JPH07302953A - Semiconductor laser element - Google Patents

Semiconductor laser element

Info

Publication number
JPH07302953A
JPH07302953A JP11768194A JP11768194A JPH07302953A JP H07302953 A JPH07302953 A JP H07302953A JP 11768194 A JP11768194 A JP 11768194A JP 11768194 A JP11768194 A JP 11768194A JP H07302953 A JPH07302953 A JP H07302953A
Authority
JP
Japan
Prior art keywords
semiconductor laser
multilayer reflective
reflective film
types
laser device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11768194A
Other languages
Japanese (ja)
Inventor
Norihiro Iwai
則広 岩井
Akihiko Kasukawa
秋彦 粕川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP11768194A priority Critical patent/JPH07302953A/en
Publication of JPH07302953A publication Critical patent/JPH07302953A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To provide a semiconductor laser element which satisfactorily radiates heat generated in an active layer and exhibits improved operability. CONSTITUTION:A semiconductor laser element has multilayer reflective films 12 and 13 for reflecting a laser beam. Each of the multilayer reflective films 12 and 13 is constituted by alternately stacking two types of layers having different refractive indexes. In the semiconductor laser element in which the optical thickness of the two types of layers is lambda/4 (lambda: laser oscillation wavelength), one of the two types of layers constituting the multilayer reflective films 12 and 13 is made of AlN, GaP or AlP.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レーザ光を反射する多
層反射膜を有する半導体レーザ素子に関し、特に熱放散
のよい多層反射膜に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser device having a multilayer reflective film that reflects laser light, and more particularly to a multilayer reflective film having good heat dissipation.

【0002】[0002]

【従来の技術】半導体レーザ素子においては、光の共振
器を構成するために、一対の平行な反射膜を形成する。
例えば、従来の垂直共振器型面発光半導体レーザ素子
は、図1に示すような断面構造を形成している。図中、
1はn型InP基板、2はn型InGaAsPエッチン
グ停止層、3はn型InPクラッド層、4はInGaA
sP活性層、5はp型InPクラッド層、6はp型In
Pブロッキング層、7はn型InPブロッキング層、8
はp型InPクラッド層、9はp型InGaAsコンタ
クト層、10はp側電極、11はn側電極、12、13
は高反射膜である。上記半導体レーザ素子において、高
反射膜12はα−Si/SiO2 5ペアからなる誘電体
多層反射膜からなり、高反射膜13は同じ4ペアの誘電
体多層反射膜からなる。ペアをなすα−Si(アモルフ
ァス−Si)とSiO2 の各膜厚は、それぞれ発振波長
の1/4の光学的厚さ、λ/4n(λ:発振波長、n:
屈折率)に設定される。反射率はペア数により決まり、
1ペアで80%、2ペアで96%、3ペアで98%、4
ペアで99%、5ペアで99%以上の反射率となる。
2. Description of the Related Art In a semiconductor laser device, a pair of parallel reflecting films are formed in order to form an optical resonator.
For example, a conventional vertical cavity surface emitting semiconductor laser device has a sectional structure as shown in FIG. In the figure,
1 is an n-type InP substrate, 2 is an n-type InGaAsP etching stop layer, 3 is an n-type InP cladding layer, 4 is InGaA
sP active layer, 5 p-type InP clad layer, 6 p-type In
P blocking layer, 7 is n-type InP blocking layer, 8
Is a p-type InP clad layer, 9 is a p-type InGaAs contact layer, 10 is a p-side electrode, 11 is an n-side electrode, 12, 13
Is a highly reflective film. In the above semiconductor laser device, the high reflection film 12 is made of a dielectric multilayer reflection film made of α-Si / SiO 2 5 pairs, and the high reflection film 13 is made of the same 4 pairs of dielectric multilayer reflection films. The film thicknesses of α-Si (amorphous-Si) and SiO 2 forming a pair are λ / 4n (λ: oscillation wavelength, n: optical thickness of 1/4 of oscillation wavelength, respectively).
Refractive index). The reflectance is determined by the number of pairs,
80% for 1 pair, 96% for 2 pairs, 98% for 3 pairs, 4
The reflectance is 99% for the pair and 99% or more for the pair.

