JPH07302953A - Semiconductor laser element - Google Patents

Semiconductor laser element

Info

Publication number
JPH07302953A
JPH07302953A JP11768194A JP11768194A JPH07302953A JP H07302953 A JPH07302953 A JP H07302953A JP 11768194 A JP11768194 A JP 11768194A JP 11768194 A JP11768194 A JP 11768194A JP H07302953 A JPH07302953 A JP H07302953A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
semiconductor laser
multilayer reflective
layers
laser element
reflective film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11768194A
Other languages
Japanese (ja)
Inventor
Norihiro Iwai
Akihiko Kasukawa
則広 岩井
秋彦 粕川
Original Assignee
Furukawa Electric Co Ltd:The
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

PURPOSE: To provide a semiconductor laser element which satisfactorily radiates heat generated in an active layer and exhibits improved operability.
CONSTITUTION: A semiconductor laser element has multilayer reflective films 12 and 13 for reflecting a laser beam. Each of the multilayer reflective films 12 and 13 is constituted by alternately stacking two types of layers having different refractive indexes. In the semiconductor laser element in which the optical thickness of the two types of layers is λ/4 (λ: laser oscillation wavelength), one of the two types of layers constituting the multilayer reflective films 12 and 13 is made of AlN, GaP or AlP.
COPYRIGHT: (C)1995,JPO

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は、レーザ光を反射する多層反射膜を有する半導体レーザ素子に関し、特に熱放散のよい多層反射膜に関する。 The present invention relates to relates to a semiconductor laser device having a multilayer reflective film for reflecting the laser beam, more particularly good multilayer reflective film heat dissipation.

【0002】 [0002]

【従来の技術】半導体レーザ素子においては、光の共振器を構成するために、一対の平行な反射膜を形成する。 BACKGROUND OF THE INVENTION Semiconductor laser device, in order to form an optical resonator to form a pair of parallel reflective film.
例えば、従来の垂直共振器型面発光半導体レーザ素子は、図1に示すような断面構造を形成している。 For example, conventional vertical cavity surface emitting semiconductor laser element forms a cross-sectional structure as shown in FIG. 図中、 In the figure,
1はn型InP基板、2はn型InGaAsPエッチング停止層、3はn型InPクラッド層、4はInGaA 1 n-type InP substrate, 2 n-type InGaAsP etch stop layer, 3 n-type InP cladding layer, the 4 InGaAs
sP活性層、5はp型InPクラッド層、6はp型In sP active layer, 5 denotes a p-type InP cladding layer, the 6 p-type In
Pブロッキング層、7はn型InPブロッキング層、8 P blocking layer, 7 an n-type InP blocking layer, 8
はp型InPクラッド層、9はp型InGaAsコンタクト層、10はp側電極、11はn側電極、12、13 The p-type InP cladding layer, p-type InGaAs contact layer 9, the p-side electrode 10, 11 is n-side electrode, 12 and 13
は高反射膜である。 It is a high-reflection film. 上記半導体レーザ素子において、高反射膜12はα−Si/SiO 2 5ペアからなる誘電体多層反射膜からなり、高反射膜13は同じ4ペアの誘電体多層反射膜からなる。 In the semiconductor laser element, the high reflection film 12 is made of a dielectric multilayer reflection film made of α-Si / SiO 2 5 pairs, a high reflection film 13 is a dielectric multilayer reflection film of the same four pairs. ペアをなすα−Si(アモルファス−Si)とSiO 2の各膜厚は、それぞれ発振波長の1/4の光学的厚さ、λ/4n(λ:発振波長、n: Each thickness of the paired alpha-Si and (amorphous -Si) SiO 2 is 1/4 of the optical thickness of each oscillation wavelength, λ / 4n (λ: oscillation wavelength, n:
屈折率)に設定される。 Is set to the refractive index). 反射率はペア数により決まり、 Reflectance is determined by the number of pairs,
1ペアで80%、2ペアで96%、3ペアで98%、4 80% 1 pair, 96% in two pairs, 98% in three pairs, 4
ペアで99%、5ペアで99%以上の反射率となる。 99% in pairs, and 99% or more reflectivity at 5 pairs.

