JP2754301B2 - How to make a sample for electron microscope observation - Google Patents

How to make a sample for electron microscope observation

Info

Publication number
JP2754301B2
JP2754301B2 JP1944792A JP1944792A JP2754301B2 JP 2754301 B2 JP2754301 B2 JP 2754301B2 JP 1944792 A JP1944792 A JP 1944792A JP 1944792 A JP1944792 A JP 1944792A JP 2754301 B2 JP2754301 B2 JP 2754301B2
Authority
JP
Japan
Prior art keywords
sample
electron microscope
particle beam
charged particle
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1944792A
Other languages
Japanese (ja)
Other versions
JPH05180739A (en
Inventor
明彦 中野
伸之 土井
卓治 嶋田
功 渡部
健次 鶴原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Consejo Superior de Investigaciones Cientificas CSIC
Original Assignee
Consejo Superior de Investigaciones Cientificas CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior de Investigaciones Cientificas CSIC filed Critical Consejo Superior de Investigaciones Cientificas CSIC
Priority to JP1944792A priority Critical patent/JP2754301B2/en
Publication of JPH05180739A publication Critical patent/JPH05180739A/en
Application granted granted Critical
Publication of JP2754301B2 publication Critical patent/JP2754301B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は電子顕微鏡観察用試料
(以下単に試料という)を作成する方法に係り、特に非
常に小さな特定の領域を観察するに適した試料の作成方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for preparing a sample for electron microscopic observation (hereinafter simply referred to as "sample"), and more particularly to a method for preparing a sample suitable for observing a very small specific region.

【0002】[0002]

【従来の技術】従来の試料の作成方法として図2に示す
ものがある。この方法について説明する。 図2(A) はICを作り込んだシリコンウエハー5 であ
る。これの製作工程は、まず、シリコンウエハー5 やダ
イヤモンドペン6 などを用いて、傷を付け、小さく劈開
し、シリコンウエハー片51を切り出す。シリコンウエハ
ー片51は図2(B) に示すような形状で、大きさは1.5mm
×1.5mm ×厚さ程度である。
2. Description of the Related Art FIG. 2 shows a conventional sample preparation method. This method will be described. FIG. 2A shows a silicon wafer 5 in which an IC is formed. In the manufacturing process, first, a silicon wafer 5 or a diamond pen 6 is used to make a scratch, cleave a small piece, and cut out a silicon wafer piece 51. The silicon wafer piece 51 has a shape as shown in FIG.
× 1.5mm × thickness.

【0003】図2(C) に示すように、前記1.5mm ×1.
5mm ×厚さのシリコンウエハー片51を接着剤で表面同士
を張りつける(上のシリコンウエハー片を51′とする)
。 図2(D) に示すように、接着したシリコンウエハー片
51と51′を研磨治具71のの重り72の底面に張りる。そし
て研磨剤74を使用して研磨盤73の上で薄く研磨する。研
磨するのは図2(C) で図示する511 の面である。
As shown in FIG. 2 (C), the 1.5 mm × 1.
Adhere 5mm x thickness silicon wafer pieces 51 to each other with adhesive (the upper silicon wafer piece is 51 ')
. As shown in FIG. 2 (D), the bonded silicon wafer pieces
Put 51 and 51 'on the bottom surface of the weight 72 of the polishing jig 71. Then, polishing is performed thinly on the polishing plate 73 using the polishing agent 74. The surface to be polished is the surface 511 shown in FIG.

【0004】研磨治具71から前記研磨したシリコンウ
エハー片51、51′を取り出し、図2(E) に示すように、
回転試料台81にシリコンウエハー片51、51′を張りつ
け、前記511 の面をさらに研磨する。この場合、研磨は
シリコンウエハー片を回転させながら、研磨治具82を用
いて同時に回転させているので、研磨される面はすり鉢
状になる。
The polished silicon wafer pieces 51, 51 'are taken out of a polishing jig 71, and as shown in FIG.
The silicon wafer pieces 51 and 51 'are attached to the rotating sample table 81, and the surface 511 is further polished. In this case, since the silicon wafer piece is simultaneously rotated using the polishing jig 82 while rotating the silicon wafer piece, the surface to be polished has a mortar shape.

【0005】図2(F) に示すように、前記すり鉢状と
なったシリコンウエハー片をさらに薄くするために、荷
電粒子ビーム91をシリコンウエハー片に対して、浅い角
度例えばθ=10〜45度程度で照射しながら、シリコンウ
エハー片を回転させ、すり鉢状のまま薄片化を進めて、
一部に穴が空く程度まで研磨し、穴の周辺部の極薄くな
った部分を、透過型電子顕微鏡を用いて観察をおこなっ
ていた。
As shown in FIG. 2F, in order to further thin the mortar-shaped silicon wafer piece, the charged particle beam 91 is directed at a shallow angle, for example, θ = 10-45 degrees with respect to the silicon wafer piece. While irradiating with the degree, rotate the silicon wafer piece, and proceed to thinning in a mortar shape,
A part of the hole was polished to the extent that the hole was opened, and the extremely thin part around the hole was observed using a transmission electron microscope.

【0006】[0006]

【発明が解決しようとする課題】従来の技術では、特定
の領域を観察するための、試料製作の位置合わせ精度は
プラスマイナス0.5mm 程度であり、1μm を下回るよう
な特定の領域を観察できるような試料を作りだすことは
不可能であった。本発明は上記事情に鑑みて創案された
もので、特定の非常に高い位置合わせ精度で、電子顕微
鏡により観察できるような試料を製作する方法を提供す
ることを目的としている。
In the prior art, the positioning accuracy of sample preparation for observing a specific area is about ± 0.5 mm, and a specific area such as less than 1 μm can be observed. It was impossible to produce a perfect sample. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for manufacturing a sample which can be observed with an electron microscope with a specific extremely high alignment accuracy.

【0007】[0007]

【課題を解決するための手段】本発明は上記目的を達成
するために、まず特定の観察領域を含むごく表層の一部
を残す加工を、高性能の顕微鏡で観察しながら位置合わ
せをし、高速回転外周刃加工装置を用いて加工を施す。
According to the present invention, in order to achieve the above object, first, a process for leaving a very small part of a surface layer including a specific observation region is aligned while observing with a high-performance microscope. Processing is performed using a high-speed rotating peripheral blade processing device.

【0008】この場合、上記加工は次の工程である収束
荷電粒子ビームで最終の薄片化する際に、作業時間が短
時間で済むように、かつ切断など途中の加工中に破損し
にくいように、できるだけ狭い幅にかつできるだけ浅く
表層部のみに加工を施す。
[0008] In this case, the above-mentioned processing is performed so that the work time is short in final thinning with the converged charged particle beam, which is the next step, and the processing is hardly broken during processing such as cutting. Processing is performed only on the surface layer portion as narrow as possible and as shallow as possible.

【0009】さらに、特定の観察領域を含む状態で、電
子顕微鏡の鏡体内に装着できるような大きさに切断する
ために、高性能顕微鏡で観察しながら、高速回転外周刃
加工装置を用いて所定の厚さに切断する。そのあと、特
定の観察領域を含んだ上記加工によりできた試料を収束
荷電粒子ビームを用いてさらに薄片化する。
Further, in order to cut into a size that can be mounted in the body of an electron microscope in a state including a specific observation area, a predetermined high-speed rotating outer edge processing device is used while observing with a high-performance microscope. Cut to thickness. Thereafter, the sample including the specific observation region and formed by the above processing is further sliced using a focused charged particle beam.

【0010】[0010]

【実施例】以下、図面を参照して本発明の実施例を説明
する。図1は本発明の1実施例を示す図面で、同図(A)
、(B) 、(C) は高速回転外周刃加工装置で加工する第
1段階の加工状態図、同図(D) は収束荷電粒子ビーム装
置で薄片化FIB 加工を行っている図、同図(E) は電子顕
微鏡で観察している図をそれぞれ示している。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a drawing showing one embodiment of the present invention.
, (B) and (C) show the state of the first stage of machining with the high-speed rotating peripheral cutting machine, and (D) shows the thinning FIB machining with the convergent charged particle beam machine. (E) shows a diagram observed by an electron microscope.

【0011】まず、図1(A) のように、観察を必要と
する特定場所(図では×印の部分) を含んで電子顕微鏡
に装着可能な厚さa の幅で高速回転外周刃加工装置(但
し外周刃2 のみを示している) を用いて試料11を切り出
す。
First, as shown in FIG. 1 (A), a high-speed rotating outer peripheral cutting device having a width of thickness a which can be attached to an electron microscope including a specific place (a part indicated by a cross in the figure) requiring observation. (However, only the outer peripheral blade 2 is shown), and the sample 11 is cut out.

【0012】その際、使用する高速回転外周刃加工装置
には、特定の観察場所が観察できるように、高性能(実
施例として倍率1000以上) 光学顕微鏡を装着し(図中省
略してある) 、観察したい特定場所にヘアーラインを用
いて位置合わせして、特定の場所に高速回転外周刃加工
装置の刃2 で切り込む。
At this time, a high-performance optical microscope (magnification of 1000 or more as an example) is attached to the high-speed rotating outer peripheral edge processing apparatus to be able to observe a specific observation place (not shown in the figure). A hairline is used to position a specific place to be observed, and a cut is made at a specific place with the blade 2 of the high-speed rotating peripheral blade processing device.

【0013】前記幅a は実施例では100 μm としている
電子顕微鏡に装着可能な厚さでかつ、できるだけ厚いほ
うが破損しにくいのでその後の試料の取扱が容易になる
ので、厚さは電子顕微鏡の装着部の形状や試料の取扱の
容易度等を考慮して選択する。図1(A) 中b は回転外周
刃により切断する際の切りしろ幅である。 つぎに、図1(B) に示すように、特定観察場所に刻印
を施す。この刻印を含んで、c の幅で、d の深さで切り
込んで、試料11の断面が凸状になるように表層部のみを
薄く加工する。実施例ではc =10μm 、d =30μm とし
て加工する。
The width a is set to 100 μm in the embodiment and is a thickness that can be mounted on an electron microscope, and the thicker the film is, the harder it is to be damaged. Selection is made in consideration of the shape of the part and the ease of handling of the sample. In FIG. 1 (A), b is a cutting width when cutting by the rotating outer peripheral blade. Next, as shown in FIG. 1B, a specific observation place is marked. Including this inscription, a cut is made with a width of c and a depth of d, and only the surface layer is thinned so that the cross section of the sample 11 becomes convex. In the embodiment, processing is performed with c = 10 μm and d = 30 μm.

【0014】特定観察場所(前記×印のところ) は、10
00倍以上の高倍率の顕微鏡でも、観察できにくい場合が
あるので、実施例では特定場所(×印) を区別するため
に、特定場所を数μm 外して、レーザ加工装置(図中省
略した) で0.数μm 径の刻印として加工跡を数箇所設け
ることにより、他の場所と区別した。
[0014] The specific observation place (the place of the cross) is 10
Since it may be difficult to observe even a microscope with a high magnification of 00 or more, the laser processing device (omitted in the figure) is provided by excluding the specific place by several μm in order to distinguish the specific place (x mark) in the embodiment. In order to distinguish it from other places, a few traces of machining were provided as inscriptions with a diameter of 0.1 μm.

【0015】レーザ加工装置は光学顕微鏡に、レーザ発
振器を装着して使用するもので、基本的には高速回転外
周刃加工装置に装着している光学顕微鏡と同等であるの
で、観察が困難になるほど対象物が小さい場合がある。
その場合には、刻印をより精度よくするために、収束荷
電粒子ビーム加工装置の顕微鏡を用いることができる。
The laser processing apparatus uses a laser oscillator mounted on an optical microscope, and is basically the same as the optical microscope mounted on a high-speed rotating peripheral blade processing apparatus. The object may be small.
In that case, a microscope of a convergent charged particle beam processing apparatus can be used to make the marking more accurate.

【0016】前述したように、収束荷電粒子ビーム装置
によると、光学顕微鏡に比べてさらに高倍率の観察が可
能であり、かつ収束荷電粒子ビームを1箇所に固定する
ことで刻印をすることも可能であるので、レーザ加工装
置で行った刻印加工を、収束荷電粒子ビームを用いて行
うと、数1000倍から10000 倍程度の高倍率で光学顕微鏡
でも観察可能な刻印を設け、高速回転外周刃加工装置に
装着した光学顕微鏡観察可能な刻印を確認しながら、特
定位置を含んだ表層部のみを幅C 、深さd での加工を行
うことができる。
As described above, according to the convergent charged particle beam apparatus, it is possible to observe at a higher magnification than an optical microscope, and it is also possible to imprint by fixing the converged charged particle beam at one place. Therefore, if the engraving process performed by the laser processing device is performed using a convergent charged particle beam, an engraving that can be observed with an optical microscope at a high magnification of several thousand to 10,000 times is provided, It is possible to process only the surface layer including the specific position with the width C and the depth d while checking the engraved mark that can be observed with the optical microscope attached to the apparatus.

【0017】なお前記高速回転外周刃加工装置は位置合
わせ精度を高めるために発明した位置合わせ精度0.1μ
m の装置を用いている(本高速回転外周刃加工装置は特
許出願した。特願平03-119441 号) 。
Note that the high-speed rotating outer peripheral edge machining apparatus has a positioning accuracy of 0.1 μm invented to enhance the positioning accuracy.
(This high-speed rotating outer peripheral edge processing device has applied for a patent. Japanese Patent Application No. 03-119441).

【0018】図1(A) で示した切りしろ幅b が図1(b)
ではb ′で示すように狭くなっているが、これは(B) の
加工の際に試料11が傾いたりしないように、材料1′、
1″を試料11に接近させて試料11を固定するからであ
る。試料11は加工ステージ(図中省略) に熱溶解性のワ
ックスを用いて固定しており、図1(B) の際には、ステ
ージを加熱してワックスを溶かして材料1′1″を試料
11に接触させ、微小な隙間にワックスがまわりこんで、
試料11を材料1′1″でしっかり固定される。
The cutting width b shown in FIG. 1A is the same as that of FIG.
In this case, as shown by b ', the material 1' and the material 1 'are prevented from tilting during the processing of (B).
This is because 1 ″ is brought close to the sample 11 and the sample 11 is fixed. The sample 11 is fixed to the processing stage (omitted in the figure) using a heat-soluble wax, and as shown in FIG. Heats the stage to melt the wax and sample material 1'1 "
11 and the wax wraps around the minute gap,
The sample 11 is firmly fixed with the material 1 "1".

【0019】つぎに図1(C) に示すように、図1(A)
、(B) で示した加工方向とは直角に切断を行い、電子
顕微鏡に装着可能な大きさにする。実施例では長手方向
の寸法を約1.5mm とした。 図1(D) に示すように、収束荷電粒子ビーム3 を試料
の長手方向( 矢印方向)に走査させ、試料11にエッチン
グを施す。すなわち、前記断面凸状になった試料11の上
面をさらに凸状にエッチングする。実施例では同図にお
いて、e=0.1 μm とした。電子顕微鏡の像を良く観察
するためには、さらに薄く仕上げたほうがよいものであ
る。なお薄片化加工の際に、表面部分を保護するため
に、タングステン等の金属を表面に堆積しておくとよ
い。
Next, as shown in FIG. 1C, FIG.
A cut is made at right angles to the processing direction shown in (B), so that it can be mounted on an electron microscope. In the embodiment, the dimension in the longitudinal direction is set to about 1.5 mm. As shown in FIG. 1 (D), the sample 11 is etched by scanning the focused particle beam 3 in the longitudinal direction of the sample (the direction of the arrow). That is, the upper surface of the sample 11 having the convex cross section is etched to be more convex. In the embodiment, e = 0.1 μm in FIG. In order to observe the image of the electron microscope well, it is better to finish it thinner. At the time of thinning, a metal such as tungsten is preferably deposited on the surface in order to protect the surface portion.

【0020】図1(E) は図1(D) で示した工程を終了
したあとで、試料11を倒して、電子顕微鏡試料とした状
態に、電子線4 が透過する状態を概念的に示した図面で
ある。電子線が透過するためには加工残し幅は薄いほう
がよい。加工残し幅eは電子顕微鏡の加速電圧により変
化するが、薄く仕上げるほうが良い電子顕微鏡像が得ら
れる。
FIG. 1E conceptually shows a state where the electron beam 4 penetrates after the sample shown in FIG. It is a drawing. It is better that the unprocessed width is small in order to transmit the electron beam. Although the unprocessed width e changes depending on the acceleration voltage of the electron microscope, an electron microscope image which is better when finished is thinner is obtained.

【0021】図1(E) で示す観察用試料は実際には、試
料を固定しやすいように、メッシュと呼ばれる電子顕微
鏡用試料支持台に載置して電子顕微鏡の試料ステージに
載せられて観察される。
The observation sample shown in FIG. 1E is actually placed on an electron microscope sample support called a mesh and placed on an electron microscope sample stage so that the sample can be easily fixed. Is done.

【0022】[0022]

【発明の効果】本発明の電子顕微鏡観察用試料作成方法
によれば、特定の観察場所を選択的に薄片化することが
でき、従来技術で0.5mm 程度であった位置合わせの精度
をプラスマイナス0.1μm 以上に飛躍的に向上させるこ
とが可能である。この精度は収束荷電粒子ビームの収束
具合により制約を受けるもので、収束荷電粒子ビームの
収束性が向上すれば、前記精度をさらに上げることもで
きる。
According to the method for preparing a sample for electron microscopic observation of the present invention, a specific observation site can be selectively sliced, and the positioning accuracy, which was about 0.5 mm in the prior art, is plus or minus. It can be dramatically improved to 0.1 μm or more. This accuracy is restricted by the degree of convergence of the focused charged particle beam. If the convergence of the focused charged particle beam is improved, the accuracy can be further increased.

【0023】また高速回転外周刃加工装置を製作使用し
たことで、最終の収束荷電粒子ビーム装置による薄片化
の際の所要時間、特に特定観察場所の周辺部を荒くエッ
チング除去する工程の所要時間を短縮することができ
る。すなわち、試料作成時間を全体として短縮すること
ができる。
Further, by using and manufacturing the high-speed rotating outer peripheral edge processing apparatus, the time required for thinning by the final convergent charged particle beam apparatus, particularly the time required for the step of roughly etching and removing the periphery of a specific observation place, is reduced. Can be shortened. That is, it is possible to shorten the sample preparation time as a whole.

【0024】作業効率の面で考えても、従来技術では観
察を必要とする特定位置から薄片化場所がずれて、試料
作成をやり直すことが多かった。本発明によれば、光学
顕微鏡、収束荷電粒子ビーム装置の二次電子検出像を高
倍率で観察しながら、薄片化作業を行うので、やり直し
等を殆どなくすることができ、大変都合がよいものであ
る。
From the viewpoint of work efficiency, in the prior art, a slice preparation place is often shifted from a specific position where observation is required, and sample preparation is often repeated. According to the present invention, since the thinning operation is performed while observing the secondary electron detection image of the optical microscope and the converged charged particle beam device at a high magnification, it is possible to substantially eliminate the necessity of redoing and the like, which is very convenient. It is.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る図面であって、(A) 、(B) 、(C)
は高速回転外周刃加工装置で加工する第1段階の加工状
態図、同図(D) は収束荷電粒子ビーム装置で薄片化FIB
加工を行っている図、同図(E) は電子顕微鏡で観察して
いる図である。
FIG. 1 is a drawing according to the present invention, wherein (A), (B), (C)
Is a diagram showing the first stage of processing using a high-speed rotating outer edge processing device, and FIG. (D) is a thinning FIB using a convergent charged particle beam device.
The figure in which processing is being performed, and the figure (E) is a figure observed with an electron microscope.

【図2】従来技術に係る図面であって、試料の作成方法
を示す図である。
FIG. 2 is a drawing related to the prior art, showing a method of preparing a sample.

【符号の説明】[Explanation of symbols]

11 試料 1、1 ′材料 2 高速回転外周刃加工装置の刃 3 収束荷電粒子ビーム 11 Specimen 1, 1 'Material 2 High-speed rotating peripheral cutting machine blade 3 Convergent charged particle beam

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡部 功 大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内 (72)発明者 鶴原 健次 大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内 (56)参考文献 特開 平1−219536(JP,A) 特開 平2−132345(JP,A) 特開 昭64−84730(JP,A) 特開 平4−76437(JP,A) 特開 平4−361132(JP,A) 特開 平4−322442(JP,A) (58)調査した分野(Int.Cl.6,DB名) G01N 1/28 G01N 1/32 H01J 37/20──────────────────────────────────────────────────続 き Continued on the front page (72) Isao Watanabe, Inventor 22-22, Nagaikecho, Abeno-ku, Osaka-shi, Osaka Inside Sharp Corporation (72) Inventor Kenji 22-22, Nagaike-cho, Abeno-ku, Osaka-shi, Osaka Sharp Corporation (56) References JP-A-1-219536 (JP, A) JP-A-2-132345 (JP, A) JP-A 64-84730 (JP, A) JP-A-4-763737 (JP, A) JP-A-4-361132 (JP, A) JP-A-4-322442 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) G01N 1/28 G01N 1/32 H01J 37/20

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電子顕微鏡観察を必要とする材料に対し
て、高倍率の光学顕微鏡を装着した高速回転外周刃加工
装置を用いて前記光学顕微鏡で観察しながら電子顕微鏡
に装着可能な幅に前記材料を切断する工程と、特定の観
察場所に刻印を施す工程と、前記刻印を残して前記切断
した材料を断面凸の字状あるいはLの字状に加工する工
程と、収束荷電粒子ビームによるエッチングにより前記
凸の字状あるいはLの字状の上面をさらに凸の字状ある
いはLの字状に薄片化する工程とを含むことを特徴とす
る電子顕微鏡観察用試料の作成方法。
1. A material requiring observation with an electron microscope is observed with the optical microscope using a high-speed rotating peripheral blade processing apparatus equipped with a high-magnification optical microscope, and the width is set to a width that can be mounted on the electron microscope. A step of cutting the material, a step of imprinting a specific observation place, a step of processing the cut material into a convex or L-shaped cross section while leaving the mark, and etching with a focused charged particle beam Thinning the upper surface of the convex or L-shape into a convex or L-shape by using the method described above.
【請求項2】 前記刻印はレーザ加工装置または収束荷
電粒子ビーム装置により施すものである請求項1記載の
電子顕微鏡観察用試料の作成方法。
2. The method according to claim 1, wherein the engraving is performed by a laser processing device or a focused charged particle beam device.
JP1944792A 1992-01-07 1992-01-07 How to make a sample for electron microscope observation Expired - Fee Related JP2754301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1944792A JP2754301B2 (en) 1992-01-07 1992-01-07 How to make a sample for electron microscope observation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1944792A JP2754301B2 (en) 1992-01-07 1992-01-07 How to make a sample for electron microscope observation

Publications (2)

Publication Number Publication Date
JPH05180739A JPH05180739A (en) 1993-07-23
JP2754301B2 true JP2754301B2 (en) 1998-05-20

Family

ID=11999567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1944792A Expired - Fee Related JP2754301B2 (en) 1992-01-07 1992-01-07 How to make a sample for electron microscope observation

Country Status (1)

Country Link
JP (1) JP2754301B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08261898A (en) * 1995-03-17 1996-10-11 Nec Corp Sample for transmission electron microscope and its preparation
JP3485707B2 (en) * 1996-01-09 2004-01-13 沖電気工業株式会社 Method for preparing flat sample for transmission electron microscope and method for measuring defects by transmission electron microscope
JP3304836B2 (en) * 1997-08-07 2002-07-22 シャープ株式会社 Observation of reaction process by transmission electron microscope
JP3664987B2 (en) 2001-03-14 2005-06-29 シャープ株式会社 Electron microscope observation sample preparation method and semiconductor device analysis method
JP5152111B2 (en) * 2009-06-22 2013-02-27 新日鐵住金株式会社 Probe for focused ion beam processing apparatus, probe apparatus, and probe manufacturing method
JP2011169784A (en) * 2010-02-19 2011-09-01 Disco Corp Method of preparing sample for inspection
KR20110114028A (en) * 2010-04-12 2011-10-19 삼성전자주식회사 Apparatus and method for machining specimen
CN111366424B (en) * 2018-12-25 2021-08-13 上海交通大学 Method for processing cross section of electrode material

Also Published As

Publication number Publication date
JPH05180739A (en) 1993-07-23

Similar Documents

Publication Publication Date Title
KR100329322B1 (en) METOD OF PREPARING A PLAN-VIEW SAMPLE OF AN INTEGRATED CIRCUIT FOR TRANSMISSION ELECTRON MICROSCOPY, AND METlIOBS OF OBSERVING THE SAMPLE
US6194720B1 (en) Preparation of transmission electron microscope samples
US6042736A (en) Method for preparing samples for microscopic examination
EP0703596B1 (en) Method and apparatus for energy beam machining
JP3805547B2 (en) Sample preparation equipment
JP2754301B2 (en) How to make a sample for electron microscope observation
JP2007108105A (en) Method for preparing sample for electron microscope, converged ion beam device and a sample support stand
JP2009098088A (en) Sample preparing method
US6140603A (en) Micro-cleavage method for specimen preparation
JP4048210B2 (en) Sample preparation method
JPH11108813A (en) Method and device for preparing sample
JP2003194681A (en) Tem sample preparation method
TWI255339B (en) Method of applying micro-protection in defect analysis
JPH08304243A (en) Sample having cross sectional thin-film, its manufacture, and its holder
JPH083768A (en) Preparation of plane tem sample
JP2000230891A (en) Method for preparing sample for transmission type electron microscope
JPH1084020A (en) Processing method and inspection method for semiconductor
JPH05231998A (en) Method of manufacture specimen for electron microscopic observation
JP3082885B2 (en) Method for preparing sample for electron microscope observation and fixing device for sample for electron microscope observation
KR20050033699A (en) Method for forming sample using analysis by tem
JP4219084B2 (en) Preparation method for thin section sample for microscope
KR100744267B1 (en) specimen manufacturing method for Transmission Electron Microscope
JP2007155420A (en) Specimen for observation, its preparation method, and observation method by transmission electron microscope
JP3472695B2 (en) Method for preparing sample for electron microscope observation and sample processing apparatus for electron microscope observation
JPH11160210A (en) Observation sample for transmission electron microscope and its preparation

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080306

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090306

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees