JPH06342958A - Surface light emitting semiconductor laser - Google Patents

Surface light emitting semiconductor laser

Info

Publication number
JPH06342958A
JPH06342958A JP13219993A JP13219993A JPH06342958A JP H06342958 A JPH06342958 A JP H06342958A JP 13219993 A JP13219993 A JP 13219993A JP 13219993 A JP13219993 A JP 13219993A JP H06342958 A JPH06342958 A JP H06342958A
Authority
JP
Japan
Prior art keywords
film
layer
dielectric
light emitting
metal film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13219993A
Other languages
Japanese (ja)
Inventor
Takashi Tadokoro
貴志 田所
Goji Kawakami
剛司 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP13219993A priority Critical patent/JPH06342958A/en
Publication of JPH06342958A publication Critical patent/JPH06342958A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18305Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] with emission through the substrate, i.e. bottom emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18341Intra-cavity contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • H01S5/18375Structure of the reflectors, e.g. hybrid mirrors based on metal reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • H01S5/18377Structure of the reflectors, e.g. hybrid mirrors comprising layers of different kind of materials, e.g. combinations of semiconducting with dielectric or metallic layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2222Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties

Abstract

PURPOSE:To improve a reflectivity of a reflecting mirror by sequentially forming the mirror, a first metal film for increasing the reflectivity, a dielectric film, a second metal film in this order from near a light emitting layer at a side to be bonded with a heat sink. CONSTITUTION:A semiconductor multilayer film reflecting mirror 7 having a single-crystal InP and a single-crystal InGaAsP is formed on a single-crystal InP semiconductor substrate 6. Then, a single-crystal InGaAsP light emitting layer 8, a single-crystal InP clad layer 9 and a contact layer 10 of a single- crystal InGaAsP are laminated. Thereafter, a multilayer film reflecting mirror 15 made of two types of dielectric having different refractive indexes is formed, and a dielectric element having low refractive index is laminated on the layer 10. Then, after a metal film 13 of single metal is formed, a dielectric film 14 is laminated. After an ohmic electrode 11 is formed on a part in which the film 14 is avoided on the layer 10, a metal film 12 is formed on the film 14 and the electrode 11. Thus, even if bonding is conducted at 100 deg.C or higher, the reflectivity of the mirror can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、基板に対し垂直方向に
光を出射させる面発光半導体レーザの特性改善に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvement of characteristics of a surface emitting semiconductor laser which emits light in a direction perpendicular to a substrate.

【0002】[0002]

【従来の技術】面発光半導体レーザは、低しきい値動
作、高速変調及び大規模二次元集積化が可能であり、光
通信、光情報処理システムを構成するデバイスとして期
待されている。
2. Description of the Related Art Surface-emitting semiconductor lasers are capable of low threshold operation, high-speed modulation and large-scale two-dimensional integration, and are expected as devices constituting optical communication and optical information processing systems.

【0003】従来の面発光半導体レーザの概略構造図を
図2に示す。ヒートシンクにボンディングする側(図の
上部)は、低屈折率の誘電体2と高屈折率の誘電体3の
多層膜からなる反射鏡と、この反射鏡の最上層にある低
屈折率の誘電体の上を反射率増強のための金属膜4で覆
うことで構成されている。なお、1は発光層である。
FIG. 2 shows a schematic structural diagram of a conventional surface emitting semiconductor laser. The side to be bonded to the heat sink (upper part of the figure) is a reflecting mirror composed of a multilayer film of a low refractive index dielectric 2 and a high refractive index dielectric 3, and a low refractive index dielectric on the uppermost layer of this reflecting mirror. Is covered with a metal film 4 for enhancing the reflectance. In addition, 1 is a light emitting layer.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来の構造で
は、通常の100℃以上のボンディングを行うと反射率
を増強するための金属膜4がボンディング用の金属と合
金化し、反射率の低減を引き起こしていた。
However, in the conventional structure, when the ordinary bonding at 100 ° C. or higher is performed, the metal film 4 for enhancing the reflectivity is alloyed with the metal for bonding to reduce the reflectivity. Was causing it.