【0003】上記半導体レーザ素子は、活性層4の上下に配置された高反射膜12と高反射膜13で共振器を形成して、レーザ発振をおこなう。 [0003] The semiconductor laser device includes a high reflection film 12 disposed above and below the active layer 4 to form a resonator with a highly reflective film 13, perform laser oscillation. また、この半導体レーザ素子14は、図2に示すように、Auパッド15を介して、ジャンクションダウンにSiなどのヒートシンク16上にボンディングされ、活性層4で発生する熱を効率よく放散している。 Further, the semiconductor laser device 14, as shown in FIG. 2, through the Au pad 15 is bonded onto the heat sink 16 such as Si to the junction down, and efficiently dissipate the heat generated in the active layer 4 . この熱放散は、面発光半導体レーザ素子において、特に重要な課題になっている。 This heat dissipation, the surface-emission semiconductor laser devices, has become particularly important issue. その理由は、熱放散が悪いと、しきい値電流密度が高くなり、 The reason is that heat dissipation is poor, the threshold current density is increased,
素子抵抗も大きくなるため、発熱により室温での動作が困難になるからである。 Since the element resistance increases, it is because it is difficult to operate at room temperature due to heat generation. 多層反射膜は、上記例のように誘電体多層膜で構成されるとは限らず、半導体多層膜で構成される場合もある。 Multilayer reflective film is not limited to a composed of a dielectric multilayer film as in the above example, there is a case composed of semiconductor multilayer film. 例えば、InP/InGaAs For example, InP / InGaAs
P(λ g =1.1μm)で構成される半導体多層膜が用いられる。 Semiconductor multilayer film is used constituted by P (λ g = 1.1μm). 半導体多層膜を反射膜に用いると、素子作製プロセスが容易になるという利点がある。 With the semiconductor multilayer film reflection film, there is an advantage that facilitates device fabrication process. 一方、誘電体多層膜を反射膜に用いると、少ないペア数で高反射率が得られるが、素子作製プロセスが複雑になる。 On the other hand, the use of a dielectric multilayer film reflective film, the high reflectance can be obtained with a small number of pairs, the element manufacturing process is complicated. このような多層反射膜のペアを構成する材質は、屈折率、格子歪み、熱膨張係数、成膜条件などを考慮して選択する。 Material constituting the pair of such multilayer reflection film, refractive index, lattice distortion, thermal expansion coefficient, is selected in consideration of the film formation conditions. 屈折率差の大きい材質でペアを構成すると、大きな反射率が得られ、かつ、その帯域も広くなる。 When configuring a pair with greater material of refractive index difference, a large reflectivity can be obtained, and the band becomes wider.

【0004】 [0004]

【発明が解決しようとする課題】しかしながら、上述の面発光半導体レーザ素子では、活性層に発生した熱の放散効率に限界があった。 However [0005] In the above-mentioned surface-emitting semiconductor laser device, there is a limit to the efficiency of diffusion of the heat generated in the active layer. その原因は、高反射膜に熱伝導率が低いSiO 2膜あるいはInGaAsPを用いているからである。 The cause is that the thermal conductivity is using a low SiO 2 film or InGaAsP the high-reflection film. 因みに、熱伝導率は、α−Siでは1. Incidentally, thermal conductivity, the α-Si 1.
45W/(cm・deg)、InPでは0.68W/ 45W / (cm · deg), the InP 0.68W /
(cm・deg)であるのに対して、SiO 2では、それらの50〜100分の1である0.014W/(cm Against (cm · deg) is of a, the SiO 2, is one of them from 50 to 100 minutes 0.014 W / (cm
・deg)であり、InGaAsPでは0.036W/ · Deg) and is, in InGaAsP 0.036W /
(cm・deg)という低い値である。 It is a low value of (cm · deg). 本発明の目的は、半導体レーザ素子、特に面発光半導体レーザ素子において、活性層で発生した熱を効率良く放散させることができる反射膜を提供することである。 An object of the present invention, a semiconductor laser device, in particular a surface-emitting semiconductor laser element is to provide a reflecting film that can be efficiently dissipate heat generated in the active layer.