【0003】上記半導体レーザ素子は、活性層4の上下
に配置された高反射膜12と高反射膜13で共振器を形
成して、レーザ発振をおこなう。また、この半導体レー
ザ素子14は、図2に示すように、Auパッド15を介
して、ジャンクションダウンにSiなどのヒートシンク
16上にボンディングされ、活性層4で発生する熱を効
率よく放散している。この熱放散は、面発光半導体レー
ザ素子において、特に重要な課題になっている。その理
由は、熱放散が悪いと、しきい値電流密度が高くなり、
素子抵抗も大きくなるため、発熱により室温での動作が
困難になるからである。多層反射膜は、上記例のように
誘電体多層膜で構成されるとは限らず、半導体多層膜で
構成される場合もある。例えば、InP/InGaAs
P(λg =1.1μm)で構成される半導体多層膜が用
いられる。半導体多層膜を反射膜に用いると、素子作製
プロセスが容易になるという利点がある。一方、誘電体
多層膜を反射膜に用いると、少ないペア数で高反射率が
得られるが、素子作製プロセスが複雑になる。このよう
な多層反射膜のペアを構成する材質は、屈折率、格子歪
み、熱膨張係数、成膜条件などを考慮して選択する。屈
折率差の大きい材質でペアを構成すると、大きな反射率
が得られ、かつ、その帯域も広くなる。
In the above semiconductor laser device, a resonator is formed by the high reflection film 12 and the high reflection film 13 arranged above and below the active layer 4 to perform laser oscillation. Further, as shown in FIG. 2, the semiconductor laser device 14 is bonded to a heat sink 16 such as Si in a junction-down manner via Au pads 15 to efficiently dissipate heat generated in the active layer 4. . This heat dissipation is a particularly important issue in the surface emitting semiconductor laser device. The reason is that if the heat dissipation is poor, the threshold current density becomes high,
This is because the element resistance also increases, and it becomes difficult to operate at room temperature due to heat generation. The multilayer reflective film is not limited to the dielectric multilayer film as in the above example, but may be a semiconductor multilayer film. For example, InP / InGaAs
A semiconductor multilayer film composed of P (λ g = 1.1 μm) is used. The use of the semiconductor multilayer film as the reflective film has an advantage of facilitating the device manufacturing process. On the other hand, when the dielectric multilayer film is used for the reflective film, high reflectance can be obtained with a small number of pairs, but the device manufacturing process becomes complicated. The material forming such a pair of multilayer reflective films is selected in consideration of the refractive index, lattice distortion, coefficient of thermal expansion, film forming conditions and the like. When the pair is made of a material having a large difference in refractive index, a large reflectance can be obtained and the band thereof can be widened.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述の
面発光半導体レーザ素子では、活性層に発生した熱の放
散効率に限界があった。その原因は、高反射膜に熱伝導
率が低いSiO2 膜あるいはInGaAsPを用いてい
るからである。因みに、熱伝導率は、α−Siでは1.
45W/(cm・deg)、InPでは0.68W/
(cm・deg)であるのに対して、SiO2 では、そ
れらの50〜100分の1である0.014W/(cm
・deg)であり、InGaAsPでは0.036W/
(cm・deg)という低い値である。 本発明の目的
は、半導体レーザ素子、特に面発光半導体レーザ素子に
おいて、活性層で発生した熱を効率良く放散させること
ができる反射膜を提供することである。
However, in the above-mentioned surface emitting semiconductor laser device, there is a limit in the efficiency of dissipation of heat generated in the active layer. The reason is that the SiO 2 film or InGaAsP having a low thermal conductivity is used for the high reflection film. By the way, the thermal conductivity of α-Si is 1.
45 W / (cm · deg), InP 0.68 W /
(Cm · deg), SiO 2 is 0.014 W / (cm), which is 50 to 1/100 of those.
.Deg), and 0.036 W / for InGaAsP
It is a low value of (cm · deg). An object of the present invention is to provide a reflective film capable of efficiently dissipating heat generated in an active layer in a semiconductor laser device, particularly in a surface emitting semiconductor laser device.

