や白金粉末を導電粉末として用
い、これを銀粉末または銅粉末に混合したものに酸化ル
テニウム粉末を添加しても良い。
As the binder, ethyl cellulose, acrylic resin and the like are used. The amount of the binder used may be an amount capable of uniformly dispersing and holding the powder and maintaining a paste state. Specifically, it is used at a ratio of about 2 to 10 parts by weight with respect to 100 parts by weight of a mixed powder composed of silver powder or copper powder and ruthenium oxide powder. Examples of the solvent include acetate and terpineol.
The amount of the solvent used depends on the type of the binder, but may be any amount that gives the conductive paste an appropriate viscosity. Specifically, it is used at a ratio of about 10 to 30 parts by weight with respect to 100 parts by weight of the binder. In addition to these binders and solvents, other additives such as fatty acid esters can be used in the same manner as in known conductor pastes, for example, for imparting appropriate fluidity to the conductor paste. Also,
A small amount of oxide particles such as glass particles may be added to further prevent heat shrinkage. Incidentally, even if palladium powder or platinum powder, which is a homologous element of ruthenium, is used in place of ruthenium oxide powder, the effect of suppressing the firing shrinkage of the conductor paste is small, and therefore, the conventionally used silver-Pd
Conductive paste or the like cannot provide the same effect as the present invention.
However, palladium powder or platinum powder may be used as the conductive powder, and ruthenium oxide powder may be added to a mixture of silver powder or copper powder.

【0012】[0012]

【実施例および比較例】以下、実施例および比較例によ
り本発明をさらに説明する。実施例1 本発明の導体ペーストを以下のようにして調製し、その
焼成収縮率および導体抵抗値を評価した。
Examples and Comparative Examples Hereinafter, Examples and Comparative Examples will be described.
The present invention will be further described.Example 1  The conductor paste of the present invention is prepared as follows,
The firing shrinkage and the conductor resistance were evaluated.

【0013】(1)導体ペーストの調製 まず、平均粒径10μm の銀粉末と、平均粒径1μm の
酸化ルテニウム粉末とを用い、銀粉末に対する酸化ルテ
ニウムの割合が2.5重量%、5重量%、10重量%、
15重量%になるように配合した粉末原料(4種類)を
準備した。次いで、上記粉末原料のそれぞれに、ビヒク
ル(田中貴金属インタ-ナショナル 社製TRD-1)を加え、3本ロ
ールで混練することによって導体ペーストを得た。な
お、ビヒクルの配合量は粉末原料100重量部に対して
30重量部とした。また、比較対照として酸化ルテニウ
ム粉末を添加しない銀粉末のみからなる導体ペーストを
上記と同様の手法で作成した。これらの導体ペースト
(5種類)について、その焼成収縮率および導体抵抗値
を次の方法で評価した。
(1)Preparation of conductor paste  First, a silver powder having an average particle size of 10 μm and a silver powder having an average particle size of 1 μm
Ruthenium oxide powder and silver powder
2.5% by weight, 5% by weight, 10% by weight,
15% by weight of powdered raw materials (4 types)
Got ready. Next, a vehicle is added to each of the above powder raw materials.
(TRD-1 manufactured by Tanaka Kikinzoku International Co., Ltd.)
In theKneadingThus, a conductor paste was obtained. What
The amount of vehicle is based on 100 parts by weight of powder raw material.
30 parts by weight. As a control, ruthenium oxide
Conductor paste consisting only of silver powder without the addition of powder
It was created in the same manner as above. These conductor pastes
(5 types), their firing shrinkage and conductor resistance
Was evaluated by the following method.

