JPH0797687B2 - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPH0797687B2
JPH0797687B2 JP60099556A JP9955685A JPH0797687B2 JP H0797687 B2 JPH0797687 B2 JP H0797687B2 JP 60099556 A JP60099556 A JP 60099556A JP 9955685 A JP9955685 A JP 9955685A JP H0797687 B2 JPH0797687 B2 JP H0797687B2
Authority
JP
Japan
Prior art keywords
semiconductor laser
film
laser device
dielectric film
quantum well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60099556A
Other languages
Japanese (ja)
Other versions
JPS61258488A (en
Inventor
和久 魚見
直樹 茅根
俊 梶村
董 福沢
義光 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60099556A priority Critical patent/JPH0797687B2/en
Publication of JPS61258488A publication Critical patent/JPS61258488A/en
Publication of JPH0797687B2 publication Critical patent/JPH0797687B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体レーザに係り、特に民生用において要求
される無収差で低雑音の半導体レーザに関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser, and more particularly, to an aberration-free and low-noise semiconductor laser required for consumer use.

〔発明の背景〕[Background of the Invention]

従来の半導体レーザにおいて、戻り光による雑音を抑制
するためには、自励発振を起すことが有効であることが
林他、電子通信学会技術研究報告、第84−30号、第65頁
に記載されている。しかし、この方法においては非点収
差が大きく(10μm程度)なる問題がある。また、前記
文献には非点収差を小さくし、かつ戻り光による雑音を
抑制するためには屈折率導波形半導体レーザの端面を高
反射率にする方法が開示されているが、この場合は戻り
光が1%以上になると、相対雑音強度(R/N)が10-12Hz
-1まで上昇し、さらに内部の光パワー密度が高くなつて
信頼性を低下させるという問題があつた。
In a conventional semiconductor laser, it is effective to induce self-oscillation in order to suppress the noise due to the returning light. See Hayashi et al., Technical Report of IEICE, 84-30, page 65. Has been done. However, this method has a problem that astigmatism is large (about 10 μm). Further, in order to reduce the astigmatism and suppress the noise due to the returning light, the above-mentioned document discloses a method of making the end surface of the index-guided semiconductor laser have a high reflectance. Relative noise intensity (R / N) is 10 -12 Hz when the light exceeds 1%
However, there was a problem that the optical power density increased to -1 and the optical power density inside became high, and the reliability was lowered.

〔発明の目的〕[Object of the Invention]

本発明の目的は、レーザ光の収差が少なく、低雑音でか
つ信頼性の高い半導体レーザを提供することにある。
It is an object of the present invention to provide a highly reliable semiconductor laser with less aberration of laser light, low noise.

〔発明の概要〕[Outline of Invention]

本発明者らは、キヤリア密度の変動に対する屈折率変化
が少なく、かつ低しきい値電流でレーザ発振をするよう
に形成した量子井戸半導体レーザの2つの反射面に誘電
体の多層膜を形成した場合には、レーザ光の収差が少な
く、戻り光が10%程度まで雑音が少ない(R/N<10-14Hz
-1)半導体レーザが得られることを見出した。さらに該
反射面の反射率を60%以上にするとその効果が顕著にな
ることも見出した。
The present inventors formed a multilayered dielectric film on two reflecting surfaces of a quantum well semiconductor laser formed so that the change in the refractive index with respect to the change in the carrier density is small and the laser oscillation is performed at a low threshold current. In this case, the aberration of the laser light is small, and the noise of the returned light is about 10% (R / N <10 -14 Hz
-1 ) We have found that a semiconductor laser can be obtained. It was also found that the effect becomes remarkable when the reflectance of the reflecting surface is set to 60% or more.