【0005】[0005]

【課題を解決するための手段】本発明は上記問題点を解
決した半導体レーザ素子を提供するもので、レーザ光を
反射する多層反射膜を有し、該多層反射膜は屈折率の異
なる2種類の層を交互に重ねて構成されており、前記2
種類の層の光学的厚さはλ/4(λ:レーザ発振波長)
である半導体レーザ素子において、多層反射膜を構成す
る2種類の層のうちの1種類は、AlN、GaPまたは
AlPからなることを特徴とするものである。
DISCLOSURE OF THE INVENTION The present invention provides a semiconductor laser device which solves the above problems, and has a multilayer reflective film for reflecting laser light, and the multilayer reflective film is of two types having different refractive indices. The layers of the above are alternately stacked.
The optical thickness of each type of layer is λ / 4 (λ: laser oscillation wavelength)
In the semiconductor laser device as described above, one of the two types of layers forming the multilayer reflective film is characterized by being made of AlN, GaP or AlP.

【0006】[0006]

【作用】AlNの熱伝導率は1.0W/(cm・de
g)であり、Siと比較しても遜色のない値であり、S
iO2 の熱伝導率の数十倍の大きさである。また、Al
Nの屈折率は2.0であり、誘電体高反射膜として使用
できる。従って、AlNを含む多層反射膜を用いると、
従来のα−SiとSiO2 からなる多層反射膜よりも、
活性層に発生した熱の放散が向上する。また、GaPは
屈折率が2.5、熱伝導率が1.1W/(cm・de
g)であり、AlPは屈折率が3.4、熱伝導率が0.
9W/(cm・deg)である。このように、GaPお
よびAlPは、屈折率と熱伝導率がともに比較的大きな
値を有しているので、多層反射膜を構成する材質として
好適である。
[Function] The thermal conductivity of AlN is 1.0 W / (cm · de
g), which is comparable to Si, and S
It is several tens of times the thermal conductivity of iO 2 . Also, Al
N has a refractive index of 2.0 and can be used as a dielectric high reflection film. Therefore, when a multilayer reflective film containing AlN is used,
Compared with the conventional multilayer reflective film consisting of α-Si and SiO 2 ,
Dissipation of heat generated in the active layer is improved. GaP has a refractive index of 2.5 and a thermal conductivity of 1.1 W / (cm · de)
g), and AlP has a refractive index of 3.4 and a thermal conductivity of 0.
It is 9 W / (cm · deg). As described above, since GaP and AlP have a relatively large value in both the refractive index and the thermal conductivity, they are suitable as the material forming the multilayer reflective film.

【0007】[0007]

【実施例】以下、実施例に基づいて本発明を詳細に説明
する。 (実施例1)従来技術の説明に用いた図1に示す垂直共
振器型面発光半導体レーザ素子において、高反射膜1
2、13を、α−Si/AlNのペアからなる誘電体多
層反射膜で構成する。これらの高反射膜12、13は、
以下のように設定する。即ち、InGaAsP活性層4
の発振波長λを1.3μmとし、α−SiおよびAlN
の膜厚さを、それぞれ発振波長の1/4の光学的厚さ、
λ/4nに設定する。そうすると、α−Siの厚さは1
00nm(1.3×103 /(4×3.44))、Al
Nの厚さは160nm(1.3×103 /(4×2.
0))になる。
EXAMPLES The present invention will be described in detail below based on examples. (Embodiment 1) In the vertical cavity surface emitting semiconductor laser device shown in FIG.
2 and 13 are composed of a dielectric multilayer reflective film composed of a pair of α-Si / AlN. These highly reflective films 12 and 13 are
Set as follows. That is, the InGaAsP active layer 4
Oscillation wavelength λ of 1.3 μm, α-Si and AlN
The optical thickness of 1/4 of the oscillation wavelength,
Set to λ / 4n. Then, the thickness of α-Si is 1
00 nm (1.3 × 10 3 /(4×3.44)), Al
The thickness of N is 160 nm (1.3 × 10 3 / (4 × 2.
0)).