【0014】(2)導体ペーストの焼成収縮の評価方法 96%アルミナ基板(縦3インチ ×横3インチ ×厚さ0.635
mm)上に溶媒で希釈した導体ペーストを厚み75μm の
メタルマスクを使用し、2mm□に印刷した。その後、こ
の基板をクリーンオーブン中で、150℃、10分間乾
燥して、上記導体ペーストからなる2mm□の測定パッド
が所定間隔に設けられたアルミナ基板を得た。次いで、
上記アルミナ基板上の導体ペーストの厚みを測定した。
厚みの測定は、アルミナ基板上の2mm□の測定パッドか
ら任意に8箇所を選択して行なった。さらに、厚み測定
後のアルミナ基板をベルト式電気炉に入れ、850℃で
47分間焼成した後、焼成後のアルミナ基板の導体の厚
みを測定した。測定は上記乾燥後の測定点と同じ箇所を
再測定することによって行なった。焼成前後の導体の膜
厚から次式に従って焼成収縮率を算出した。焼成収縮率
(%) =[(焼成前の膜厚−焼成後の膜厚) /焼成前の膜
厚] ×100
(2)Evaluation method of firing shrinkage of conductor paste  96% alumina substrate (3 inches long x 3 inches wide x 0.635 thickness
mm) conductive paste diluted with a solvent
Printing was performed on a 2 mm square using a metal mask. Then
Substrate in a clean oven at 150 ° C for 10 minutes
After drying, a 2 mm square measuring pad made of the above conductive paste
Were obtained at predetermined intervals. Then
The thickness of the conductive paste on the alumina substrate was measured.
The thickness is measured using a 2 mm square measurement pad on an alumina substrate.
8 locations were selected arbitrarily. In addition, thickness measurement
Put the alumina substrate after that in a belt type electric furnace,
After firing for 47 minutes, the thickness of the conductor on the alumina substrate after firing
Was measured. The measurement is performed at the same location as the measurement point after drying.
This was done by re-measuring. Conductor film before and after firing
The firing shrinkage was calculated from the thickness according to the following equation. Firing shrinkage
(%) = [(Film thickness before firing-film thickness after firing) / film before firing
Thickness] x 100

【0015】 (3)導体ペーストの導体抵抗値の評価方法 96%アルミナ基板(縦3インチ ×横3インチ ×厚さ0.635
mm)を使用し、この基板上に焼成収縮率の場合と同じ導
体ペーストの線状パターンを印刷により形成した後、同
一条件で乾燥および焼成を施して、上記導体ペーストか
らなる線状の導体膜を表面に有するアルミナ基板を得
た。このアルミナ基板表面の導体膜について、サーペン
タインラインの膜厚(1箇所−4点)、線幅(1箇所−
4点)、および抵抗値(線長:70mm)を測定し、次式
に従って導体抵抗値を算出した。 導体抵抗(mΩ/□)=0.7×(R×W×t) 式中、Rは配線抵抗(Ω)、Wは線幅(mm)、tは膜厚
(mm)およびLは線長(mm)を表わす。
(3)Evaluation method of conductor resistance value of conductor paste  96% alumina substrate (3 inches long x 3 inches wide x 0.635 thickness
mm) on this substrate and use the same conductivity as for firing shrinkage.
After forming a linear pattern of body paste by printing,
After drying and baking under one condition,
Alumina substrate having a linear conductor film made of
Was. The conductor film on the surface of this alumina substrate
Tine thickness (1 location-4 points), line width (1 location-
4 points) and the resistance value (line length: 70 mm)
The conductor resistance was calculated according to the following equation. Conductor resistance (mΩ / □) = 0.7 × (R × W × t) where R is wiring resistance (Ω), W is line width (mm), and t is film thickness
(Mm) and L represent the line length (mm).

【0016】なお、焼成収縮率および導体抵抗値の評価
は5種類の導体ペーストのそれぞれについて、アルミナ
基板を2個使用して行なった。得られた結果を図1(焼
成収縮率)および図2(導体抵抗値)に示す。
The evaluation of the firing shrinkage and the conductor resistance was performed using two alumina substrates for each of the five types of conductor pastes. The obtained results are shown in FIG. 1 (fire shrinkage) and FIG. 2 (conductor resistance value).

