JPH09107156A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPH09107156A
JPH09107156A JP7290277A JP29027795A JPH09107156A JP H09107156 A JPH09107156 A JP H09107156A JP 7290277 A JP7290277 A JP 7290277A JP 29027795 A JP29027795 A JP 29027795A JP H09107156 A JPH09107156 A JP H09107156A
Authority
JP
Japan
Prior art keywords
oscillation
reflectance
wavelength
semiconductor laser
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7290277A
Other languages
Japanese (ja)
Inventor
Toshisada Sekiguchi
利貞 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP7290277A priority Critical patent/JPH09107156A/en
Publication of JPH09107156A publication Critical patent/JPH09107156A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To lower threshold value for oscillation and to improve differential efficiency. SOLUTION: A reflection preventive film whose reflectance is dependent on wavelength is formed on a laser light emitting edge surface, using the characteristic of a semiconductor laser of which oscillating wavelength is shifted by the increase of injected current. With this, the threshold value for the oscillation is suppressed lower with higher reflectance (30%) with the wave length (1505nm) at the injection of the threshold current for oscillation and the differential quantum efficiency at high output is improved by lowering the reflectance (by 0.5%) with the shifted wavelength (1521nm) by increasing the injecting current.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、共振条件を満た
す波長に対して反射率に波長依存性を有する反射防止膜
を備えるようにした半導体レーザに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser provided with an antireflection film having a wavelength dependence of reflectance with respect to a wavelength satisfying a resonance condition.

【0002】[0002]

【従来の技術】高出力の半導体レーザでは、発振効率を
向上させる目的で、レーザ素子の出射側の劈開面R1
に、反射防止(AR)膜を被着し、これに対向する劈開
面R2に、反射増強(HR)膜を被着することがなされ
ている。
2. Description of the Related Art In a high-power semiconductor laser, a cleavage plane R1 on the emitting side of a laser element is used for the purpose of improving the oscillation efficiency.
Then, an antireflection (AR) film is deposited on the first surface, and a reflection enhancing (HR) film is deposited on the cleavage plane R2 facing the antireflection (AR) film.

【0003】[0003]

【発明が解決しようとする課題】ところで、半導体レー
ザの性能を表す一つのパラメータとして注入電流−光出
力特性の傾きを表す微分量子効率ηdが挙げられる。こ
の微分量子効率ηd(相対値)は、図4に示すように、
半導体レーザの出射面R1の反射率が低いほど向上す
る。しかしながら、半導体レーザの出射面R1の反射率
を低下させると、図5に示すように、もう一つの性能評
価のパラメータである発振しきい値gth(相対値)が
増大してしまうという問題がある。このため、反射防止
膜の反射率は、両者のバランスを考慮して、約5%程度
に制限されている。
By the way, the differential quantum efficiency ηd, which represents the slope of the injection current-optical output characteristic, is one parameter that represents the performance of the semiconductor laser. This differential quantum efficiency ηd (relative value) is as shown in FIG.
The higher the reflectance of the emission surface R1 of the semiconductor laser, the higher the improvement. However, if the reflectance of the emitting surface R1 of the semiconductor laser is reduced, as shown in FIG. 5, there is a problem that the oscillation threshold value gth (relative value), which is another parameter for performance evaluation, increases. . Therefore, the reflectance of the antireflection film is limited to about 5% in consideration of the balance between the two.

【0004】この発明は、このような問題点に鑑みなさ
れたもので、発振しきい値の低減と微分量子効率の向上
とを同時に図ることができる半導体レーザを提供するこ
とを目的とする。
The present invention has been made in view of the above problems, and an object thereof is to provide a semiconductor laser capable of simultaneously reducing the oscillation threshold and improving the differential quantum efficiency.

【0005】[0005]

【課題を解決するための手段】この発明に係る半導体レ
ーザは、注入電流の増加に伴いレーザ光の発振波長がシ
フトする半導体レーザにおいて、発振しきい値電流の注
入時の発振波長に対する反射率が、前記発振しきい値電
流よりも大きな電流の注入時の発振波長に対する反射率
より大となる分光反射率特性を有する反射防止膜をレー
ザ光の出射端面に被着してなることを特徴とする。
A semiconductor laser according to the present invention is a semiconductor laser in which the oscillation wavelength of laser light shifts with an increase in injection current, and the reflectance for the oscillation wavelength at the time of injection of an oscillation threshold current is And an antireflection film having a spectral reflectance characteristic that is greater than a reflectance with respect to an oscillation wavelength when a current larger than the oscillation threshold current is injected is attached to the emission end face of the laser light. .

【0006】本発明によれば、注入電流の増加に伴って
発振波長がシフトするという半導体レーザの性質を利用
して、反射率が前述した波長依存性を有する反射防止膜
をレーザ光の出射端面に被着するようにしているので、
発振しきい値電流注入時の発振波長に対しては高い反射
率となって、発振しきい値を低く抑えることができ、注
入電流を増加して発振波長がシフトするに伴い反射率が
低下するようにして、高出力時の微分量子効率を向上さ
せることができる。
According to the present invention, by utilizing the property of the semiconductor laser that the oscillation wavelength shifts with the increase of the injection current, the antireflection film having the above-mentioned wavelength dependence of the reflectance is formed on the emitting end face of the laser light. Because I am trying to wear
The reflectance becomes high with respect to the oscillation wavelength when the oscillation threshold current is injected, and the oscillation threshold can be kept low. The reflectance decreases as the injection current increases and the oscillation wavelength shifts. In this way, the differential quantum efficiency at high output can be improved.

【0007】なお、反射防止膜が、発振しきい値電流よ
りも大きな所定の電流の注入時の発振波長で、反射率が
極小値となるような分光反射率特性を有していると、任
意の特定波長での微分量子効率を最大にした状態で、多
モード発振によって生じた余分な波長成分を抑制して、
コヒーレンスの高い光出力を得ることができる。
It is to be noted that if the antireflection film has a spectral reflectance characteristic such that the reflectance has a minimum value at an oscillation wavelength when a predetermined current larger than the oscillation threshold current is injected, it is optional. In the state where the differential quantum efficiency at the specific wavelength of is maximized, the extra wavelength component generated by the multimode oscillation is suppressed,
An optical output with high coherence can be obtained.

【0008】[0008]

【発明の実施の形態】以下、図面を参照して、この発明
の実施の形態について説明する。図1は、この発明の一
実施例に係る半導体レーザの概略構成を示す斜視図であ
る。半導体レーザ1は、例えばp−InPからなるP型
クラッド層2と、n−InPからなるN型クラッド層3
との間にGaInAsPからなるダブルヘテロ接合構造
の導波路活性層4を設け、クラッド層2,3等の上下面
にAl等の電極5,6をそれぞれ設けると共に、出射側
の劈開面R1に反射防止膜7を、また、これに対向する
劈開面R2に反射増強膜8をそれぞれ被着してなるもの
である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view showing a schematic configuration of a semiconductor laser according to an embodiment of the present invention. The semiconductor laser 1 includes, for example, a P-type cladding layer 2 made of p-InP and an N-type cladding layer 3 made of n-InP.
And a waveguide active layer 4 of a double heterojunction structure made of GaInAsP, and electrodes 5 and 6 made of Al or the like on the upper and lower surfaces of the cladding layers 2 and 3, respectively, and reflected on the cleavage plane R1 on the emitting side. The antireflection film 7 and the reflection enhancing film 8 are attached to the cleavage plane R2 facing the antireflection film 7, respectively.

【0009】反射防止膜7は、例えば図2に示すよう
に、特定波長(1520[nm])でその反射率が極小
値となる分光反射率特性を有するものである。このよう
な特性を持つ反射防止膜7は、複数の異なる屈折率の誘
電体層(例えば、TiO2 とSiO2 との組み合わせ、
又はTa25 とSiO2 との組み合わせ等)を交互に
積層してなる光学多層膜フィルタにより実現することが
できる。また、反射増強膜8は、例えば90%以上の反
射率を有している。
As shown in FIG. 2, for example, the antireflection film 7 has a spectral reflectance characteristic in which its reflectance has a minimum value at a specific wavelength (1520 [nm]). The antireflection film 7 having such characteristics has a plurality of dielectric layers having different refractive indexes (for example, a combination of TiO 2 and SiO 2 ,
Alternatively, a combination of Ta 2 O 5 and SiO 2 etc.) may be alternately laminated to realize an optical multilayer filter. The reflection enhancing film 8 has a reflectance of 90% or more, for example.

【0010】次に、このように構成された半導体レーザ
1の動作について説明する。図3(a)は半導体レーザ
1に100[mA]の電流を注入したときに発振するレ
ーザ光のスペクトルの一例を示す図、図3(b)は半導
体1に500[mA]の電流を注入したときに発振する
レーザ光のスペクトルの一例を示す図である。100
[mA]の電流を注入すると、レーザ光の発振波長は1
505[nm]となり、その発振出力は10.9[μ
W]となる。また、500[mA]の電流を注入する
と、レーザ光の発振波長は1521[nm]となり、そ
の発振出力は30.8[μW]となる。従って、注入電
流が増加するに従い、レーザ光の発振波長は長波長側に
シフトする。
Next, the operation of the semiconductor laser 1 thus constructed will be described. FIG. 3A is a diagram showing an example of a spectrum of laser light that oscillates when a current of 100 [mA] is injected into the semiconductor laser 1, and FIG. 3B is injected with a current of 500 [mA] into the semiconductor 1. It is a figure which shows an example of the spectrum of the laser beam which oscillates when it does. 100
When a current of [mA] is injected, the oscillation wavelength of laser light is 1
505 [nm], and the oscillation output is 10.9 [μ
W]. When a current of 500 [mA] is injected, the oscillation wavelength of the laser light becomes 1521 [nm], and the oscillation output becomes 30.8 [μW]. Therefore, the oscillation wavelength of the laser light shifts to the long wavelength side as the injection current increases.

【0011】いま、この半導体レーザ1の発振しきい値
電流が100[mA]、最大出力時の注入電流が500
[mA]であるとすると、図2に示すように、出射面R
1に被着された反射防止膜7の分光反射率曲線は、発振
しきい値電流(=100[mA])に対応したレーザ光
の発振波長(=1505[nm])での反射率が約30
%と高い値を示すので、低い発振しきい値が得られる。
また、反射防止膜7の分光反射率曲線は、レーザ光の発
振出力が最大となる波長(=1521[nm])で極小
となり、そのときの反射率は約0.5%となる。このた
め、レーザ光の発振出力が最大となる大電流注入時にお
いては、高い微分量子効率ηdを得ることができる。
Now, the oscillation threshold current of the semiconductor laser 1 is 100 [mA], and the injection current at the maximum output is 500.
If it is [mA], as shown in FIG.
The spectral reflectance curve of the antireflection film 7 applied to No. 1 shows that the reflectance at the oscillation wavelength (= 1505 [nm]) of the laser light corresponding to the oscillation threshold current (= 100 [mA]) is approximately. Thirty
%, A low oscillation threshold is obtained.
Further, the spectral reflectance curve of the antireflection film 7 has a minimum at the wavelength (= 1521 [nm]) where the oscillation output of the laser light is maximum, and the reflectance at that time is about 0.5%. Therefore, a high differential quantum efficiency ηd can be obtained at the time of injecting a large current that maximizes the oscillation output of the laser light.

【0012】なお、上記実施例では、反射防止膜7の分
光反射率曲線に極小値を持たせたが、必ずしも分光反射
率曲線に極小値を持たせる必要はない。即ち、本発明
は、発振しきい値電流から最大出力時の注入電流に至る
反射率が徐々に低下するような特性であれば、例えば反
射防止膜7を分光反射率曲線における長波長領域が平坦
となる特性としても良い。
In the above embodiment, the spectral reflectance curve of the antireflection film 7 has a minimum value, but the spectral reflectance curve does not necessarily have a minimum value. That is, in the present invention, if the reflectance from the oscillation threshold current to the injection current at the maximum output gradually decreases, for example, the antireflection film 7 has a flat long wavelength region in the spectral reflectance curve. It may be a characteristic that

【0013】以上、レーザ媒体の発振波長のエネルギ依
存性に着目し、反射防止膜の反射率に波長依存性を持た
せた場合について説明したが、本発明は、また、レーザ
媒体の発振波長が温度依存性を持つ場合、温度上昇時の
発振波長に対する反射率が小さくなるような反射防止膜
を使用することにより、温度上昇時の微分量子効率の低
下を防止することができるという利点がある。
As described above, the energy dependence of the oscillation wavelength of the laser medium has been focused on, and the case where the reflectance of the antireflection film has the wavelength dependence has been described. In the case of having temperature dependence, by using an antireflection film whose reflectance with respect to the oscillation wavelength when temperature rises is used, there is an advantage that it is possible to prevent a decrease in differential quantum efficiency when temperature rises.

【0014】[0014]

【発明の効果】以上述べたように、この発明によれば、
注入電流の増加に伴って発振波長がシフトするという半
導体レーザの性質を利用して、反射率が前述した波長依
存性を有する反射防止膜をレーザ光の出射端面に被着す
るようにしているので、発振しきい値電流注入時の発振
波長に対しては高い反射率となって、発振しきい値を低
く抑えることができ、注入電流を増加して発振波長がシ
フトするに伴い反射率が低下するようにして、高出力時
の微分量子効率を向上させることができる。
As described above, according to the present invention,
By utilizing the property of the semiconductor laser that the oscillation wavelength shifts with the increase of the injection current, the antireflection film having the wavelength dependence of the reflectance described above is applied to the emission end face of the laser light. , The reflectance becomes high for the oscillation wavelength when the oscillation threshold current is injected, and the oscillation threshold can be kept low. The reflectance decreases as the injection current increases and the oscillation wavelength shifts. By doing so, the differential quantum efficiency at high output can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の一実施例に係る半導体レーザの概
略構成を示す斜視図である。
FIG. 1 is a perspective view showing a schematic configuration of a semiconductor laser according to an embodiment of the present invention.

【図2】 反射防止膜の光学特性の一例を示す図であ
る。
FIG. 2 is a diagram showing an example of optical characteristics of an antireflection film.

【図3】 注入電流時におけるレーザ光のスペクトルの
一例を示す図である。
FIG. 3 is a diagram showing an example of a spectrum of laser light at the time of injection current.

【図4】 端面反射率と微分効率との関係を説明するた
めの図である。
FIG. 4 is a diagram for explaining the relationship between end face reflectance and differential efficiency.

【図5】 端面反射率と発振しきい値との関係を説明す
るための図である。
FIG. 5 is a diagram for explaining a relationship between an end face reflectance and an oscillation threshold value.

【符号の説明】[Explanation of symbols]

1…半導体レーザ、2…P型クラッド層、3…N型クラ
ッド層、4…導波路活性層、5,6…電極、7…反射防
止膜、8…反射増強膜、R1,R2…劈開面。
DESCRIPTION OF SYMBOLS 1 ... Semiconductor laser, 2 ... P-type clad layer, 3 ... N-type clad layer, 4 ... Waveguide active layer, 5, 6 ... Electrode, 7 ... Antireflection film, 8 ... Antireflection film, R1, R2 ... Cleaved surface .