【0008】ところで、誘電体多層反射膜の反射率Rは
次式で表される。即ち、 R={〔nS (nH /nL 2n−1〕/〔nS (nH
L 2n+1〕}2 ここで、 nS :多層反射膜に隣接する層の屈折率 nH :高い方の屈折率 nL :低い方の屈折率 n :ペア数 従って、上記式から本実施例の誘電体多層反射膜の反射
率は、積層ペア数が3では95%、4ペアでは99%、
5ペアでは99.5%になる。上述のα−Si/AlN
高反射膜を用いることにより、従来のα−Si/SiO
2 高反射膜を用いた場合に比較して、CW発振の温度が
数10℃も上昇する。
By the way, the reflectance R of the dielectric multilayer reflection film is expressed by the following equation. That, R = {[n S (n H / n L ) 2n -1 ) / (n S (n H /
n L ) 2n +1]} 2 where n S : refractive index of a layer adjacent to the multilayer reflective film n H : higher refractive index n L : lower refractive index n: number of pairs Therefore, from the above equation, The reflectance of the dielectric multilayer reflective film of the example is 95% when the number of laminated pairs is 3, and 99% when the number of laminated pairs is 4,
It becomes 99.5% in 5 pairs. Α-Si / AlN mentioned above
By using a highly reflective film, conventional α-Si / SiO
(2) The temperature of CW oscillation rises by several tens of degrees Celsius as compared with the case where a high reflection film is used.

【0009】(実施例2)発振波長λを1.3μmとし
て、多層反射膜をGaP/InPで構成し、GaP層
(n=2.5)の厚さを130nm、InP層(n=
3.2)の厚さを100nmとする。従来のInP/I
nGaAsP多層反射膜と比較すると、InGaAsP
の熱伝導率が0.036W/(cm・deg)であり、
GaPの約1/20程度であることから、本実施例の熱
伝導率は従来例に比較して格段に向上する。その上、従
来例の屈折率差がInP/InGaAsPではΔn=
0.1と小さく、高反射の帯域が狭く、また、高反射率
を得るためのペア数も多くなる。一方、本実施例では、
10ペア程度で約99%以上の反射率が得られる。
(Embodiment 2) The oscillation wavelength λ is 1.3 μm, the multilayer reflection film is composed of GaP / InP, the thickness of the GaP layer (n = 2.5) is 130 nm, and the InP layer (n = n).
The thickness of 3.2) is 100 nm. Conventional InP / I
Compared with nGaAsP multilayer reflective film, InGaAsP
Has a thermal conductivity of 0.036 W / (cm · deg),
Since it is about 1/20 of that of GaP, the thermal conductivity of this embodiment is remarkably improved as compared with the conventional example. In addition, in the case where the refractive index difference of the conventional example is InP / InGaAsP, Δn =
It is as small as 0.1, the band of high reflection is narrow, and the number of pairs for obtaining high reflectance is large. On the other hand, in this embodiment,
With about 10 pairs, a reflectance of about 99% or more can be obtained.

【0010】(実施例3)発振波長λを1.3μmとし
て、多層反射膜をAlP/GaPで構成し、AlP層
(n=3.4)の厚さを96nm、GaP層(n=2.
5)の厚さを130nmとする。このように、実施例2
における高屈折率側をInP(熱伝導率:0.68W/
(cm・deg))からAlP(熱伝導率:0.9W/
(cm・deg))に代えると、熱放散および屈折率差
がともに大きくなり、8ペア程度で約99%の反射率が
得られる。なお、本実施例の多層反射膜は、面発光半導
体レーザ素子のみならず、ファブリ・ペロー型半導体レ
ーザ素子にも適用できる。
(Embodiment 3) The oscillation wavelength λ is 1.3 μm, the multilayer reflection film is made of AlP / GaP, the thickness of the AlP layer (n = 3.4) is 96 nm, and the GaP layer (n = 2.
The thickness of 5) is set to 130 nm. Thus, Example 2
The high refractive index side in InP (heat conductivity: 0.68 W /
(Cm · deg)) to AlP (thermal conductivity: 0.9 W /
If (cm · deg)) is substituted, both heat dissipation and the difference in refractive index become large, and a reflectance of about 99% can be obtained with about 8 pairs. The multilayer reflective film of this embodiment can be applied not only to the surface emitting semiconductor laser device but also to the Fabry-Perot type semiconductor laser device.