【0017】図1から明らかなように、酸化ルテニウム
を含まない銀粉末のみからなる比較対照の導体ペースト
は焼成後に平均して約15%程度も収縮するのに対し
て、酸化ルテニウム粉末を含有する本発明の導体ペース
トの収縮率はほぼゼロであり、焼成前後の形状安定が極
めてよいことが分かる。また、図2に示すように、その
導体抵抗値は酸化ルテニウム粉末の添加量の増加につれ
て徐々に増加するが、5重量%含むものでも導体抵抗値
は23mΩ/□であり、導体材料として十分な値であっ
た。
As is apparent from FIG. 1, the conductor paste of the comparative example comprising only the silver powder containing no ruthenium oxide shrinks by about 15% on average after firing, while containing the ruthenium oxide powder. The shrinkage ratio of the conductor paste of the present invention is almost zero, which indicates that the shape stability before and after firing is extremely good. As shown in FIG. 2, the conductor resistance gradually increases as the amount of the ruthenium oxide powder increases. However, even if the conductor contains 5% by weight, the conductor resistance is 23 mΩ / □, which is sufficient for a conductor material. Value.

【0018】実施例2 銅粉末(平均粒径10μm )を用いた以外は実施例1と
同様にして、酸化ルテニウム含有量が2.5重量%、5
重量%、10重量%および15重量%の導体ペーストを
調製した。また、実施例1と同じく酸化ルテニウム粉末
を添加しない銅粉末のみからなる導体ペーストを比較対
照として調製した。これらの導体ペーストについて、実
施例1と同様の手順で、その焼成収縮率および導体抵抗
値の評価を行なった。なお、導体ペーストを印刷したア
ルミナ基板はクリーンオーブンを使用し、120℃で1
0分間乾燥した。また、焼成はベルト式電気炉を使用
し、窒素雰囲気下に、920℃、60分間行なった。得
られた結果を図3(焼成収縮率)および図4(導体抵抗
値)に示す。図3および図4から明らかなように、銅粉
末の場合も上記銀粉末と同様に酸化ルテニウム粉末の添
加により焼成収縮率が小さく、かつ導体抵抗値も小さな
導体ペーストが得られることが分かる。
[0018]Example 2  Example 1 except that copper powder (average particle size: 10 μm) was used.
Similarly, when the ruthenium oxide content is 2.5% by weight,
%, 10% and 15% by weight of conductive paste
Prepared. Also, as in Example 1, ruthenium oxide powder
Of conductor paste consisting only of copper powder without addition of
It was prepared as a control. About these conductor pastes,
In the same procedure as in Example 1, the firing shrinkage and the conductor resistance
The values were evaluated. Note that the conductor paste printed
Use a clean oven at 120 ° C for the lumina substrate.
Dry for 0 minutes. In addition, firing uses a belt type electric furnace
Then, it was performed at 920 ° C. for 60 minutes in a nitrogen atmosphere. Profit
The results obtained are shown in FIG. 3 (firing shrinkage) and FIG. 4 (conductor resistance).
Value). As is clear from FIGS. 3 and 4, the copper powder
In the case of powder, the addition of ruthenium oxide powder
In addition, the firing shrinkage is small and the conductor resistance is small.
It can be seen that a conductor paste is obtained.

【0019】実施例3 直径0.4 mmのスルーホールが複数箇所設けられた96%
アルミナ基板(縦3インチ ×横3インチ ×厚さ0.635 mm)
に、実施例1で作成した酸化ルテニウム含有量が2.5
重量%の導体ペーストをスクリーン印刷方法を用いてス
ルーホール中に充填した。その後、このアルミナ基板を
150℃に保持したクリーンオーブン中で10分間乾燥
した後、850℃で10分間焼成することによって、図
5に示すようにスルーホール中に上記導体が満たされた
アルミナ基板を得た。このアルミナ基板のスルーホール
について、メタノールによる浸透試験、導体抵抗値の測
定、およびその表面と断面の目視観察を行なった。な
お、浸透試験は基板表面に露出しているスルーホールの
片面にメタノールを塗布し、反対面にメタノールが浸透
するか否かを目視観察することによって行なった。
[0019]Example 3  96% with multiple holes of 0.4 mm in diameter
Alumina substrate (3 inches long x 3 inches wide x 0.635 mm thick)
The ruthenium oxide content prepared in Example 1 was 2.5
Weight percent conductor paste using screen printing
Filled in the lure hole. Then, this alumina substrate
Dry for 10 minutes in a clean oven maintained at 150 ° C
After firing for 10 minutes at 850 ° C,
The conductor was filled in the through hole as shown in FIG.
An alumina substrate was obtained. Through hole of this alumina substrate
About methanol penetration test and measurement of conductor resistance.
And a visual observation of the surface and cross section thereof. What
In the penetration test, the through hole exposed on the substrate surface
Apply methanol on one side and permeate the other side
The determination was made by visual observation.