【0005】このため、Ga等の低融点の金属を用い、
合金化の起こらない温度でボンディングしなければなら
なかった。また、この素子の動作温度範囲は、ボンディ
ングに使う金属の融点以下に限られていた。
Therefore, a low melting point metal such as Ga is used,
Bonding had to be done at a temperature where alloying did not occur. Further, the operating temperature range of this element was limited to the melting point of the metal used for bonding or less.

【0006】本発明の目的は、上記欠点を解決するため
に提案されたもので、100℃以上でボンディングを行
っても、反射率増強のための金属膜の効果を十分に利用
して、反射鏡の反射率を向上させることができ、また効
果的に放熱を行うことで、低しきい値でかつ室温以上の
高温でも安定に動作する面発光半導体レーザを提供する
ことにある。
The object of the present invention was proposed in order to solve the above-mentioned drawbacks. Even if bonding is carried out at 100 ° C. or higher, the effect of the metal film for enhancing the reflectance is fully utilized and reflection is achieved. It is an object of the present invention to provide a surface emitting semiconductor laser which can improve the reflectance of the mirror and can effectively dissipate heat so that the mirror has a low threshold value and operates stably even at a high temperature of room temperature or higher.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、請求項1では、反射率増強のための金属膜を、半導
体多層膜あるいは誘電体多層膜からなる反射鏡の上部に
接合させ、その金属膜側を熱放散のためのヒートシンク
にボンディングする面発光半導体レーザにおいて、ヒー
トシンクにボンディングする側が、発光層に近い方から
反射鏡、第1の金属膜、誘電体膜、第2の金属膜の順で
構成されるようにした。
In order to achieve the above object, according to a first aspect of the present invention, a metal film for enhancing reflectivity is bonded to an upper portion of a reflecting mirror made of a semiconductor multi-layer film or a dielectric multi-layer film. In a surface emitting semiconductor laser in which a metal film side is bonded to a heat sink for heat dissipation, a side of the heat sink that is bonded to the heat sink includes a reflecting mirror, a first metal film, a dielectric film, and a second metal film from the side closer to the light emitting layer. It was arranged in order.

【0008】[0008]

【作用】本発明では、100℃以上でボンディングを行
っても、反射率増強のための第1の金属膜とボンディン
グ用金属との合金化が生じないため、第1の金属膜によ
る反射率増強効果を十分利用でき、反射鏡の膜厚を著し
く減少させることが可能となる。また、ボンディングを
行うことで効果的に放熱を行うことができるため、この
素子はボンディングに用いる金属の融点以下であれば安
定に動作させることが可能となる。
In the present invention, even if the bonding is performed at 100 ° C. or higher, the first metal film for enhancing the reflectance does not alloy with the bonding metal, so that the first metal film enhances the reflectance. The effect can be fully utilized and the film thickness of the reflecting mirror can be remarkably reduced. Moreover, since heat can be effectively dissipated by performing the bonding, this element can be stably operated at a temperature equal to or lower than the melting point of the metal used for the bonding.

【0009】[0009]