【0011】[0011]

【発明の効果】以上説明したように本発明によれば、レ
ーザ光を反射する多層反射膜を有し、該多層反射膜は屈
折率の異なる2種類の層を交互に重ねて構成されてお
り、前記2種類の層の光学的厚さはλ/4(λ:レーザ
発振波長)である半導体レーザ素子において、多層反射
膜を構成する2種類の層のうちの1種類は、AlN、G
aPまたはAlPからなるため、活性層に発生した熱の
放散がよくなるので、特に面発光半導体レーザ素子の動
作特性が向上するという優れた効果がある。
As described above, according to the present invention, there is provided a multi-layer reflective film that reflects laser light, and the multi-layer reflective film is formed by alternately laminating two kinds of layers having different refractive indexes. In the semiconductor laser device in which the optical thicknesses of the two types of layers are λ / 4 (λ: laser oscillation wavelength), one of the two types of layers forming the multilayer reflective film is AlN, G
Since it is made of aP or AlP, the heat generated in the active layer is well dissipated, so that there is an excellent effect that the operation characteristics of the surface emitting semiconductor laser device are improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】垂直共振器型面発光半導体レーザ素子の断面説
明図である。
FIG. 1 is a cross-sectional explanatory view of a vertical cavity surface emitting semiconductor laser device.

【図2】ヒートシンク上に上記半導体レーザ素子を搭載
した状態の説明図である。
FIG. 2 is an explanatory diagram showing a state in which the semiconductor laser device is mounted on a heat sink.

【符号の説明】[Explanation of symbols]

1 基板 2 エッチング停止層 3、5、8 クラッド層 4 活性層 6、7 ブロッキング層 9 コンタクト層 10、11 電極 12、13 高反射膜 14 半導体レーザ素子 15 Auパッド 16 ヒートシンク 1 substrate 2 etching stop layer 3, 5, 8 clad layer 4 active layer 6, 7 blocking layer 9 contact layer 10, 11 electrode 12, 13 highly reflective film 14 semiconductor laser device 15 Au pad 16 heat sink

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 レーザ光を反射する多層反射膜を有し、
該多層反射膜は屈折率の異なる2種類の層を交互に重ね
て構成されており、前記2種類の層の光学的厚さはλ/
4(λ:レーザ発振波長)である半導体レーザ素子にお
いて、多層反射膜を構成する2種類の層のうちの1種類
は、AlN、GaPまたはAlPからなることを特徴と
する半導体レーザ素子。
1. A multilayer reflection film for reflecting laser light,
The multilayer reflective film is formed by alternately stacking two types of layers having different refractive indexes, and the optical thickness of the two types of layers is λ /
In the semiconductor laser device having a wavelength of 4 (λ: laser oscillation wavelength), one of the two types of layers forming the multilayer reflective film is made of AlN, GaP or AlP.
【請求項2】 多層反射膜はGaPとAlNから構成さ
れていることを特徴とする請求項1記載の半導体レーザ
素子。
2. The semiconductor laser device according to claim 1, wherein the multilayer reflective film is composed of GaP and AlN.
JP11768194A 1994-05-06 1994-05-06 Semiconductor laser element Pending JPH07302953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11768194A JPH07302953A (en) 1994-05-06 1994-05-06 Semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11768194A JPH07302953A (en) 1994-05-06 1994-05-06 Semiconductor laser element

Publications (1)

Publication Number Publication Date
JPH07302953A true JPH07302953A (en) 1995-11-14

Family

ID=14717660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11768194A Pending JPH07302953A (en) 1994-05-06 1994-05-06 Semiconductor laser element

Country Status (1)