【0020】その結果、スルーホール部の基板表裏間に
おける導体抵抗は0.9 mΩ/□であり、本例と同径の従
来のスルーホール壁面のみにメタライズされたタイプの
スルーホールにおける導体抵抗(通常2.7 〜4.8 mΩ/
□程度)と比べて格段に抵抗値が小さく、優れた結果を
得た。また、基板表面に露出したスルーホール充填部分
の表面には凹凸が全く観察されず、基板上の配線と同一
平面をなして密着して接続されていた。さらに断面の目
視観察の結果、スルーホール内部に空隙は全く観察され
ず、導体ペーストが孔壁に密着し、孔全体に均一に充填
されていることが確認された。スルーホール内部に空隙
などの欠陥がないことは、基板裏面へのメタノールの浸
透が全くなかったことからも裏付けられた。
As a result, the conductor resistance between the front and back of the substrate in the through hole portion was 0.9 mΩ / □, and the conductor resistance in the through hole of the type metallized only on the wall surface of the conventional through hole having the same diameter as this example (usually 2.7 mΩ / □). ~ 4.8 mΩ /
□), the resistance was much smaller and excellent results were obtained. Further, no irregularities were observed on the surface of the through hole filling portion exposed on the substrate surface, and the wiring was in close contact with the wiring on the substrate on the same plane. Further, as a result of visual observation of the cross section, no void was observed inside the through-hole, and it was confirmed that the conductive paste adhered to the hole wall and was uniformly filled in the entire hole. The absence of defects such as voids inside the through-holes was supported by the fact that no methanol permeated into the back surface of the substrate.

【0021】比較例1 実施例1で作成した銀粉末のみからなる導体ペーストに
ついて実施例1と同様の焼成試験を行なった。この結果
を図1に併せて示す。さらに実施例3と同様にして、こ
の導体ペーストをアルミナ基板のスルーホールに充填
し、この基板について実施例3と同じ評価試験を行なっ
たところ、スルーホール表面には表から裏にかけての貫
通部分が見られ、メターノールが裏面に浸透した。
[0021]Comparative Example 1  To the conductive paste made of only silver powder prepared in Example 1
Then, the same baking test as in Example 1 was performed. As a result
Is also shown in FIG. Further, in the same manner as in Example 3,
Filled in through hole of alumina substrate
Then, the same evaluation test as in Example 3 was performed on this substrate.
However, the through hole surface has
A through portion was seen, and methanol was permeated into the back surface.

【0022】実施例4 導体ペーストを充填した後に、さらにガラスセラミック
からなる厚さ120μm のグリーンシートを45kg/cm
2 の圧力で積層したこと以外は実施例3と同様にして、
図6に示す構造のシート積層アルミナ基板を得た。この
基板について実施例3と同じ評価試験を行なったとこ
ろ、スルーホール上部のグリーンシート上には亀裂は見
られず、窪みも発生していなかった。また、スルーホー
ル内部には導体ペーストが密着して均一に充填されてお
り、空隙等の内部欠陥も全く観察されず、メタノールの
浸透もなかった。
[0022]Example 4  After filling the conductive paste, the glass ceramic
45kg / cm of 120μm thick green sheet made of
TwoExcept that they were laminated at a pressure of
A sheet laminated alumina substrate having the structure shown in FIG. 6 was obtained. this
The same evaluation test as in Example 3 was performed on the substrate.
No cracks were seen on the green sheet above the through hole
No pitting occurred. In addition, through through
Conductor paste adheres tightly inside the
And no internal defects such as voids were observed.
There was no penetration.