また、上記誘電体膜の膜厚は、レーザ光の波長をλと
し、誘電体の屈折率をnとすると、λ/4nとすること、
および誘電体膜を2層膜で構成することを見出した。こ
の2層膜の構成は、屈折率がn1で、膜厚がλ/4n1の第1
の誘電体膜と、屈折率がn1より大きいn2で、膜厚がλ/4
n2の第2の誘電体膜からなる。
The thickness of the dielectric film is λ / 4n, where λ is the wavelength of the laser light and n is the refractive index of the dielectric.
It was also found that the dielectric film is composed of a two-layer film. The structure of this two-layer film is the first with a refractive index of n 1 and a film thickness of λ / 4n 1 .
With a dielectric film of n 2 and a refractive index of n 2 larger than n 1 and a film thickness of λ / 4
It consists of a second dielectric film of n 2 .

また、該2層膜を2以上積層することにより、膜の強度
増加などの効果があることも見出した。
It was also found that stacking two or more of the two-layer film has an effect of increasing the strength of the film.

本発明による反射面の反射率は高い程よいことは云うま
でもないが、60%以上であれば本発明の効果が得られ
た。
Needless to say, the higher the reflectance of the reflecting surface according to the present invention, the better, but the effect of the present invention was obtained when the reflectance was 60% or more.

〔発明の実施例〕Example of Invention

以下、本発明の実施例を説明する。 Examples of the present invention will be described below.

第1図(a)は、本発明による半導体レーザ装置の側面
図である。第1図(b)は量子井戸層5の一部5′の拡
大図である。
FIG. 1 (a) is a side view of a semiconductor laser device according to the present invention. FIG. 1 (b) is an enlarged view of a part 5 ′ of the quantum well layer 5.

n型GaAs基板7の上に、n型Ga0.55Al0.45Asクラツド層
4およびp型GaAsキヤツプ層3をMOCVD法にて順次形成
した。次にP型電極8とn側電極9を形成した後、へき
開法により、共振器長300μmの半導体レーザを得た。
次に、両方の反射面に第1の誘電体膜1として、SiO
2(n1:1.45)を膜厚134nmにして形成して、その上に第
2の誘電体膜2として膜厚59nmの非晶質Si(n2:3.3)膜
を形成した。この2層膜の形成により反射面の反射率は
75%になつた。
An n-type Ga 0.55 Al 0.45 As cladding layer 4 and a p-type GaAs cap layer 3 were sequentially formed on the n-type GaAs substrate 7 by MOCVD. Next, after forming the P-type electrode 8 and the n-side electrode 9, the semiconductor laser having a cavity length of 300 μm was obtained by the cleavage method.
Next, SiO 2 is used as the first dielectric film 1 on both reflecting surfaces.
2 (n 1 : 1.45) was formed to a film thickness of 134 nm, and an amorphous Si (n 2 : 3.3) film having a film thickness of 59 nm was formed thereon as the second dielectric film 2. By forming this two-layer film, the reflectance of the reflecting surface is
It has reached 75%.

上記量子井戸層は、厚さ100AのGa0.9Al0.1As層5bを5
層、厚さ30AのGa0.7Al0.3As層5aをb層、交互に積層し
たものである。
The quantum well layer is a Ga 0.9 Al 0.1 As layer 5b with a thickness of 100 A.
This is a layer in which Ga 0.7 Al 0.3 As layers 5a having a thickness of 30 A and b layers are alternately laminated.

横モード制御のためのストライプ構造とし、ストライプ
幅は5μmとした。
The stripe structure was set for lateral mode control, and the stripe width was 5 μm.

本実施例のレーザの発郊波長は780nmで、しきい値電流
は30mAであつた。また、光出力5mW、温度50℃における
戻り光に対する相対雑音強度(R/N)の測定値を第2図
に示すが、戻り光量が5%以下においてR/Nは10-1Hz-1
程度であつた。
The departure wavelength of the laser of this example was 780 nm, and the threshold current was 30 mA. In addition, Fig. 2 shows the measured values of relative noise intensity (R / N) for return light at an optical output of 5 mW and a temperature of 50 ° C. When the amount of return light is 5% or less, R / N is 10 -1 Hz -1
It was about.

また、前記のストライプ幅は3〜15μmにおいて有効で
あつた。
Further, the stripe width was effective in the range of 3 to 15 μm.

