JP2752061B2 - Quantum well semiconductor laser - Google Patents

Quantum well semiconductor laser

Info

Publication number
JP2752061B2
JP2752061B2 JP62043030A JP4303087A JP2752061B2 JP 2752061 B2 JP2752061 B2 JP 2752061B2 JP 62043030 A JP62043030 A JP 62043030A JP 4303087 A JP4303087 A JP 4303087A JP 2752061 B2 JP2752061 B2 JP 2752061B2
Authority
JP
Japan
Prior art keywords
quantum well
semiconductor laser
wavelength
well semiconductor
quantum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62043030A
Other languages
Japanese (ja)
Other versions
JPS63211784A (en
Inventor
行一 今仲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp filed Critical Omron Corp
Priority to JP62043030A priority Critical patent/JP2752061B2/en
Publication of JPS63211784A publication Critical patent/JPS63211784A/en
Application granted granted Critical
Publication of JP2752061B2 publication Critical patent/JP2752061B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3418Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers using transitions from higher quantum levels

Landscapes

  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Lasers (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 発明の背景 技術分野 この発明は量子井戸型半導体レーザに関する。 従来技術とその問題点 量子井戸型半導体レーザの発振波長は主として量子井
戸幅により決定される。従来の量子井戸半導体レーザ発
振は,第3図(A)に示すように,電子の最低量子準位
me=1と正孔の量子準位mh=1との間の遷移に基づいて
おり,この最低準位間の遷移波長が発振波長となってい
る。より短波長のレーザ発振を得るために,第3図
(B)に示すように,量子井戸幅を狭くし,最低量子準
位間のエネルギを大きくする工夫が行なわれている。し
かしながらこのように井戸幅を狭くすると,障壁層の厚
みの不均一に起因する凹凸により井戸幅に面内不均一が
生じ量子準位にゆらぎを生ずるため,一般にレーザ発振
閾値の上昇を招くという欠点があった。 発明の概要 発明の目的 この発明は,量子井戸幅を狭くすることなく短波長の
レーザ発振を得ることのできる量子井戸型半導体レーザ
を提供することを目的とする。 発明の構成と効果 この発明は,ファブリ・ペロー型量子井戸半導体レー
ザにおいて,屈折率の異なる2種の誘電体層が4層以上
にわたって交互に積層されてなる波長選択性をもつ反射
膜を上記半導体レーザの少なくとも後方端面に設け,上
記誘電体層が量子井戸の所望の高次準位間遷移による発
光波長の1/4の厚さをもつことを特徴とする。 この発明によると,高次の量子準位間の遷移波長が上
記反射膜によって選択的に反射され,この短波長の光が
共振しレーザ発振する。最低準位間の遷移波長に対して
上記反射膜はほぼ透明体となるから,この長波長の光の
レーザ発振は起こらない。 このようにして,この発明によると量子井戸幅を狭く
(薄く)することなく短波長のレーザ発振を得ることが
でき,レーザ発振閾値も比較的低く保つことができる。 実施例の説明 第1図を参照して,量子井戸型半導体レーザは,よく
知られているように,基板1上に,バッファ層2,下部ク
ラッド層3,量子井戸構造の活性層4,上部クラッド層5お
よびキャップ層6が順次形成されてなる。活性層4は単
一量子井戸構造でも多重量子井戸構造でもどちらでもよ
い。基板1の下面およびキャップ層6の上面にそれぞれ
電極(図示略)が形成される。一般にはこの半導体レー
ザの前,後両端面が反射面であり,ファブリ・ペロー共
振器を構成する。 この発明によると,このようなファブリ・ペロー型量
子井戸半導体レーザの後方端面に波長選択性をもつ反射
膜7が形成されている。この反射膜7は,屈折率がそれ
ぞれna,nb(na≠nb)である誘電体層7a,7bを,それぞれ
光の結晶内波長の1/4の厚さに交互に多層積層すること
によって構成したものであり,これらの誘電体層はたと
えば電子ビーム蒸着法によって作製することができる。 第2図に単一量子井戸をモデルとして示された量子井
戸準位レベルの概念図からも分るように,一般に量子井
戸構造においては,me=mh=1の最低量子準位間遷移の
みならず,me=mh≧2の高次の光学遷移も誘起されてい
る。しかしながら,最低準位間のレーザ利得が最もよく
満足されるため,この最低準位間の遷移による発振が生
じ高次の発振はおこりにくい。 この発明においては,上記反射膜7の誘電体層7a,7b
の厚さを規定する光の結晶内波長として所望の高次準位
(me=mh≧2)間の遷移波長を採用し,これらの層7a,7
bを4層以上積層している。したがって,この反射膜7
の反射率は選択された高次準位間遷移による発光波長に
対してのみ大きく,高次のすなわち短波長のレーザ発振
が得られる。最低準位間の遷移波長に対しては反射膜7
は殆ど透明体となり,me=mh=1のレーザ発振は起こら
ない。 このようにして,量子井戸の幅を薄くすることなく短
波長のレーザ発振を得ることができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a quantum well semiconductor laser. 2. Related Art and Problems Thereof The oscillation wavelength of a quantum well semiconductor laser is mainly determined by the quantum well width. As shown in FIG. 3 (A), the conventional quantum well semiconductor laser oscillation has the lowest quantum level of electrons.
It is based on the transition between m e = 1 and the hole quantum level m h = 1, and the transition wavelength between the lowest levels is the oscillation wavelength. In order to obtain laser oscillation of a shorter wavelength, as shown in FIG. 3 (B), an attempt is made to reduce the width of the quantum well and increase the energy between the lowest quantum levels. However, when the well width is reduced in this way, unevenness caused by unevenness of the thickness of the barrier layer causes in-plane unevenness in the well width and fluctuations in the quantum level. was there. SUMMARY OF THE INVENTION An object of the present invention is to provide a quantum well semiconductor laser capable of obtaining a short wavelength laser oscillation without reducing the quantum well width. SUMMARY OF THE INVENTION The present invention provides a Fabry-Perot quantum well semiconductor laser in which two or more dielectric layers having different refractive indices are alternately laminated over four or more layers. At least on the rear end face of the laser, the dielectric layer has a thickness of 1/4 of the emission wavelength due to the desired transition between higher levels of the quantum well. According to the present invention, the transition wavelength between higher-order quantum levels is selectively reflected by the reflective film, and the short-wavelength light resonates and oscillates with laser. Since the reflection film is substantially transparent with respect to the transition wavelength between the lowest levels, laser oscillation of this long wavelength light does not occur. Thus, according to the present invention, laser oscillation of a short wavelength can be obtained without narrowing (thinning) the quantum well width, and the laser oscillation threshold can be kept relatively low. DESCRIPTION OF THE EMBODIMENTS Referring to FIG. 1, a quantum well semiconductor laser is provided on a substrate 1 with a buffer layer 2, a lower cladding layer 3, an active layer 4 having a quantum well structure, and an upper layer, as is well known. The clad layer 5 and the cap layer 6 are sequentially formed. The active layer 4 may have either a single quantum well structure or a multiple quantum well structure. Electrodes (not shown) are formed on the lower surface of the substrate 1 and the upper surface of the cap layer 6, respectively. Generally, both front and rear end surfaces of the semiconductor laser are reflection surfaces, and constitute a Fabry-Perot resonator. According to the present invention, a reflective film 7 having wavelength selectivity is formed on the rear end face of such a Fabry-Perot quantum well semiconductor laser. The reflective film 7 has a refractive index of each n a, n b (n a ≠ n b) a is the dielectric layer 7a, the 7b, multilayer laminated alternately to 1/4 the thickness of the crystal within the wavelength of each light These dielectric layers can be manufactured by, for example, an electron beam evaporation method. As can be seen from the concept diagram of the quantum well levels level indicated a single quantum well as a model in Figure 2, in general the quantum well structure, between m e = m h = 1 the lowest quantum level transition not only, higher order optical transitions of m e = m h ≧ 2 is also induced. However, since the laser gain between the lowest levels is most satisfied, oscillation occurs due to the transition between the lowest levels, and high-order oscillation is unlikely to occur. In the present invention, the dielectric layers 7a and 7b of the reflection film 7 are used.
The transition wavelength between desired higher-order levels ( me = mh ≧ 2) is adopted as the wavelength in the crystal of the light defining the thickness of the layers 7a and 7b.
b is laminated four or more layers. Therefore, this reflection film 7
Is higher only for the emission wavelength due to the selected higher-level transition, and higher-order, ie, shorter-wavelength laser oscillation can be obtained. The reflection film 7 for the transition wavelength between the lowest levels
Most become transparent body, laser oscillation of m e = m h = 1 does not occur. In this way, short-wavelength laser oscillation can be obtained without reducing the width of the quantum well.

【図面の簡単な説明】 第1図はこの発明の実施例を示す断面図,第2図は量子
井戸におけるエネルギ準位を示すものである。 第3図(A)(B)は従来の量子井戸型半導体レーザの
発振を説明するためのエネルギ準位図である。 7……反射膜,7a,7b……誘電体層。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view showing an embodiment of the present invention, and FIG. 2 shows an energy level in a quantum well. FIGS. 3A and 3B are energy level diagrams for explaining the oscillation of a conventional quantum well semiconductor laser. 7 ... reflection film, 7a, 7b ... dielectric layer.

Claims (1)

(57)【特許請求の範囲】 1.ファブリ・ペロー型量子井戸半導体レーザにおい
て, 屈折率の異なる2種の誘電体層が4層以上にわたって交
互に積層されてなる波長選択性をもつ反射膜を上記半導
体レーザの少なくとも後方端面に設け, 上記誘電体層が量子井戸の所望の高次準位間遷移による
発光波長の1/4の厚さをもつことを特徴とする, 量子井戸型半導体レーザ。
(57) [Claims] In the Fabry-Perot quantum well semiconductor laser, a reflective film having wavelength selectivity, which is formed by alternately laminating two or more dielectric layers having different refractive indices over four or more layers, is provided on at least a rear end face of the semiconductor laser. A quantum well semiconductor laser, wherein the dielectric layer has a thickness of 1/4 of the emission wavelength due to a desired transition between higher levels of the quantum well.
JP62043030A 1987-02-27 1987-02-27 Quantum well semiconductor laser Expired - Lifetime JP2752061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62043030A JP2752061B2 (en) 1987-02-27 1987-02-27 Quantum well semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62043030A JP2752061B2 (en) 1987-02-27 1987-02-27 Quantum well semiconductor laser

Publications (2)

Publication Number Publication Date
JPS63211784A JPS63211784A (en) 1988-09-02
JP2752061B2 true JP2752061B2 (en) 1998-05-18

Family

ID=12652542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62043030A Expired - Lifetime JP2752061B2 (en) 1987-02-27 1987-02-27 Quantum well semiconductor laser

Country Status (1)

Country Link
JP (1) JP2752061B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6586762B2 (en) 2000-07-07 2003-07-01 Nichia Corporation Nitride semiconductor device with improved lifetime and high output power
ATE387736T1 (en) 2001-11-05 2008-03-15 Nichia Corp SEMICONDUCTOR ELEMENT

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797687B2 (en) * 1985-05-13 1995-10-18 株式会社日立製作所 Semiconductor laser device

Also Published As

Publication number Publication date
JPS63211784A (en) 1988-09-02

Similar Documents

Publication Publication Date Title
JP2596195B2 (en) Vertical resonator type surface input / output photoelectric fusion device
JPH1012959A (en) Semiconductor light emitting element, light emitting element module and manufacture of semiconductor light emitting element
JPH0555703A (en) Plane emission laser device
JPS63205984A (en) Surface emitting type semiconductor laser
JP2752061B2 (en) Quantum well semiconductor laser
JPH1146036A (en) Surface-emitting type semiconductor laser and manufacture of the same
JPS645474B2 (en)
JP2601218B2 (en) Surface emitting laser
JPH07302953A (en) Semiconductor laser element
JPH0319292A (en) Semiconductor laser
JP3541539B2 (en) Surface emitting semiconductor laser
JP2018046118A (en) Broad area semiconductor laser device
JPS62291192A (en) Surface emission laser
JPS62219684A (en) Distributed feedback type semiconductor laser
JP2000261095A5 (en)
JPH07321406A (en) Semiconductor laser device
JP2701596B2 (en) Semiconductor laser device
JPH09107156A (en) Semiconductor laser
JP2828706B2 (en) Semiconductor laser
JPH09312436A (en) Optical semiconductor device
JPH07202320A (en) Semiconductor laser element
JPH065984A (en) Semiconductor laser and manufacture thereof
JPH0330381A (en) Etch mirror semiconductor laser
JP2832411B2 (en) Super luminescent diode
JPH08148764A (en) Semiconductor laser element