【0005】 [0005]

【課題を解決するための手段】本発明は上記問題点を解決した半導体レーザ素子を提供するもので、レーザ光を反射する多層反射膜を有し、該多層反射膜は屈折率の異なる2種類の層を交互に重ねて構成されており、前記2 The present invention SUMMARY OF THE INVENTION The present invention provides a semiconductor laser device in which the above-described problems, has a multilayer reflective film for reflecting the laser beam, the multilayer reflective film 2 kinds having different refractive index It is formed by stacking the layers alternately, the 2
種類の層の光学的厚さはλ/4(λ:レーザ発振波長) The optical thickness of the types of layers λ / 4 (λ: lasing wavelength)
である半導体レーザ素子において、多層反射膜を構成する2種類の層のうちの1種類は、AlN、GaPまたはAlPからなることを特徴とするものである。 In the semiconductor laser device is one type of the two types of layers constituting the multilayer reflective film, AlN, and is characterized in that consisting of GaP or AlP.

【0006】 [0006]

【作用】AlNの熱伝導率は1.0W/(cm・de [Action] thermal conductivity of AlN is 1.0W / (cm · de
g)であり、Siと比較しても遜色のない値であり、S A g), a no way inferior values ​​even in comparison with Si, S
iO 2の熱伝導率の数十倍の大きさである。 several tens of times the thermal conductivity of iO 2 is the size. また、Al In addition, Al
Nの屈折率は2.0であり、誘電体高反射膜として使用できる。 The refractive index of N is 2.0, it can be used as a dielectric body height reflective film. 従って、AlNを含む多層反射膜を用いると、 Therefore, the use of multilayer reflective films including AlN,
従来のα−SiとSiO 2からなる多層反射膜よりも、 Than multilayer reflection film composed of conventional alpha-Si and SiO 2,
活性層に発生した熱の放散が向上する。 Dissipation of the heat generated in the active layer is improved. また、GaPは屈折率が2.5、熱伝導率が1.1W/(cm・de Further, GaP has a refractive index of 2.5, a thermal conductivity of 1.1W / (cm · de
g)であり、AlPは屈折率が3.4、熱伝導率が0. A g), AlP has a refractive index of 3.4, a thermal conductivity 0.
9W/(cm・deg)である。 9W is a / (cm · deg). このように、GaPおよびAlPは、屈折率と熱伝導率がともに比較的大きな値を有しているので、多層反射膜を構成する材質として好適である。 Thus, GaP and AlP are the refractive index and thermal conductivity both have a relatively large value, it is suitable as a material constituting the multilayer reflective film.

【0007】 [0007]

【実施例】以下、実施例に基づいて本発明を詳細に説明する。 EXAMPLES Hereinafter, the present invention will be described in detail with reference to examples. (実施例1)従来技術の説明に用いた図1に示す垂直共振器型面発光半導体レーザ素子において、高反射膜1 (Example 1) in the vertical cavity surface emitting semiconductor laser element shown in FIG. 1 used in the description of the prior art, the high-reflection film 1
2、13を、α−Si/AlNのペアからなる誘電体多層反射膜で構成する。 The 2,13 and a dielectric multilayer reflection film made of α-Si / AlN pairs. これらの高反射膜12、13は、 These high reflection film 12 and 13,
以下のように設定する。 It is set as follows. 即ち、InGaAsP活性層4 In other words, InGaAsP active layer 4
の発振波長λを1.3μmとし、α−SiおよびAlN The oscillation wavelength λ and 1.3μm of, α-Si and AlN
の膜厚さを、それぞれ発振波長の1/4の光学的厚さ、 Film thickness of the respective quarter of the optical thickness of the oscillation wavelength,
λ/4nに設定する。 It is set to λ / 4n. そうすると、α−Siの厚さは1 Then, the thickness of the alpha-Si 1
00nm(1.3×10 3 /(4×3.44))、Al 00nm (1.3 × 10 3 /(4×3.44)),Al
Nの厚さは160nm(1.3×10 3 /(4×2. The thickness of the N is 160nm (1.3 × 10 3 / ( 4 × 2.
0))になる。 It becomes 0)).