誘電体膜を被着した端面の反射率は、材料、製造条件、
膜厚などにより40〜85%になるが、この反射率が50%以
上の場合には雑音低減の効果があつた。
The reflectance of the end surface coated with the dielectric film depends on the material, manufacturing conditions,
It becomes 40 to 85% depending on the film thickness, etc., but when this reflectance is 50% or more, there was a noise reduction effect.

実施例2 第3図に屈折率導波形の量子井戸半導体レーザの断面を
示すが、本実施例ではこの構造の半導体レーザの端面に
実施例と同様の誘電体膜を被着して反射率75%の反射膜
を形成した。n型GaAs光吸収層11により電流狭窄を行つ
ているので、本実施例の半導体レーザのしきい電流は5m
Aと極めて低い値を示し、また駆動電30mAで5mW光出力が
得られ、温度が10〜50℃における戻り光量に対する相対
雑音強度(R/N)は第4図に示すように、戻り光量が10
%以下の時、10-5Hz-1であつた。また、非点収差は1μ
m以下であつた。
Embodiment 2 FIG. 3 shows a cross section of a refractive index guided quantum well semiconductor laser. In this embodiment, a dielectric film similar to that of the embodiment is applied to the end face of a semiconductor laser of this structure and a reflectance of 75 is obtained. % Reflective film was formed. Since the current is confined by the n-type GaAs light absorption layer 11, the threshold current of the semiconductor laser of this embodiment is 5 m.
As shown in Fig. 4, the relative noise intensity (R / N) with respect to the amount of return light at a temperature of 10 to 50 ° C is as shown in Fig. 4. Ten
% Was less than 10 -5 Hz -1 . Astigmatism is 1μ
It was less than m.

実施例3 第5図に他の屈折率導波形量子井戸半導体レーザの構造
を示す。この構造の半導体レーザの両端面に実施例1と
同様に誘電体膜により端面の反射率を75%に改善して低
雑音化を図つた。この構造においてZn拡散領域16による
電流狭窄の作用で活性領域5を制限している。
Embodiment 3 FIG. 5 shows the structure of another index guided quantum well semiconductor laser. Similar to the first embodiment, a dielectric film is applied to both end faces of the semiconductor laser having this structure to improve the reflectivity of the end faces to 75% to reduce noise. In this structure, the active region 5 is limited by the action of current confinement by the Zn diffusion region 16.

この半導体レーザのしきい電流値10mAで、また電流40mA
で5mWの光出力を得た。光出力5mWにおける相対雑音強度
は実施例2と同様であつた。また非点収差は2μm以下
であつた。
This semiconductor laser has a threshold current value of 10 mA and a current of 40 mA.
The optical output of 5mW was obtained. The relative noise intensity at an optical output of 5 mW was the same as in Example 2. The astigmatism was 2 μm or less.

本発明の実施例における半導体レーザの寿命は70℃で光
出力5nWのとき、平均5000時間であつた。
The lifetime of the semiconductor laser in the example of the present invention was 5,000 hours on average at 70 ° C. and an optical output of 5 nW.

また、量子井戸層の厚さは10〜20A、バリヤ層の厚さは1
0〜100A、量子井戸層Alのモル比Wは、0〜0.3、バリヤ
層のAlのモル比Bは0.15〜0.8(ただしW<B)のいず
れかの組合わせにおいて同様の結果が得られた。
The thickness of the quantum well layer is 10 to 20A, and the thickness of the barrier layer is 1.
Similar results were obtained in any combination of 0 to 100 A, the molar ratio W of the quantum well layer Al was 0 to 0.3, and the molar ratio B of Al of the barrier layer was 0.15 to 0.8 (where W <B). .

さらに、量子井戸構造として光ガイド層の屈折率および
禁制帯幅が膜厚の方向に分布しているGRIN−SCH構造(G
raded−Index−Separrate−confinement−Heterostruct
ure)等に対しても同様に適用することができる。
Furthermore, as a quantum well structure, the GRIN-SCH structure (GIN-SCH structure in which the refractive index and the forbidden band width of the optical guide layer are distributed in the thickness direction
raded−Index−Separrate−confinement−Heterostruct
ure) etc. can be similarly applied.

以上は第1の誘電体膜としてSiO2の場合について述べた
が、誘電体膜としてAl2O3,BeO,Si3N4でも同様の効果が
確認された。
Although the case where SiO 2 is used as the first dielectric film has been described above, similar effects have been confirmed when using Al 2 O 3 , BeO, Si 3 N 4 as the dielectric film.

また、本実施例に於いては第1の誘電体膜と第2の誘電
体膜の2層膜を1組用いて端面の反射率を75%程度に向
上させたが2組以上用いても同様の効果が得られた。ま
た、半導体としてInGaAsP系やInGaP系を用いた半導体レ
ーザにも本発明は適用できた。レーザの構造としては前
記実施例で示した3層導波路を基本とするものに限ら
ず、活性層の片側に隣接して光ガイド層を設けるLOC(L
arge Optical Caving)構造や、活性層の両側にそれぞ
れ隣接して光ガイド層を設けるSCH(Graded−Index−Se
parate−confinement−Heterostructure)構造にも本発
明を適用することができた。
Further, in the present embodiment, the reflectance of the end face is improved to about 75% by using one set of the two-layer film of the first dielectric film and the second dielectric film, but even if two or more sets are used. Similar effects were obtained. The present invention can also be applied to a semiconductor laser using an InGaAsP system or an InGaP system as a semiconductor. The structure of the laser is not limited to the one based on the three-layer waveguide shown in the above-mentioned embodiment, and the LOC (L (L
arge Optical Caving) structure or SCH (Graded-Index-Se) structure in which optical guide layers are provided adjacent to both sides of the active layer.
The present invention can also be applied to a parate-confinement-Heterostructure) structure.

また、前記実施例において導波形を全て反対にした構造
(pをnに、nをpに置換えた構造)においても同様の
結果が得られた。
Similar results were also obtained in the structure in which the waveguide types were all reversed in the above-mentioned embodiment (the structure in which p was replaced by n and n was replaced by p).

〔発明の効果〕 本発明によれば、レーザ光の収差が少なく、低雑音でか
つ信頼性の高い半導体レーザが実用化されるので、光記
録技術、光通信技術などの光応用技術の発展に寄与する
効果があり、たとえば、光デイスク装置における光学系
の簡便化および情報読み出し時のS/N比向上に顕著な効
果がある。
[Advantages of the Invention] According to the present invention, since a semiconductor laser with little aberration of laser light, low noise and high reliability is put into practical use, it is possible to develop optical application technologies such as optical recording technology and optical communication technology. There is an effect of contributing, for example, there is a remarkable effect in simplifying the optical system in the optical disk device and improving the S / N ratio at the time of reading information.

【図面の簡単な説明】[Brief description of drawings]