【実施例】以下本発明の実施例を図面に基づいて詳細に
説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0010】図1は本発明による面発光半導体レーザの
第1の実施例を示す基本構造の断面図である。同図にお
いて、6は単結晶InPの半導体基板、7はこの半導体
基板6上に形成された単結晶InPと単結晶InGaA
sPからなる半導体多層膜反射鏡であり、その厚さは屈
折率n、発振波長をλとしてλ/(4・n)である。8
は発光波長のピークが1.55μmである単結晶InG
aAsPからなる発光層であり、9は発光層8にキャリ
アを閉じこめるための単結晶InPからなるクラッド
層、10は単結晶InGaAsPからなるコンタクト層
である。15は屈折率の異なる2種の誘電体からなる多
層膜反射鏡であり、コンタクト層10の上には低屈折率
の誘電体が積層されている。13は金、銀、銅あるいは
アルミニウム等の単体の金属であり、14は誘電体膜で
ある。11はコンタクト層10にオーミック電極を形成
するための金属であり、12は14及び11を覆う金属
膜である。16は電流を狭窄するためp型及びn型In
Pからなる電流ブロック層である。
FIG. 1 is a sectional view of a basic structure showing a first embodiment of a surface emitting semiconductor laser according to the present invention. In the figure, 6 is a semiconductor substrate of single crystal InP, 7 is a single crystal InP and a single crystal InGaA formed on the semiconductor substrate 6.
It is a semiconductor multilayer film reflecting mirror made of sP, and its thickness is λ / (4 · n) where the refractive index is n and the oscillation wavelength is λ. 8
Is a single crystal InG having an emission wavelength peak of 1.55 μm
Reference numeral 9 is a light emitting layer made of aAsP, 9 is a cladding layer made of single crystal InP for confining carriers in the light emitting layer 8, and 10 is a contact layer made of single crystal InGaAsP. Reference numeral 15 is a multilayer-film reflective mirror made of two kinds of dielectric materials having different refractive indexes, and a dielectric material having a low refractive index is laminated on the contact layer 10. Reference numeral 13 is a simple metal such as gold, silver, copper or aluminum, and 14 is a dielectric film. Reference numeral 11 is a metal for forming an ohmic electrode on the contact layer 10, and 12 is a metal film covering 14 and 11. 16 is p-type and n-type In for constricting the current
It is a current blocking layer made of P.

【0011】次に上記各部について詳細に説明する。Next, each of the above parts will be described in detail.

【0012】n型InP基板6上に禁制帯幅が波長にし
て1.4μmに対応するn型InGaAsP(0.112 μ
m)とn型InP(0.122 μm)を34対積層する。次
いで8の発光層であるInGaAsPは光学波長で2波
長分(約0.875 μm)、9のp型InPクラッド層は光
学波長の9/4倍分(約1.1 μm)、10の禁制帯幅が
波長にして1.4 μmに対応するp型InGaAsPコン
タクト層は光学波長の3/4倍(0.336 μm)とする。
発光領域の上部に誘電体膜SiO2 とTiO2を5.5 対
積層する。コンタクト層に接触する方が低屈折率のSi
2 であり、最終層もSiO2 になる。それぞれの厚さ
は光学波長の1/4倍に当たり、SiO2 は0.26μm、
TiO2 は0.16μmである。コンタクト層上でり、か
つ、この誘電体多層膜を避けた部分にAu、Zn、Ni
等の金属を使ってオーミック電極11を形成する。ま
た、誘電体多層膜15の最終層であるSiO2 上に金を
0.1 μm蒸着し、さらにその上に0.26μmのSiO2
を積層する。この上から0.05μmのチタンと0.2 μmの
金を蒸着し、全面が金蔵で覆われるようにする。最後に
メッキ等の方法で表面に厚い金を積層する。電流はp型
コンタクト層10に形成されたオーミック電極11及び
12とn型基板に形成されたオーミック電極17を通し
て流される。
On the n-type InP substrate 6, an n-type InGaAsP (0.112 μm) having a forbidden band width of 1.4 μm in wavelength.
m) and n-type InP (0.122 μm) are laminated in 34 pairs. Next, InGaAsP which is the light emitting layer of 8 has an optical wavelength of two wavelengths (about 0.875 μm), and the p-type InP clad layer of 9 has an optical wavelength of 9/4 times (about 1.1 μm) and a forbidden band width of 10 has a wavelength. Then, the p-type InGaAsP contact layer corresponding to 1.4 μm is 3/4 times (0.336 μm) the optical wavelength.
5.5 pairs of dielectric films SiO 2 and TiO 2 are laminated on the light emitting region. Si having a lower refractive index is in contact with the contact layer
O 2 and the final layer is also SiO 2 . Each thickness corresponds to 1/4 of the optical wavelength, SiO 2 is 0.26 μm,
TiO 2 is 0.16 μm. Au, Zn, and Ni are formed on the contact layer and in the portion avoiding the dielectric multilayer film.
The ohmic electrode 11 is formed by using a metal such as. In addition, gold is deposited on SiO 2 which is the final layer of the dielectric multilayer film 15.
0.1 μm is vapor-deposited, and a 0.26 μm SiO 2 film is further stacked thereon. From this, 0.05 μm titanium and 0.2 μm gold are vapor-deposited so that the entire surface is covered with a metal warehouse. Finally, thick gold is laminated on the surface by a method such as plating. A current is passed through the ohmic electrodes 11 and 12 formed on the p-type contact layer 10 and the ohmic electrode 17 formed on the n-type substrate.