【0008】ところで、誘電体多層反射膜の反射率Rは次式で表される。 By the way, the reflectivity R of a dielectric multilayer reflection film is expressed by the following equation. 即ち、 R={〔n S (n H /n L2n −1〕/〔n S (n H That, R = {[n S (n H / n L ) 2n -1 ) / (n S (n H /
L2n +1〕} 2ここで、 n S :多層反射膜に隣接する層の屈折率 n H :高い方の屈折率 n L :低い方の屈折率 n :ペア数 従って、上記式から本実施例の誘電体多層反射膜の反射率は、積層ペア数が3では95%、4ペアでは99%、 n L) 2n +1]} 2 where, n S: refractive index of the layer adjacent to the multilayer reflective film n H: higher refractive index n L: lower refractive index of n: number of pairs Accordingly, the present from the equation the reflectance of the dielectric multilayer reflection film of example 95% in the number of stacked pairs 3, 99% in 4 pairs,
5ペアでは99.5%になる。 5 consisting of 99.5% in pairs. 上述のα−Si/AlN Of the above-mentioned α-Si / AlN
高反射膜を用いることにより、従来のα−Si/SiO By using a high reflective film, conventional alpha-Si / SiO
2高反射膜を用いた場合に比較して、CW発振の温度が数10℃も上昇する。 2 as compared with the case of using a highly reflective film, the temperature of CW oscillation as several 10 ° C. increases.

【0009】(実施例2)発振波長λを1.3μmとして、多層反射膜をGaP/InPで構成し、GaP層(n=2.5)の厚さを130nm、InP層(n= [0009] (Example 2) 1.3 .mu.m oscillation wavelength lambda, and the multilayer reflective film in GaP / InP, the thickness of the GaP layer (n = 2.5) 130 nm, InP layer (n =
3.2)の厚さを100nmとする。 A thickness of 3.2) and 100nm. 従来のInP/I Conventional InP / I
nGaAsP多層反射膜と比較すると、InGaAsP Compared to nGaAsP multilayer reflective film, InGaAsP
の熱伝導率が0.036W/(cm・deg)であり、 Is the thermal conductivity is 0.036W / (cm · deg),
GaPの約1/20程度であることから、本実施例の熱伝導率は従来例に比較して格段に向上する。 Since about 1/20 of GaP, the thermal conductivity of this embodiment is remarkably improved as compared with the conventional example. その上、従来例の屈折率差がInP/InGaAsPではΔn= Moreover, the refractive index difference between the conventional example InP / InGaAsP the [Delta] n =
0.1と小さく、高反射の帯域が狭く、また、高反射率を得るためのペア数も多くなる。 As small as 0.1, narrow band high reflectivity, also be numerous pairs for obtaining high reflectivity. 一方、本実施例では、 On the other hand, in this embodiment,
10ペア程度で約99%以上の反射率が得られる。 About 99% or higher reflectance can be obtained in about 10 pairs.

【0010】(実施例3)発振波長λを1.3μmとして、多層反射膜をAlP/GaPで構成し、AlP層(n=3.4)の厚さを96nm、GaP層(n=2. [0010] (Example 3) The oscillation wavelength λ as 1.3 .mu.m, a multilayer reflection film composed of AlP / GaP, 96 nm the thickness of AlP layer (n = 3.4), GaP layer (n = 2.
5)の厚さを130nmとする。 The thickness of 5) and 130nm. このように、実施例2 Thus, Example 2
における高屈折率側をInP(熱伝導率:0.68W/ A high refractive index side InP (thermal conductivity at: 0.68 W /
(cm・deg))からAlP(熱伝導率:0.9W/ (Cm · deg)) from AlP (thermal conductivity: 0.9W /
(cm・deg))に代えると、熱放散および屈折率差がともに大きくなり、8ペア程度で約99%の反射率が得られる。 When substituted for (cm · deg)), heat dissipation and a refractive index difference becomes both large, about 99% of the reflectance can be obtained in about 8 pairs. なお、本実施例の多層反射膜は、面発光半導体レーザ素子のみならず、ファブリ・ペロー型半導体レーザ素子にも適用できる。 Incidentally, the multilayer reflective film of the present embodiment, not only the surface-emitting semiconductor laser element, can be applied to the Fabry-Perot type semiconductor laser device.