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 注入電流の増加に伴いレーザ光の発振波
長がシフトする半導体レーザにおいて、 発振しきい値電流の注入時の発振波長に対する反射率
が、前記発振しきい値電流よりも大きな電流の注入時の
発振波長に対する反射率より大となる分光反射率特性を
有する反射防止膜をレーザ光の出射端面に被着してなる
ことを特徴とする半導体レーザ。
1. A semiconductor laser in which the oscillation wavelength of laser light shifts with an increase in injection current, and the reflectance of the oscillation threshold current with respect to the oscillation wavelength at the time of injection is larger than that of the oscillation threshold current. A semiconductor laser comprising an antireflection film having a spectral reflectance characteristic that is greater than the reflectance for the oscillation wavelength at the time of injection, and is attached to the emission end face of the laser light.
【請求項2】 前記反射防止膜は、前記発振しきい値電
流よりも大きな所定の電流の注入時の発振波長で反射率
が極小値となる分光反射率特性を有するものであること
を特徴とする請求項1記載の半導体レーザ。
2. The antireflection film has a spectral reflectance characteristic in which the reflectance has a minimum value at an oscillation wavelength when a predetermined current larger than the oscillation threshold current is injected. The semiconductor laser according to claim 1.
JP7290277A 1995-10-12 1995-10-12 Semiconductor laser Pending JPH09107156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7290277A JPH09107156A (en) 1995-10-12 1995-10-12 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7290277A JPH09107156A (en) 1995-10-12 1995-10-12 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPH09107156A true JPH09107156A (en) 1997-04-22

Family

ID=17754065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7290277A Pending JPH09107156A (en) 1995-10-12 1995-10-12 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPH09107156A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005072488A (en) * 2003-08-27 2005-03-17 Mitsubishi Electric Corp Semiconductor laser
US7103081B2 (en) 2002-10-18 2006-09-05 Sumitomo Electric Industries, Ltd. DFB laser with ar coating selected to provide wide temperature range of operation
JP2008244300A (en) * 2007-03-28 2008-10-09 Mitsubishi Electric Corp Semiconductor laser

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7103081B2 (en) 2002-10-18 2006-09-05 Sumitomo Electric Industries, Ltd. DFB laser with ar coating selected to provide wide temperature range of operation
JP2005072488A (en) * 2003-08-27 2005-03-17 Mitsubishi Electric Corp Semiconductor laser
JP2008244300A (en) * 2007-03-28 2008-10-09 Mitsubishi Electric Corp Semiconductor laser
DE102007053328A1 (en) 2007-03-28 2008-10-09 Mitsubishi Electric Corp. Semiconductor laser with Fabry-Perot resonator
US7627010B2 (en) 2007-03-28 2009-12-01 Mitsubishi Electric Corporation Semiconductor laser having Fabry-Perot resonator

Similar Documents

Publication Publication Date Title
JPS63205984A (en) Surface emitting type semiconductor laser
JP2008047692A (en) Self-induced oscillating semiconductor laser and manufacturing method therefor
US7773652B2 (en) Gain-coupled distributed feedback semiconductor laser having an improved diffraction grating
JPS60242689A (en) Semiconductor laser element
JP2723045B2 (en) Flare structure semiconductor laser
JPH09107156A (en) Semiconductor laser
JPH0533838B2 (en)
JP3778260B2 (en) Semiconductor laser and digital optical communication system and method using the same
KR100754956B1 (en) Semiconductor laser device and laser system
JPS6250075B2 (en)
JPH10303495A (en) Semiconductor laser
JPH0319292A (en) Semiconductor laser
JP2967757B2 (en) Semiconductor laser device and method of manufacturing the same
JP2006128475A (en) Semiconductor laser
JPH1084130A (en) Light emitting element
JP2004037485A (en) Semiconductor optical modulator and semiconductor optical device
JP2671317B2 (en) Semiconductor laser
EP3970246B1 (en) Optical device with passive window
JPH07321406A (en) Semiconductor laser device
JP4274393B2 (en) Semiconductor light emitting device
JP4488559B2 (en) Semiconductor laser device
JPH01140680A (en) Light emitting diode chip
JP2584607B2 (en) Semiconductor laser
JPH0548197A (en) Distribution feedback type semiconductor laser
JP2001177193A (en) Semiconductor laser device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050201