第1図,第3図および第5図は本発明の実施例を示すレ
ーザーの構造図、第2図および第4図は、戻り光誘起雑
音の測定例を示す図である。 1……第1の誘電体膜、2……第2の誘電体膜、3……
p−GaAsキヤツプ層、4……p−GaAlAsクラツド層、5
……多重量子井戸層、5b……井戸層、5a……バリヤ層、
6……n−GaAlAsクラツド層、7……n−GaAs基板、8
……p−側電極、9……n側電極、10……n−GaAsバツ
フア層、11……n−GaAs光吸収層、12……p−GaAlAs埋
めこみクラツド層、13……p−GaAs基板、14……p−Ga
AlAs光ガイド層、15……量子井戸を無秩序化した層、16
……Zn拡散領域、17……n−GaAsキヤツプ層、18……Si
O2膜。
FIGS. 1, 3 and 5 are structural views of a laser showing an embodiment of the present invention, and FIGS. 2 and 4 are diagrams showing measurement examples of return light induced noise. 1 ... 1st dielectric film, 2 ... 2nd dielectric film, 3 ...
p-GaAs cap layer, 4 ... p-GaAlAs cladding layer, 5
...... Multiple quantum well layer, 5b …… Well layer, 5a …… Barrier layer,
6 ... n-GaAlAs cladding layer, 7 ... n-GaAs substrate, 8
... p-side electrode, 9 ... n-side electrode, 10 ... n-GaAs buffer layer, 11 ... n-GaAs light absorption layer, 12 ... p-GaAlAs embedded cladding layer, 13 ... p-GaAs substrate , 14 …… p-Ga
AlAs optical guide layer, 15 ... Layer with disordered quantum wells, 16
...... Zn diffusion region, 17 …… n-GaAs cap layer, 18 …… Si
O 2 film.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 福沢 董 東京都国分寺市東恋ヶ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 佐々木 義光 東京都国分寺市東恋ヶ窪1丁目280番地 株式会社日立製作所中央研究所内 (56)参考文献 特開 昭59−171186(JP,A) 特開 昭59−145588(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor, Fukuzawa, 1-280 Higashi Koigakubo, Kokubunji, Tokyo, Central Research Laboratory, Hitachi, Ltd. (72) Inventor, Yoshimitsu Sasaki 1-280, Higashi Koigakubo, Kokubunji, Tokyo Hitachi, Ltd. Central Research Laboratory (56) References JP 59-171186 (JP, A) JP 59-145588 (JP, A)

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】厚さが電子波のドウ・ブロイ波長以下の量
子井戸層を少なくとも1以上有する半導体レーザにおい
て、共振波長がλの光共振器を構成する2つの反射面の
それぞれに、屈折率がn1で膜厚がλ/4n1の第1の誘電体
膜と屈折率がn2(ただしn2>n1)で膜厚がλ/4n2の第2
の誘電体膜とを積層した多層膜を有し、かつ上記2つの
反射面の反射率がそれぞれ50%以上であることを特徴と
する半導体レーザ装置。
1. A semiconductor laser having at least one quantum well layer having a thickness equal to or less than the Dow-Broglie wavelength of an electron wave, wherein each of two reflecting surfaces constituting an optical resonator having a resonance wavelength of λ has a refractive index. Is n 1 and the film thickness is λ / 4n 1 and the second dielectric film is n 2 (where n 2 > n 1 ) and the film thickness is λ / 4n 2 .
A semiconductor laser device having a multilayer film in which the above dielectric film is laminated, and the reflectance of each of the two reflecting surfaces is 50% or more.
【請求項2】上記量子井戸層が、複数の量子井戸層から
なる多重量子井戸構造を有することを特徴とする特許請
求の範囲第1項記載の半導体レーザ装置。
2. The semiconductor laser device according to claim 1, wherein the quantum well layer has a multiple quantum well structure composed of a plurality of quantum well layers.
【請求項3】上記多重量子井戸構造がGRIN−SCH(Grade
d−Index−Separate−Confinement−Heterostructure)
型であることを特徴とする特許請求の範囲第2項記載の
半導体レーザ装置。
3. The multi-quantum well structure has a GRIN-SCH (Grade
d-Index-Separate-Confinement-Heterostructure)
The semiconductor laser device according to claim 2, wherein the semiconductor laser device is a mold.
【請求項4】上記第1の誘電体膜がSiO2膜、Al2O3膜、B
eO膜、Si3N4膜のいずれかで、上記第2の誘電体膜が非
晶質Si膜であることを特徴とする特許請求の範囲第1項
から第3項のいずれかに記載の半導体レーザ装置。
4. The first dielectric film is a SiO 2 film, an Al 2 O 3 film, B
4. The eO film or the Si 3 N 4 film, and the second dielectric film is an amorphous Si film, according to any one of claims 1 to 3. Semiconductor laser device.
【請求項5】上記多層膜は、上記第1の誘電体膜と第2
の誘電体膜とを積層した2層膜を1組有することを特徴
とする特許請求の範囲第1項から第4項のいずれかに記
載の半導体レーザ装置。
5. The multilayer film comprises a first dielectric film and a second dielectric film.
5. The semiconductor laser device according to claim 1, wherein the semiconductor laser device has one set of two-layer films in which the above dielectric film is laminated.
【請求項6】上記多層膜は、上記第1の誘電体膜と第2
の誘電体膜とを積層した2層膜を2組有することを特徴
とする特許請求の範囲第1項から第4項のいずれかに記
載の半導体レーザ装置。
6. The multilayer film comprises a first dielectric film and a second dielectric film.
The semiconductor laser device according to any one of claims 1 to 4, wherein the semiconductor laser device has two sets of two-layer films in which the above-mentioned dielectric film is laminated.
【請求項7】上記2つの反射面の反射率がそれぞれ60%
以上であることを特徴とする特許請求の範囲第1項から
第6項のいずれかに記載の半導体レーザ装置。
7. The reflectance of each of the two reflecting surfaces is 60%.
It is above, The semiconductor laser device in any one of Claim 1 to 6 characterized by the above-mentioned.
【請求項8】上記半導体レーザ装置の光導波機構が屈折
率導波形であることを特徴とする特許請求の範囲第1項
から第6項のいずれかに記載の半導体レーザ装置。
8. The semiconductor laser device according to claim 1, wherein the optical waveguide mechanism of the semiconductor laser device is a refractive index waveguide type.
JP60099556A 1985-05-13 1985-05-13 Semiconductor laser device Expired - Lifetime JPH0797687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60099556A JPH0797687B2 (en) 1985-05-13 1985-05-13 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60099556A JPH0797687B2 (en) 1985-05-13 1985-05-13 Semiconductor laser device