【0013】図3は図1に示した面発光半導体レーザを
ボンディングした図であり、約200℃の温度で圧力を
加えることで誘電体膜14上の金はヒートシンク18上
に蒸着された鉛錫と合金化し接着されるが、反射率増強
のための金属13は合金が起こらず高反射膜として作用
する。
FIG. 3 is a diagram in which the surface emitting semiconductor laser shown in FIG. 1 is bonded, and gold on the dielectric film 14 is vapor-deposited on the heat sink 18 by applying pressure at a temperature of about 200.degree. However, the metal 13 for enhancing the reflectance acts as a highly reflective film without alloying.

【0014】図4は本発明の第2の実施例を示すもので
あり、上記の実施例においてInP基板19側の反射鏡
22も屈折率の異なる2種の誘電体からなる多層膜反射
鏡にしたものである。この実施例の場合n型InPクラ
ッド層21の厚さは光学波長の9/4倍分(約1.1 μ
m)であり、禁制帯幅が波長にして1.4 μmに対応する
n型InGaAsP層20の厚さは光学波長の1/4倍
(0.112 μm)である。InP基板19を選択性のある
エッチング液でエッチングし、このInGaAsP層を
表面に出し、その上にSiO2 とTiO2 からなる誘電
体多層膜を12対積層する。InGaAsPに接触する
方が低屈折率のSiO2 であり最終層はTiO2 にな
る。
FIG. 4 shows a second embodiment of the present invention. In the above embodiment, the reflecting mirror 22 on the InP substrate 19 side is also a multilayer film reflecting mirror made of two kinds of dielectric materials having different refractive indexes. It was done. In this embodiment, the thickness of the n-type InP clad layer 21 is 9/4 times the optical wavelength (about 1.1 μm).
m), and the thickness of the n-type InGaAsP layer 20 corresponding to the forbidden band width of 1.4 μm in wavelength is ¼ times the optical wavelength (0.112 μm). The InP substrate 19 is etched with a selective etching solution to expose the InGaAsP layer on the surface, and 12 pairs of dielectric multilayer films made of SiO 2 and TiO 2 are laminated thereon. The lower index SiO 2 is in contact with InGaAsP and the final layer is TiO 2 .

【0015】この他、半導体の多層膜と誘電体の多層膜
の併用であっても良い。
Besides, a semiconductor multilayer film and a dielectric multilayer film may be used in combination.

【0016】なお、いずれの実施例とも発光層の上下に
配置される各層の膜厚(半導体多層膜を形成するそれぞ
れの半導体膜の厚さ、発光層の厚さ、クラッド層の厚
さ、コンタクト層の厚さ及び誘電体多層膜を形成するそ
れぞれの誘電体膜の厚さ)は、光学波長の1/4倍の奇
数倍とし、さらに連続した3層を取ると常に両端に2層
の屈折率が真ん中の層よりも大きいか、あるいは両端の
2層の屈折率が真ん中の層よりも小さくなるような構成
とし、連続した3層の屈折率が大中小の順で並ばないよ
うにする。連続した3層の屈折率が大中小と変化する場
合は真ん中の層の厚さを光学波長の1/4倍の偶数倍と
する。この場合の例を図5に示す。
In any of the embodiments, the film thickness of each layer arranged above and below the light emitting layer (thickness of each semiconductor film forming the semiconductor multilayer film, thickness of the light emitting layer, thickness of the clad layer, contact) The thickness of each layer and the thickness of each dielectric film forming the dielectric multilayer film should be an odd multiple of 1/4 times the optical wavelength, and if three consecutive layers are taken, two layers are always refracted at both ends. The refractive index of the two layers on both ends is smaller than that of the middle layer, or the refractive index of the two layers at both ends is smaller than that of the middle layer, so that the refractive indices of the three consecutive layers are not aligned in the order of large, medium and small. When the refractive index of three consecutive layers changes from large to small, the thickness of the middle layer is set to an even multiple of ¼ times the optical wavelength. An example of this case is shown in FIG.

【0017】p型クラッド層24の上にSiO2 とTi
2 からなる誘電体多層膜を形成する場合、p型クラッ
ド層上に積層する層を低屈折率の誘電体SiO2 膜25
に選ぶと発光層23、クラッド層24、誘電体膜25の
順で屈折率が小さくなるため、p型InPクラッド層2
4の厚さを光学波長の1/4倍の偶数倍である0.976μ
m(光学波長の1/4倍の8倍)とする。その上に光学
波長の1/4倍の厚さに当たる0.26μmの低屈折率誘電
体SiO2 と、光学波長の1/4倍の厚さに当たる0.26
μmの高屈折誘電体TiO2 を5.5対積層してある。
その他は図1と同様である。
SiO 2 and Ti are deposited on the p-type cladding layer 24.
When forming a dielectric multilayer film made of O 2, a layer to be laminated on the p-type clad layer is a dielectric SiO 2 film 25 having a low refractive index.
Is selected, the refractive index becomes smaller in the order of the light emitting layer 23, the cladding layer 24, and the dielectric film 25. Therefore, the p-type InP cladding layer 2
The thickness of 4 is 0.976μ, which is an even multiple of 1/4 of the optical wavelength.
m (1/4 times the optical wavelength, 8 times). On top of that, a low-refractive-index dielectric SiO 2 of 0.26 μm, which is 1/4 times the optical wavelength, and 0.26, which is 1/4 times the optical wavelength.
5.5 pairs of high-refractive-index TiO 2 having a thickness of μm are laminated.
Others are the same as in FIG.

【0018】図6は本発明の第4の実施例であり、ボン
ディング側の金の蒸着膜28、さらにその上にSiO2
とTiO2 の5.5対からなる誘電体多層膜29を積層
した構造になっている。この場合、金属膜の上に低屈折
率のSiO2 膜を積層し最終層もSiO2 膜になってい
る。
FIG. 6 shows a fourth embodiment of the present invention, in which a gold-deposited film 28 on the bonding side is formed, and SiO 2 is further formed thereon.
And a dielectric multilayer film 29 composed of 5.5 pairs of TiO 2 and TiO 2 . In this case, a low refractive index SiO 2 film is laminated on the metal film, and the final layer is also a SiO 2 film.

【0019】上記第2から第4の実施例においても、第
2の実施例と同様にヒートシンクにボンディングできる
こと及び同様の効果が得られることは言うまでもない。
It goes without saying that the second to fourth embodiments can bond to the heat sink and can obtain the same effect as in the second embodiment.

【0020】上記実施例では、発光層が長波長系InG
aAsPのバルクであったが、他の材料系あるいは量子
井戸構造、量子井戸歪構造などでも適用できる。またボ
ンディング側反射鏡は誘電体多層膜だけでなく、半導体
多層膜でも同様の効果が得られるのは言うまでもない。
In the above embodiment, the light emitting layer has a long-wavelength InG.
Although it is a bulk of aAsP, it can be applied to other material systems, quantum well structures, quantum well strained structures, or the like. It goes without saying that the bonding side reflecting mirror can obtain the same effect not only with the dielectric multilayer film but also with the semiconductor multilayer film.

【0021】[0021]

【発明の効果】以上説明したように本発明の面発光半導
体レーザは、ヒートシンクにボンディングする側を、発
光層に近い方から反射鏡、反射率増強のための第1の金
属膜、誘電体膜、第2の金属膜の順で構成されているの
で、100℃以上でボンディングを行っても、反射率増
強のための第1の金属膜は誘電体膜に保護され合金化が
生じないため、第1の金属膜による反射率増強効果を十
分利用でき、反射鏡の膜厚を著しく減少させることが可
能となる効果がある。また、ボンディングを行うことで
効果的に放熱を行うことができるため、この素子はボン
ディングに用いる金属の融点以下であれば安定に動作さ
せることが可能となる効果もある。
As described above, in the surface-emitting semiconductor laser of the present invention, the side to be bonded to the heat sink is the reflector from the side closer to the light emitting layer, the first metal film for increasing the reflectance, and the dielectric film. Since the second metal film is formed in this order, even if bonding is performed at 100 ° C. or higher, the first metal film for enhancing the reflectance is protected by the dielectric film and is not alloyed. There is an effect that the reflectivity enhancing effect of the first metal film can be fully utilized and the film thickness of the reflecting mirror can be remarkably reduced. Further, since the heat can be effectively radiated by performing the bonding, there is also an effect that the element can be stably operated at a temperature equal to or lower than the melting point of the metal used for the bonding.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による面発光半導体レーザの第1の実施
例の断面構造図
FIG. 1 is a sectional structural view of a first embodiment of a surface emitting semiconductor laser according to the present invention.

【図2】従来の面発光レーザの構造を示す断面図FIG. 2 is a sectional view showing the structure of a conventional surface emitting laser.

【図3】図1に示した面発光半導体レーザをボンディン
グした図
FIG. 3 is a diagram in which the surface emitting semiconductor laser shown in FIG. 1 is bonded.

【図4】本発明の他の実施例の断面構造図FIG. 4 is a sectional structural view of another embodiment of the present invention.

【図5】本発明の他の実施例の断面構造図FIG. 5 is a sectional structural view of another embodiment of the present invention.

【図6】本発明の他の実施例の断面構造図FIG. 6 is a sectional structural view of another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

5…電極、6…InP基板、7…半導体多層膜反射鏡、
8…発光層、pクラッド層、10…pコンタクト層、1
1…p電極、12,13…金属膜、14…誘電体膜、1
5…誘電体多層膜、16…電流ブロック層、17,18
…n電極、19…InP基板、20…n−クラッド層、
22…誘電体多層膜反射鏡、23…発光層、24…pク
ラッド層、25,27…SiO2 、26…pコンタクト
層、誘電体多層膜、30…金属膜。
5 ... Electrode, 6 ... InP substrate, 7 ... Semiconductor multilayer film reflecting mirror,
8 ... Light emitting layer, p-clad layer, 10 ... p-contact layer, 1
DESCRIPTION OF SYMBOLS 1 ... P electrode, 12, 13 ... Metal film, 14 ... Dielectric film, 1
5 ... Dielectric multilayer film, 16 ... Current blocking layer, 17, 18
... n electrode, 19 ... InP substrate, 20 ... n-clad layer,
22 ... Dielectric multilayer mirror, 23 ... Light emitting layer, 24 ... P clad layer, 25, 27 ... SiO 2 , 26 ... P contact layer, Dielectric multilayer, 30 ... Metal film.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 反射率増強のための金属膜を、半導体多
層膜あるいは誘電体多層膜からなる反射鏡の上部に接合
させ、金属膜側を熱放散のためのヒートシンクにボンデ
ィングする面発光半導体レーザにおいて、 ヒートシンクにボンディングする側が、発光層に近い方
から反射鏡、第1の金属膜、誘電体膜、第2の金属膜の
順で構成されていることを特徴とする面発光半導体レー
ザ。
1. A surface emitting semiconductor laser in which a metal film for enhancing reflectivity is bonded to an upper portion of a reflecting mirror made of a semiconductor multilayer film or a dielectric multilayer film, and the metal film side is bonded to a heat sink for heat dissipation. In the surface emitting semiconductor laser, the side to be bonded to the heat sink is composed of a reflecting mirror, a first metal film, a dielectric film, and a second metal film in this order from the side closer to the light emitting layer.
JP13219993A 1993-06-02 1993-06-02 Surface light emitting semiconductor laser Pending JPH06342958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13219993A JPH06342958A (en) 1993-06-02 1993-06-02 Surface light emitting semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13219993A JPH06342958A (en) 1993-06-02 1993-06-02 Surface light emitting semiconductor laser

Publications (1)

Publication Number Publication Date
JPH06342958A true JPH06342958A (en) 1994-12-13

Family

ID=15075715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13219993A Pending JPH06342958A (en) 1993-06-02 1993-06-02 Surface light emitting semiconductor laser

Country Status (1)

Country Link
JP (1) JPH06342958A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005079264A (en) * 2003-08-29 2005-03-24 Shin Etsu Handotai Co Ltd Light emitting element
KR100641925B1 (en) * 1999-02-05 2006-11-02 필립스 루미리즈 라이팅 캄파니 엘엘씨 WAFER BONDED AlxGayInzN STRUCTURES
JP2012156046A (en) * 2011-01-27 2012-08-16 Asahi Glass Co Ltd Positive electrode active material for lithium ion secondary battery and method of producing the same
JPWO2019171869A1 (en) * 2018-03-07 2021-02-18 ソニーセミコンダクタソリューションズ株式会社 Surface emitting laser

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100641925B1 (en) * 1999-02-05 2006-11-02 필립스 루미리즈 라이팅 캄파니 엘엘씨 WAFER BONDED AlxGayInzN STRUCTURES
JP2005079264A (en) * 2003-08-29 2005-03-24 Shin Etsu Handotai Co Ltd Light emitting element
JP4697650B2 (en) * 2003-08-29 2011-06-08 信越半導体株式会社 Light emitting element
JP2012156046A (en) * 2011-01-27 2012-08-16 Asahi Glass Co Ltd Positive electrode active material for lithium ion secondary battery and method of producing the same
JPWO2019171869A1 (en) * 2018-03-07 2021-02-18 ソニーセミコンダクタソリューションズ株式会社 Surface emitting laser
EP3764490A4 (en) * 2018-03-07 2021-04-21 Sony Semiconductor Solutions Corporation Surface-emitting laser

Similar Documents

Publication Publication Date Title
US5732103A (en) Long wavelength VCSEL
KR910020979A (en) Semiconductor Vertical Pupil Surface Emission Laser
JP3856300B2 (en) Semiconductor laser element
US5883912A (en) Long wavelength VCSEL
JPH10303515A (en) Long-wavelength vcsel
JP2874442B2 (en) Surface input / output photoelectric fusion device
US20020018501A1 (en) Semiconductor laser device
CN110061419B (en) Semiconductor laser element, method for manufacturing same, and light-emitting device
JP3689621B2 (en) Semiconductor light emitting device
JP3121761B2 (en) Surface-emitting lasers with improved pumping efficiency
JP2010226056A (en) Semiconductor laser device
JPH06342958A (en) Surface light emitting semiconductor laser
JP3522107B2 (en) Semiconductor laser
JP2871288B2 (en) Surface type optical semiconductor device and method of manufacturing the same
JPS645474B2 (en)
JPH07335975A (en) Gallium nitride series compound semiconductor laser element
JP2001196685A (en) Semiconductor light element device
JPS60214578A (en) Semiconductor light emitting device
JP2006073823A (en) Surface-emitting semiconductor laser element and its manufacturing method
JP2006128475A (en) Semiconductor laser
JP2586671B2 (en) Semiconductor multilayer film
JPH07302953A (en) Semiconductor laser element
JPH05259508A (en) Light emitting element
JPH07231138A (en) Surface light-emitting semiconductor laser
JPH0669106B2 (en) LED element