【0011】 [0011]

【発明の効果】以上説明したように本発明によれば、レーザ光を反射する多層反射膜を有し、該多層反射膜は屈折率の異なる2種類の層を交互に重ねて構成されており、前記2種類の層の光学的厚さはλ/4(λ:レーザ発振波長)である半導体レーザ素子において、多層反射膜を構成する2種類の層のうちの1種類は、AlN、G According to the present invention described above, according to the present invention has a multilayer reflective film for reflecting the laser beam, the multilayer reflective film is constituted by alternately stacking two kinds of layers with different refractive index , wherein the optical thickness of the two layers lambda / 4: the semiconductor laser device is (lambda lasing wavelength), one of the two types of layers constituting the multilayer reflective film, AlN, G
aPまたはAlPからなるため、活性層に発生した熱の放散がよくなるので、特に面発光半導体レーザ素子の動作特性が向上するという優れた効果がある。 Since consisting aP or AlP, since the dissipation of heat generated in the active layer is improved, there is an excellent effect that particularly improved operating characteristics of the surface emitting semiconductor laser device.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】垂直共振器型面発光半導体レーザ素子の断面説明図である。 1 is a cross sectional view showing a vertical-cavity surface-emitting semiconductor laser element.

【図2】ヒートシンク上に上記半導体レーザ素子を搭載した状態の説明図である。 FIG. 2 is an explanatory view of a state mounted with the semiconductor laser device on a heat sink.

【符号の説明】 DESCRIPTION OF SYMBOLS

1 基板 2 エッチング停止層 3、5、8 クラッド層 4 活性層 6、7 ブロッキング層 9 コンタクト層 10、11 電極 12、13 高反射膜 14 半導体レーザ素子 15 Auパッド 16 ヒートシンク 1 substrate 2 etch stop layer 3,5,8 cladding layer 4 active layers 6,7-blocking layer 9 contact layer 10, 11 electrodes 12 and 13 highly reflective film 14 semiconductor laser element 15 Au pad 16 heat sink

Claims (2)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 レーザ光を反射する多層反射膜を有し、 1. A has a multilayer reflective film for reflecting the laser beam,
    該多層反射膜は屈折率の異なる2種類の層を交互に重ねて構成されており、前記2種類の層の光学的厚さはλ/ Multilayer reflective film is formed by stacking alternately two kinds of layers having different refractive index, the optical thickness of the two layers is lambda /
    4(λ:レーザ発振波長)である半導体レーザ素子において、多層反射膜を構成する2種類の層のうちの1種類は、AlN、GaPまたはAlPからなることを特徴とする半導体レーザ素子。 4: In the semiconductor laser device is (lambda lasing wavelength), one of the two types of layers constituting the multilayer reflective film, AlN, semiconductor laser device characterized by comprising a GaP or AlP.
  2. 【請求項2】 多層反射膜はGaPとAlNから構成されていることを特徴とする請求項1記載の半導体レーザ素子。 2. A multilayer reflection film semiconductor laser device according to claim 1, characterized in that it is composed of GaP and AlN.
JP11768194A 1994-05-06 1994-05-06 Semiconductor laser element Pending JPH07302953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11768194A JPH07302953A (en) 1994-05-06 1994-05-06 Semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11768194A JPH07302953A (en) 1994-05-06 1994-05-06 Semiconductor laser element

Publications (1)

Publication Number Publication Date
JPH07302953A true true JPH07302953A (en) 1995-11-14

Family

ID=14717660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11768194A Pending JPH07302953A (en) 1994-05-06 1994-05-06 Semiconductor laser element

Country Status (1)

Country Link
JP (1) JPH07302953A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1298461A1 (en) * 2001-09-27 2003-04-02 Interuniversitair Microelektronica Centrum Vzw Distributed Bragg reflector comprising GaP and a semiconductor resonant cavity device comprising such DBR
EP1302791A1 (en) * 2001-09-27 2003-04-16 Interuniversitair Microelektronica Centrum Vzw Distributed Bragg Reflector comprising a GaP layer, and a semiconductor resonant cavity device comprising such a DBR
JP2004039717A (en) * 2002-07-01 2004-02-05 Ricoh Co Ltd Semiconductor distribution bragg reflector, surface luminescence type semiconductor laser, surface luminescence type semiconductor laser array, optical communication system, optical write-in system, and optical pick-up system
US7684456B2 (en) 1999-08-04 2010-03-23 Ricoh Company, Ltd. Laser diode and semiconductor light-emitting device producing visible-wavelength radiation
US7986721B2 (en) 2004-09-22 2011-07-26 Sumitomo Electric Industries, Ltd. Semiconductor optical device including a PN junction formed by a second region of a first conductive type semiconductor layer and a second conductive type single semiconductor layer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8009714B2 (en) 1999-08-04 2011-08-30 Ricoh Company, Ltd. Laser diode and semiconductor light-emitting device producing visible-wavelength radiation
US8537870B2 (en) 1999-08-04 2013-09-17 Ricoh Company, Limited Laser diode and semiconductor light-emitting device producing visible-wavelength radiation
US7684456B2 (en) 1999-08-04 2010-03-23 Ricoh Company, Ltd. Laser diode and semiconductor light-emitting device producing visible-wavelength radiation
EP1298461A1 (en) * 2001-09-27 2003-04-02 Interuniversitair Microelektronica Centrum Vzw Distributed Bragg reflector comprising GaP and a semiconductor resonant cavity device comprising such DBR
EP1302791A1 (en) * 2001-09-27 2003-04-16 Interuniversitair Microelektronica Centrum Vzw Distributed Bragg Reflector comprising a GaP layer, and a semiconductor resonant cavity device comprising such a DBR
JP2004039717A (en) * 2002-07-01 2004-02-05 Ricoh Co Ltd Semiconductor distribution bragg reflector, surface luminescence type semiconductor laser, surface luminescence type semiconductor laser array, optical communication system, optical write-in system, and optical pick-up system
JP4497796B2 (en) * 2002-07-01 2010-07-07 株式会社リコー Surface-emitting type semiconductor laser and a surface emitting semiconductor laser array and an optical communication system and an optical writing system and an optical pickup system
US7986721B2 (en) 2004-09-22 2011-07-26 Sumitomo Electric Industries, Ltd. Semiconductor optical device including a PN junction formed by a second region of a first conductive type semiconductor layer and a second conductive type single semiconductor layer

Similar Documents

Publication Publication Date Title
Mawst et al. 8 W continuous wave front‐facet power from broad‐waveguide Al‐free 980 nm diode lasers
US6148016A (en) Integrated semiconductor lasers and photodetectors
US5416044A (en) Method for producing a surface-emitting laser
US5637511A (en) Vertical-to-surface transmission electro-photonic device and method for fabricating the same
US20040213311A1 (en) Single mode vertical cavity surface emitting laser
US20020101899A1 (en) Vertical cavity surface emitting laser device
US5293393A (en) Vertical-to-surface transmission electrophotonic device
US4951292A (en) Coating for DFB/DBR laser diodes
JPH10284806A (en) Vertical resonator laser having photonic band structure
US20020146053A1 (en) Surface emitting semiconductor laser device
US20090180506A1 (en) Vertical cavity surface emitting laser
US5914973A (en) Vertical cavity surface emitting laser for high power operation and method of fabrication
US20060038191A1 (en) Semiconductor light emitting device
US20090135872A1 (en) Surface emitting laser, surface emitting laser array, and image forming apparatus including surface emitting laser
JP2003115634A (en) Surface emitting laser element
US4894833A (en) Surface emitting lasers with combined output
JP2004152841A (en) Nitride semiconductor laser device
US4852112A (en) Semiconductor laser with facet protection film of selected reflectivity
JPH08195522A (en) Semiconductor laser
JPH10233557A (en) Semiconductor light emitting element
JP2004103754A (en) Element, module, and array for surface light emission laser and optical transmission system
US6580738B2 (en) High-power semiconductor laser device in which near-edge portions of active layer are removed
US4977570A (en) Semiconductor laser array with stripe electrodes having pads for wire bonding
US4636821A (en) Surface-emitting semiconductor elements
US6195373B1 (en) Index optical waveguide semiconductor laser