Publications (2)

Publication Number Publication Date
JPS61258488A JPS61258488A (en) 1986-11-15
JPH0797687B2 true JPH0797687B2 (en) 1995-10-18

Family

ID=14250430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60099556A Expired - Lifetime JPH0797687B2 (en) 1985-05-13 1985-05-13 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPH0797687B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2752061B2 (en) * 1987-02-27 1998-05-18 オムロン株式会社 Quantum well semiconductor laser
JPH07105558B2 (en) * 1987-03-19 1995-11-13 三洋電機株式会社 Semiconductor laser
JP2738723B2 (en) * 1988-11-28 1998-04-08 株式会社日立製作所 Semiconductor laser device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59171186A (en) * 1982-11-12 1984-09-27 Fujitsu Ltd Semiconductor light emitting device
JPS59145588A (en) * 1983-02-09 1984-08-21 Hitachi Ltd Semiconductor laser device

Also Published As

Publication number Publication date
JPS61258488A (en) 1986-11-15

Similar Documents

Publication Publication Date Title
EP0358842B1 (en) Semiconductor laser device and method of manufacturing same
JP4219010B2 (en) Semiconductor laser device
US5832018A (en) Semiconductor laser device
JP3576560B2 (en) Semiconductor laser device
JP3859839B2 (en) Refractive index semiconductor laser device
JPH0797687B2 (en) Semiconductor laser device
KR20060112257A (en) Semiconductor laser device
US7215694B2 (en) Semiconductor laser device
US6856636B2 (en) Semiconductor laser device
US6862311B2 (en) Semiconductor laser device
JPH11238940A (en) Manufacture of semiconductor laser and semiconductor laser manufactured by the method
JP3876023B2 (en) Semiconductor laser element
JP3246148B2 (en) Semiconductor laser and method of manufacturing the same
JP2003037335A (en) Surface emission semiconductor laser element
JP2723921B2 (en) Semiconductor laser device
JPH09270563A (en) Semiconductor laser element and manufacturing method thereof
JP2001168458A (en) Semiconductor laser
JP2794743B2 (en) Quantum well semiconductor laser device
JP3710313B2 (en) Semiconductor laser element
JP3166178B2 (en) Semiconductor laser
JP3109481B2 (en) Semiconductor laser device and method of manufacturing the same
JP3234282B2 (en) Semiconductor laser device
JP2000236141A (en) Semiconductor light emitting device
US6690701B2 (en) Semiconductor laser device
JPH0799363A (en) Semiconductor light-emitting device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term