Country Link
JP (1) JPH07302953A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1146038A (en) * 1997-05-29 1999-02-16 Nichia Chem Ind Ltd Nitride semiconductor laser element and manufacture of the same
EP1298461A1 (en) * 2001-09-27 2003-04-02 Interuniversitair Microelektronica Centrum Vzw Distributed Bragg reflector comprising GaP and a semiconductor resonant cavity device comprising such DBR
EP1302791A1 (en) * 2001-09-27 2003-04-16 Interuniversitair Microelektronica Centrum Vzw Distributed Bragg Reflector comprising a GaP layer, and a semiconductor resonant cavity device comprising such a DBR
JP2004039717A (en) * 2002-07-01 2004-02-05 Ricoh Co Ltd Semiconductor distribution bragg reflector, surface luminescence type semiconductor laser, surface luminescence type semiconductor laser array, optical communication system, optical write-in system, and optical pick-up system
US7684456B2 (en) 1999-08-04 2010-03-23 Ricoh Company, Ltd. Laser diode and semiconductor light-emitting device producing visible-wavelength radiation
US7986721B2 (en) 2004-09-22 2011-07-26 Sumitomo Electric Industries, Ltd. Semiconductor optical device including a PN junction formed by a second region of a first conductive type semiconductor layer and a second conductive type single semiconductor layer

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1146038A (en) * 1997-05-29 1999-02-16 Nichia Chem Ind Ltd Nitride semiconductor laser element and manufacture of the same
US7684456B2 (en) 1999-08-04 2010-03-23 Ricoh Company, Ltd. Laser diode and semiconductor light-emitting device producing visible-wavelength radiation
US8009714B2 (en) 1999-08-04 2011-08-30 Ricoh Company, Ltd. Laser diode and semiconductor light-emitting device producing visible-wavelength radiation
US8537870B2 (en) 1999-08-04 2013-09-17 Ricoh Company, Limited Laser diode and semiconductor light-emitting device producing visible-wavelength radiation
EP1298461A1 (en) * 2001-09-27 2003-04-02 Interuniversitair Microelektronica Centrum Vzw Distributed Bragg reflector comprising GaP and a semiconductor resonant cavity device comprising such DBR
EP1302791A1 (en) * 2001-09-27 2003-04-16 Interuniversitair Microelektronica Centrum Vzw Distributed Bragg Reflector comprising a GaP layer, and a semiconductor resonant cavity device comprising such a DBR
JP2004039717A (en) * 2002-07-01 2004-02-05 Ricoh Co Ltd Semiconductor distribution bragg reflector, surface luminescence type semiconductor laser, surface luminescence type semiconductor laser array, optical communication system, optical write-in system, and optical pick-up system
JP4497796B2 (en) * 2002-07-01 2010-07-07 株式会社リコー Surface emitting semiconductor laser, surface emitting semiconductor laser array, optical communication system, optical writing system, and optical pickup system
US7986721B2 (en) 2004-09-22 2011-07-26 Sumitomo Electric Industries, Ltd. Semiconductor optical device including a PN junction formed by a second region of a first conductive type semiconductor layer and a second conductive type single semiconductor layer

Similar Documents

Publication Publication Date Title
US8023547B2 (en) Vertical extended cavity surface emission laser and method for manufacturing a light emitting component of the same
JP4928927B2 (en) Surface emitting semiconductor laser device
JP2863773B2 (en) Surface-emitting type semiconductor laser device
US8233514B2 (en) Semiconductor laser device
JPH07302953A (en) Semiconductor laser element
JP2008277625A (en) Semiconductor light-emitting element
JPH0533838B2 (en)
JP2007073631A (en) Semiconductor laser device
JP2001196685A (en) Semiconductor light element device
JPS645474B2 (en)
JPH05152674A (en) Surface light emitting semiconductor laser with outer modulator
JP2006128475A (en) Semiconductor laser
JP2006318970A (en) Semiconductor laser element
JP2967757B2 (en) Semiconductor laser device and method of manufacturing the same
JPH07321406A (en) Semiconductor laser device
JPH07162072A (en) Semiconductor laser having heterogeneous structure
JPH10303495A (en) Semiconductor laser
JPH06342958A (en) Surface light emitting semiconductor laser
JP2752061B2 (en) Quantum well semiconductor laser
JP7147979B2 (en) optical device
JPH07202320A (en) Semiconductor laser element
KR100532580B1 (en) Optical pumped semiconductor chip and vertical external cavity surface emitting laser system using the same
JPH07202319A (en) Quantum well semiconductor laser element
JPH09107156A (en) Semiconductor laser
JP2574670B2 (en) Surface emitting laser