【0023】比較例2 実施例4と同径のスルーホールを有するアルミナ基板を
用い、該基板に実施例1で作成した銀粉末のみからなる
従来の導体ペーストを充填し、さらに実施例4と同じ厚
みのセラミックシートを同じ圧力で積層することによっ
て、図6に示す構造のシート積層アルミナ基板を得た。
この基板について実施例3と同じ評価試験を行なったと
ころ、シート表面はスルーホール部で窪んでおり、その
窪み付近には亀裂が観察された。
[0023]Comparative Example 2  An alumina substrate having a through hole having the same diameter as that of Example 4 was used.
Used, consisting of only the silver powder prepared in Example 1 on the substrate
Filled with conventional conductor paste, and the same thickness as in Example 4.
By stacking only ceramic sheets at the same pressure,
Thus, a sheet laminated alumina substrate having the structure shown in FIG. 6 was obtained.
The same evaluation test as in Example 3 was performed on this substrate.
At this time, the sheet surface is hollow at the through hole,
Cracks were observed near the depression.

【0024】[0024]

【発明の効果】以上説明したように、本発明によれば、
焼成収縮率が格段に小さく、焼成前後の形状安定に優れ
る導体ペーストが提供され、この導体ペーストをスルー
ホールに充填することにより、基板表面の配線とスルー
ホール導体との接続の信頼性が高いセラミック基板が得
られる。また、スルーホール内部を導体ペースで満たす
のでグリーンシートを積層する多層配線セラミックを製
造する場合に、スルーホールを覆う部分に亀裂などの欠
陥が発生せず、断線などの不都合がない信頼性の高い配
線をシート上に構築することができる。さらには、導体
抵抗の低い導体ペーストがスルーホール内部を満たすた
め、従来の壁面がメタライズされているスルーホールに
比べてスルーホールの導体量が増大し、スルーホールの
導体抵抗値が格段に向上する。この導体抵抗値の低下に
より、スルーホールの径を小さくすることができ、配線
密度の向上を図ることもできる。従って本発明はスルー
ホールに限らずビアホールにも適用することができる。
As described above, according to the present invention,
A conductor paste having a significantly smaller firing shrinkage ratio and excellent shape stability before and after firing is provided. By filling this conductive paste into through-holes, a ceramic having high reliability of connection between wiring on the substrate surface and through-hole conductors is provided. A substrate is obtained. In addition, since the inside of the through hole is filled with a conductor pace, when manufacturing a multilayer wiring ceramic in which green sheets are laminated, defects such as cracks do not occur in the portion covering the through hole and high reliability without inconvenience such as disconnection Wiring can be built on sheets. Furthermore, since the conductor paste having a low conductor resistance fills the inside of the through-hole, the amount of conductor in the through-hole is increased as compared with the conventional through-hole in which the wall surface is metallized, and the conductor resistance of the through-hole is significantly improved. . Due to the decrease in the conductor resistance value, the diameter of the through hole can be reduced, and the wiring density can be improved. Therefore, the present invention can be applied not only to through holes but also to via holes.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1の導体ペーストの焼成収縮率を示すグ
ラフ。
FIG. 1 is a graph showing firing shrinkage of a conductive paste of Example 1.

【図2】実施例1の導体ペーストの導体抵抗値を示すグ
ラフ。
FIG. 2 is a graph showing a conductor resistance value of the conductor paste of Example 1.

【図3】実施例2の導体ペーストの焼成収縮率を示すグ
ラフ。
FIG. 3 is a graph showing a firing shrinkage rate of a conductive paste of Example 2.

【図4】実施例2の導体ペーストの導体抵抗値を示すグ
ラフ。
FIG. 4 is a graph showing a conductor resistance value of the conductor paste of Example 2.

【図5】本発明に係る導体ペーストを充填したスルーホ
ールを有するセラミック基板の断面図。
FIG. 5 is a cross-sectional view of a ceramic substrate having through holes filled with a conductive paste according to the present invention.

【図6】本発明に係る導体ペーストを充填したスルーホ
ールを有するセラミック基板の他を示す断面図。
FIG. 6 is a cross-sectional view showing another ceramic substrate having through holes filled with the conductive paste according to the present invention.

【図7】スルーホールに導体ペーストが充填されていな
い従来のセラミック基板の断面図。
FIG. 7 is a cross-sectional view of a conventional ceramic substrate in which a conductive paste is not filled in through holes.

【図8】スルーホールに導体ペーストが充填されていな
い従来のセラミック基板の他の例を示す断面図。
FIG. 8 is a cross-sectional view showing another example of a conventional ceramic substrate in which a through-hole is not filled with a conductive paste.

【符号の説明】[Explanation of symbols]

1−スルーホール、 2−セラミック基板、 3−
配線、 4−導体膜、 5−グリーンシート積層からなるガラ
スセラミック、 6−コーナー部
1-through hole, 2-ceramic substrate, 3-
Wiring, 4-conductor film, 5-glass ceramic laminated with green sheet, 6-corner

───────────────────────────────────────────────────── フロントページの続き (72)発明者 江端 実 石川県松任市相木町383番地 ニッコー 株式会社内 (72)発明者 水島 清 石川県松任市相木町383番地 ニッコー 株式会社内 (56)参考文献 特開 平3−112191(JP,A) 特開 平5−81922(JP,A) 特開 平4−97594(JP,A) 特開 平6−103811(JP,A) 特開 平5−314810(JP,A) 国際公開91/4650(WO,A) ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Minoru Ebata 383 Aiki-cho, Matsuto-shi, Ishikawa Nikko Corporation (72) Inventor Kiyoshi Mizushima 383 Aiki-cho, Matsuto-shi, Ishikawa Nikko Corporation (56) References JP-A-3-112191 (JP, A) JP-A-5-81922 (JP, A) JP-A-4-97594 (JP, A) JP-A-6-103811 (JP, A) JP-A-5-314810 (JP, A) International Publication 91/4650 (WO, A)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 銀粉末または銅粉末を主成分とする導電
粉末に、該導電粉末に対して0.1〜15重量%の酸化
ルテニウム粉末を添加した低収縮性導体ペーストによっ
てスルーホールを充填し、焼成してなるセラミック基
板。
1. A through-hole is filled with a low-shrinkage conductive paste obtained by adding 0.1 to 15% by weight of ruthenium oxide powder to a conductive powder containing silver powder or copper powder as a main component. , Fired ceramic substrate.
【請求項2】 導電粉末に対する酸化ルテニウム粉末の
添加量が2.5〜15重量%である低収縮性導体ペース
トによってスルーホールを充填し、焼成してなる請求項
1に記載のセラミック基板。
2. The ceramic substrate according to claim 1, wherein the through-holes are filled with a low-shrinkable conductive paste in which the amount of the ruthenium oxide powder added to the conductive powder is 2.5 to 15% by weight and fired.
【請求項3】 銀粉末または銅粉末を主成分とする導電
粉末に、該導電粉末に対して0.1〜15重量%の酸化
ルテニウム粉末を添加した低収縮性のスルーホール充填
用導体ペースト。
3. A low-shrinkable conductive paste for filling through holes, comprising a conductive powder containing silver powder or copper powder as a main component and 0.1 to 15% by weight of ruthenium oxide powder added to the conductive powder.
【請求項4】 導電粉末に対する酸化ルテニウム粉末の
添加量が2.5〜15重量%である請求項3に記載の低
収縮性導体ペースト。
4. The low-shrinkable conductive paste according to claim 3, wherein the amount of the ruthenium oxide powder added to the conductive powder is 2.5 to 15% by weight.
JP5167439A 1993-06-14 1993-06-14 Ceramic substrate filled with through holes and conductor paste for filling through holes Expired - Fee Related JP2762017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5167439A JP2762017B2 (en) 1993-06-14 1993-06-14 Ceramic substrate filled with through holes and conductor paste for filling through holes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5167439A JP2762017B2 (en) 1993-06-14 1993-06-14 Ceramic substrate filled with through holes and conductor paste for filling through holes

Publications (2)

Publication Number Publication Date
JPH0794840A JPH0794840A (en) 1995-04-07
JP2762017B2 true JP2762017B2 (en) 1998-06-04

Family

ID=15849735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5167439A Expired - Fee Related JP2762017B2 (en) 1993-06-14 1993-06-14 Ceramic substrate filled with through holes and conductor paste for filling through holes

Country Status (1)

Country Link
JP (1) JP2762017B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5698015A (en) * 1995-05-19 1997-12-16 Nikko Company Conductor paste for plugging through-holes in ceramic circuit boards and a ceramic circuit board having this conductor paste
JP2000244123A (en) 1999-02-19 2000-09-08 Hitachi Ltd Multilayer ceramic circuit board
KR20020005922A (en) * 2000-07-11 2002-01-18 이형도 Multilayer circuit board
JP4593817B2 (en) * 2001-03-30 2010-12-08 京セラ株式会社 Low temperature fired ceramic circuit board
KR101360807B1 (en) * 2008-09-30 2014-02-11 미쓰보 시베루토 가부시키 가이샤 Through-hole filling copper conductor paste, method for manufacturing copper conductor through-hole filling substrate, copper conductor through-hole filling substrate, circuit board, electronic component and semiconductor package
JP2021057407A (en) * 2019-09-27 2021-04-08 ダイキン工業株式会社 Electronic circuit device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5443786A (en) * 1989-09-19 1995-08-22 Fujitsu Limited Composition for the formation of ceramic vias
JP2680443B2 (en) * 1989-09-27 1997-11-19 株式会社東芝 Ceramic wiring board and method of manufacturing the same
JPH0497594A (en) * 1990-08-15 1992-03-30 Hitachi Ltd Hybrid integrated circuit board
JPH0581922A (en) * 1991-05-10 1993-04-02 Asahi Glass Co Ltd Conductor paste composition and ceramic multiple layer substrate
JPH05314810A (en) * 1992-05-14 1993-11-26 Matsushita Electric Ind Co Ltd Conductor paste composition
JP3006310B2 (en) * 1992-09-22 2000-02-07 松下電器産業株式会社 Conductive paste composition

Also Published As

Publication number Publication date
JPH0794840A (en) 1995-04-07

Similar Documents

Publication Publication Date Title
JP4805621B2 (en) Conductive paste
JP3422233B2 (en) Conductive paste for via hole and method for manufacturing multilayer ceramic substrate using the same
JP2762017B2 (en) Ceramic substrate filled with through holes and conductor paste for filling through holes
JP3237497B2 (en) Conductive paste, conductor and ceramic substrate using the same
JP4973546B2 (en) Conductive paste, multilayer ceramic electronic component and multilayer ceramic substrate
JP2002110444A (en) Conductive paste and laminated ceramic electronic part
JPH1021744A (en) Copper conductor paste and substrate printed therewith
JP3019139B2 (en) Conductive paste and ceramic circuit board using the same
US6406774B1 (en) Electrically conductive composition for use in through hole of electric component
JPH10188671A (en) Copper conductive paste and board printed therewith
JPH07235215A (en) Conductive paste for filling through hole
JPH10233119A (en) Copper conductor paste and substrate printed therewith
JP3649775B2 (en) Thick film conductive paste composition
JP2699467B2 (en) Conductive paste and multilayer ceramic substrate
JPH10163067A (en) External electrode of chip electronic component
JPH01167907A (en) Copper paste for forming conductive film
JPH09266129A (en) External electrode of chip type electronic parts
JP3673342B2 (en) Ceramic circuit board and manufacturing method thereof
JPH09115772A (en) External electrode for chip electronic component
JP2000315421A (en) Copper conductive paste
JPH02277279A (en) Simultaneously baked ceramic circuit board
JPH0652721A (en) Conductor
KR0146916B1 (en) Ceramic wired board for semiconductor device
JP2760035B2 (en) Thick film circuit board
JP2002198253A (en) Ceramic electronic component and conductive paste

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090327

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100327

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees