JPS60214578A - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device

Info

Publication number
JPS60214578A
JPS60214578A JP7143284A JP7143284A JPS60214578A JP S60214578 A JPS60214578 A JP S60214578A JP 7143284 A JP7143284 A JP 7143284A JP 7143284 A JP7143284 A JP 7143284A JP S60214578 A JPS60214578 A JP S60214578A
Authority
JP
Japan
Prior art keywords
film
metal film
metal
light emitting
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7143284A
Other languages
Japanese (ja)
Inventor
Shigeo Osaka
重雄 大坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP7143284A priority Critical patent/JPS60214578A/en
Publication of JPS60214578A publication Critical patent/JPS60214578A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To provide a highly efficient and reliable high-power device furnished with an excellent reflection film structure capable of withstanding heavy duties by a method wherein one of the reflecting surfaces of an oscillator is coated with a first metal film which is further coated with a second metal film whose reflectivity is higher than that of the first metal film. CONSTITUTION:A first metal film 20 is a Ti film typically 100Angstrom thick formed on a dielectric film 19 by means of evaporation or sputtering. A second metal film 21 is formed, which is a 0.1-0.2mum-thick Au film attached to the first metal film 20. The first metal film 20 functions only to augment adhesion between the second metal film 21 and the dielectric film 19, and is composed of Ti, Ni, Cr, Mo, or W, with its thickness thin enough to cause but a sufficiently small optical loss. The second metal film 21 is the reflecting film, and is built of such a high-reflectivity metal as Al, Au, Ag, Cu, Pt, or the like.

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は半導体発光装置、特に共振器の一方の反射鏡面
として高反射率で安定性の良い金属膜を備えてなる半導
体発光装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a semiconductor light emitting device, and particularly to a semiconductor light emitting device comprising a metal film with high reflectance and good stability as one reflecting mirror surface of a resonator.

(b) 技術の背景 元を情報信号の媒体とする光通信システムは情報化社会
を担う主要な柱として顕著な進展を続けている。光通信
等の光を媒体とするシステムにおいては半導体発光装置
は最も重要な構成要素であって、例えば要求される波長
帯域の実現、安定した単一の基本零仄横モード発振、単
一の縦モード発振、量子効率の向上、電流−元出方特性
の直線性の向上、出力の増大などの緒特性の改善が重ね
られて、システムの進展に寄与している。
(b) Technical Background Optical communication systems, which serve as a medium for information signals, continue to make remarkable progress as a major pillar of the information society. Semiconductor light emitting devices are the most important component in systems that use light as a medium, such as optical communications. Improvements in fundamental characteristics such as mode oscillation, improved quantum efficiency, improved linearity of current-source characteristics, and increased output are contributing to the advancement of systems.

(C1従来技術と問題点 半導体発光装置の5ちレーザでは誘導放出による元の増
幅を行うために光の共振器が設けられ、共振器としては
活性層等の両端にl対の反射鏡面を設けたファプリー−
ペロー形が多く用いられている。
(C1 Conventional technology and problems) In a semiconductor light emitting device, a laser is provided with an optical resonator in order to amplify the original light by stimulated emission. ta fapley
The Perot shape is often used.

従来牛導体レーザの長寿命化、効率の向上などの目的音
もって、共振器端面に穐々の皮膜を設けることが行なわ
れている。
Conventionally, for the purpose of extending the life of a conductor laser and improving its efficiency, a thin film has been provided on the end face of the resonator.

例えば屈折率nキ3.6であるガリウム・砒素(−)。For example, gallium arsenic (-) has a refractive index of n×3.6.

ガリウム・アルミニウムΦ砒素(G as −x At
xAs)系牛導体基体の端面上に、二酸化シリコン(S
in、)(1=−1,45) + 1112化アルミニ
ウム(At203)(n =1.65)、vii化シリ
コン(diaNn)(n=1.95)等の誘電体膜な、
その厚さを半阪長の整数倍として設けるならば皮膜を設
けない場合1こ等しい約31チの反射率を保って結晶端
面保護の効果が得られ、またその厚さ’&l/4波長の
奇数倍とするならば反射率が極めて低い保護膜となる。
Gallium aluminum Φ arsenic (Gas −x At
Silicon dioxide (S
in, ) (1 = -1,45) + dielectric film such as aluminum 1112 (At203) (n = 1.65), silicon VII (diaNn) (n = 1.95),
If the thickness is set as an integer multiple of the half-length, if no film is provided, a reflectance of approximately 31 inches, which is equal to 1, can be maintained and the effect of protecting the crystal end face can be obtained. If it is multiplied by an odd number, the protective film will have an extremely low reflectance.

才だ逆に端面の反射率を高める皮膜構造としては、例え
ば8i0!と5iaN4など屈折率の異なる皮膜をl/
4波長などの厚さで交互に積層する構造が知られている
〇レーザ光の放射が共振器の一方向のみでよい場合lこ
は他方の端面gこ反射膜を設けて効率を高めることが望
才しく、この場合の反射膜としては金属膜が従来しはし
は用いられている。第1図はその1例を示す断面図であ
り、1は半導体基体、2及び3は電極、4及び5は誘電
体膜、6は金属膜であって、レーザ元は誘電体M411
11の端面から放射される。
On the other hand, as a film structure that increases the reflectance of the end face, for example, 8i0! and 5iaN4 films with different refractive index l/
A structure in which layers are alternately laminated with a thickness of four wavelengths is known. If the laser beam needs to be emitted only in one direction of the resonator, it is possible to increase the efficiency by providing a reflective film on the other end face. Desirably, a metal film has conventionally been used as the reflective film in this case. FIG. 1 is a cross-sectional view showing one example, in which 1 is a semiconductor substrate, 2 and 3 are electrodes, 4 and 5 are dielectric films, and 6 is a metal film, and the laser source is a dielectric M411.
It is radiated from the end face of 11.

金属膜6には高い反射率を得るため4こ例えは釡(Au
)、アルミニウム(At)、白金(Pl) + 98 
(Ag) 。
In order to obtain a high reflectance, the metal film 6 is made of a pot (Au).
), aluminum (At), platinum (Pl) + 98
(Ag).

銅(Cu)などが用いられる。また誘電体膜5は導体で
ある釡職膜6を半導体基体lから絶縁し、かつ導体面憂
こよる反射によって生ずる元の位相の飛びを補償するた
めに設けられ、その厚さはl/4波長もしくはその奇数
倍とする。なお誘電体膜4は目的に従りて先に述べた例
の如くに設けられる。
Copper (Cu) or the like is used. The dielectric film 5 is provided to insulate the conductor film 6 from the semiconductor substrate l and to compensate for the original phase shift caused by reflection from the conductor surface, and its thickness is l/4. The wavelength or an odd multiple thereof. Note that the dielectric film 4 is provided as in the example described above depending on the purpose.

しかるに最近牛導体レーザの出力の増大、モードの単一
化などの要不がオプトエレクトロニクスの多(の分野か
ら高まって来ている。出力としては例えば数10mWが
要望され、他方横モードの単一化のためには、活性領域
の断面寸法が例えは幅2.0乃至4.0μm、厚さ0.
05乃至0.2μ餌程度lこ制限される。この条件は共
振器の端面がIOMW/−程度のパワーを負担すること
を意味する。
However, recently, the necessity of increasing the output of conductor lasers and unifying the mode has been increasing in many fields of optoelectronics. For this purpose, the cross-sectional dimensions of the active region are, for example, 2.0 to 4.0 μm wide and 0.0 μm thick.
It is limited to about 0.05 to 0.2μ bait. This condition means that the end face of the resonator bears a power of about IOMW/-.

従来の第1図1こ例示する如き金属反射膜は、通常真空
蒸着法又はスパッタ法等により高反射率が得られる前記
Au等を用いて形成されているが、3− 誘電体膜5とこの金属膜6との間の付着強度が不光分で
あって、前述の数10mW、lOMW/aA程度以上の
パワーを加えるならば、金属膜6の剥離などの破壊が進
行して急激に劣化する。
The conventional metal reflective film as shown in FIG. The adhesion strength between the metal film 6 and the metal film 6 is a non-light component, and if a power of several tens of mW or 1OMW/aA or more is applied as described above, destruction such as peeling of the metal film 6 will progress and the metal film 6 will rapidly deteriorate.

なおりj電体膜との付着性が艮好な皮膜が形成できる金
属材料としては、例えばチタン(Tす、クロム(Cr)
、ニッケル(Ni)、或いはモリブデン(MO)、タン
グステン(W)等が知られている。
Examples of metal materials that can form a film with excellent adhesion to the electric film include titanium (T) and chromium (Cr).
, nickel (Ni), molybdenum (MO), tungsten (W), etc. are known.

しかしながらこれらの金属は元の吸収が太き(、例えば
反射膜をTiで形成するならば反射率は60チ程度とな
り、Auの場合の90チ程度に比較して効率が看しく低
下して、半導体レーザのパワー増大が制約される。
However, these metals have high original absorption (for example, if the reflective film is formed of Ti, the reflectance will be about 60 cm, which is a noticeable drop in efficiency compared to about 90 cm for Au). The power increase of semiconductor lasers is restricted.

(d) 発明の目的 本発明は以上説明した状況に対処して、艮好な反射率を
有しかつ大きいパワー負担に耐える反射膜構造を備えて
、高い効率と信頼性で高出力が得らnる半導体レーザを
提供することを目的とする。
(d) Purpose of the Invention The present invention addresses the above-mentioned situation and provides a reflective film structure that has excellent reflectance and can withstand a large power load, and provides high output with high efficiency and reliability. The object of the present invention is to provide a semiconductor laser.

tel 発明の構成 本発明の前記目的は、共振器の一方の反射面に4− 第1の金属膜を介して第2の金属膜を備え、該第2の金
属膜が該第1の金属膜より反射率が大きい材料よりなる
半導体発光装置により達成される。
tel Structure of the Invention The object of the present invention is to provide a second metal film on one reflective surface of the resonator via a first metal film, and the second metal film is in contact with the first metal film. This can be achieved by using a semiconductor light emitting device made of a material with higher reflectance.

前記第1の金M7X膜は誘電体膜等との付着力を大きく
するために介在させる膜であって、例えばチタン(T’
) r−’−ッ/yル(Ni ) 、りoム(Cr)、
 モリブデン(Mo)又はタングステン(W)によって
形成され、その厚さは元の損失が充分に小さい範囲に止
める。
The first gold M7X film is a film interposed to increase adhesion to a dielectric film, etc., and is made of, for example, titanium (T').
) r-'-t/yru (Ni), rim (Cr),
It is made of molybdenum (Mo) or tungsten (W), and its thickness is kept within a range where the original loss is sufficiently small.

前記)42の金属膜は本来の反射膜であって、大きい反
射率が得られる金属、例えばアルミニウム(Az)、金
(Au)、銀(Ag)、銅(Cu)又は白金(Pt )
等によって形成する。
The metal film 42 above is an original reflective film, and is made of a metal that can provide a high reflectance, such as aluminum (Az), gold (Au), silver (Ag), copper (Cu), or platinum (Pt).
Formed by etc.

(fl 発明の実施例 以下本発明を実施例により具体的に説明する。(fl Embodiments of the invention The present invention will be specifically explained below using examples.

第2図は本発明の実施例の共振器の中心を通る切断面に
よる断面図である。図において、11はn[GaAs基
板、12はn @ Ga t −y Aly k@閉じ
込め層、13はp m Oa ]−X尤ムAS活性層、
14はpm Ga r −y A−ty As閉じ込め
層、15はp 俄GaAs層、16はp側電極、17は
n側電極、18及び19は誘電体膜、20は前記第1の
金属膜、21は前記第2の金属膜である。
FIG. 2 is a cross-sectional view taken through the center of the resonator according to the embodiment of the present invention. In the figure, 11 is an n[GaAs substrate, 12 is an n@Ga t -y Aly k@ confinement layer, 13 is a p m Oa ]-X layer AS active layer,
14 is a pm Ga r -y A-ty As confinement layer, 15 is a p GaAs layer, 16 is a p-side electrode, 17 is an n-side electrode, 18 and 19 are dielectric films, 20 is the first metal film, 21 is the second metal film.

本実施例では、n14il電極17を金・ゲルマニウム
/金(AuGe/Au)で、p側電極16をチタン/白
金(Ti/Pz)で配説した後iこ、半導体基体結晶な
アレイ状に分割して棒状とし、襞間を行なって共振器端
面を形成している。
In this example, after the n14il electrode 17 is made of gold/germanium/gold (AuGe/Au) and the p-side electrode 16 is made of titanium/platinum (Ti/Pz), the semiconductor substrate is divided into a crystalline array. It is made into a rod shape, and the resonator end face is formed by forming folds.

次いで本実施例ではAtzOaによって誘電体膜18及
び19を形成している。誘電体膜18の厚さは従来技術
によってλ/ 4 n或いはλ/2n(nは誘電体膜の
屈折率)等とする。また誘電体膜19の厚さはλ/4 
n sjなわちλ−52ooX1こ対して約1200X
としている。
Next, in this embodiment, dielectric films 18 and 19 are formed using AtzOa. The thickness of the dielectric film 18 is set to λ/4n, λ/2n (n is the refractive index of the dielectric film), etc. according to conventional techniques. Also, the thickness of the dielectric film 19 is λ/4
n sj, that is, about 1200X for λ-52ooX1
It is said that

誘電体膜19上に、例えば蒸着法又はスパッタ法によっ
て、金属TIを厚さ例えばtoox付着して第1の金属
膜20とし、続けてAuを厚さ例えば01乃至0.2μ
m付着して第2の金属膜21とするO しかる後にアレイ状をなす素子を個個のチップに分割し
て組立てを行なう。光は誘電体膜18を通して放射され
る。
On the dielectric film 19, a metal TI is deposited to a thickness of, for example, toox, by, for example, vapor deposition or sputtering to form the first metal film 20, and then Au is deposited to a thickness of, for example, 01 to 0.2 μm.
After that, the arrayed elements are divided into individual chips and assembled. Light is emitted through the dielectric film 18.

以上説明した実施例の如き本発明の構造においては、吸
収係数従って損失が大さいTi等よりなる第1の金属膜
20は光の波長に比較して充分に薄いために、この膜に
よる元の損失は極めて少な(、光の損失は吸収係数が小
さいAu等よりなる第2の金属$21によって定まる。
In the structure of the present invention such as the embodiments described above, the first metal film 20 made of Ti or the like, which has a large absorption coefficient and therefore a large loss, is sufficiently thin compared to the wavelength of light. The loss is extremely small (the loss of light is determined by the second metal 21 made of Au or the like having a small absorption coefficient).

従って本発明による2層の金属膜によって構成される反
射膜基こよって、第2の金属膜のみによる反射率とほぼ
等しい反射率が得られる。前記実施例においては、反射
率として約90チが得られて、T鳳のみの場合の反射率
60−程度に比較して遥に太き(、Auのみの場合の反
射率95%程度にほぼ等しいことが確認された。
Therefore, the reflective film base constituted by the two-layer metal film according to the present invention provides a reflectance that is approximately equal to the reflectance obtained by only the second metal film. In the above example, a reflectance of about 90% was obtained, which is much higher than the reflectance of about 60% in the case of only T-bond (approximately the reflectance of about 95% in the case of only Au). It was confirmed that they are equal.

また本実施例とA u g 1に直接At20a膜上に
形成した比較試料とについて、周囲温度50℃で40m
W定出力定出力性なって、比較試料では電流上昇率が2
)<tO−’/Hで1000時間以上では更に増加する
傾向を示したのに対して、本実施例では7− 電流上昇率か9 X l O”−’ /Hで3000時
間経過後においても変化せず、本発明の効果が確認され
た。
Furthermore, regarding this example and a comparative sample formed directly on the At20a film on A u g 1, the thickness of 40 m
W constant output constant output property, current increase rate is 2 in comparison sample
) <tO"-'/H and showed a tendency to further increase over 1,000 hours, whereas in this example, the current increase rate was 7. There was no change, and the effect of the present invention was confirmed.

なお前記実施例においては第1の金属膜として厚さ約1
00XのTi膜を設けているが、金属材料としてはTi
に限ることなく例えばN 1 、 Cr 、 MO+W
等を用いることができ、また厚さは両金属膜の材料及び
レーザの動作条件に従って最適値を選択する。また第2
の金属膜の材料及び厚さ等の選択は従来の金属反射膜と
同様である。
In the above embodiment, the first metal film has a thickness of approximately 1 mm.
00X Ti film is provided, but the metal material is Ti.
For example, without limitation, N 1 , Cr, MO+W
etc., and the optimum thickness is selected according to the materials of both metal films and the operating conditions of the laser. Also the second
The selection of the material, thickness, etc. of the metal film is the same as that of the conventional metal reflective film.

更に、前記実施例においては半導体基体の端面に誘電体
膜19を設け、この上に第1の金属膜2゜を形成してい
るか、誘電体膜19を設けることなく、半導体基体の端
面近傍を高抵抗化して直接第1及び第2の金属膜を形成
する構造も可能である。
Furthermore, in the embodiments described above, either the dielectric film 19 is provided on the end surface of the semiconductor substrate and the first metal film 2° is formed thereon, or the dielectric film 19 is not provided and the vicinity of the end surface of the semiconductor substrate is formed. A structure in which the first and second metal films are directly formed with high resistance is also possible.

(g) 発明の詳細 な説明した如く本発明によれば、共振器の一方の反射鏡
面を金属膜によって形成する半導体レーザにおいて、反
射率が大きい金属膜を強固に安定性良(設けることが可
能となって、大パワーの半導体レーザな高い効率と信頼
性をもって実現す8− ることかできる。
(g) As described in detail, according to the present invention, in a semiconductor laser in which one reflecting mirror surface of a resonator is formed of a metal film, it is possible to provide a metal film having a high reflectance firmly and with good stability. Therefore, it is possible to realize a high-power semiconductor laser with high efficiency and reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は金属反射面を有する半導体レーザの従来例を示
す断面図、第2図は本発明の実施例を示す断面図である
。 図において、11はn fil GaAs基板、12は
n型GaAtAs層、13はGaAzAs活性層、14
はI) fil Ga AtA s層、15はI)ff
iGaAs層、16及び17は電極、18及び19は誘
電体膜、20及び21は金属膜を示す。
FIG. 1 is a sectional view showing a conventional example of a semiconductor laser having a metal reflective surface, and FIG. 2 is a sectional view showing an embodiment of the present invention. In the figure, 11 is an n fil GaAs substrate, 12 is an n-type GaAtAs layer, 13 is a GaAzAs active layer, and 14 is an n-fil GaAs substrate.
is I) fil Ga AtAs layer, 15 is I) ff
The iGaAs layer, 16 and 17 are electrodes, 18 and 19 are dielectric films, and 20 and 21 are metal films.

Claims (3)

【特許請求の範囲】[Claims] (1)共振器の一方の反射面に第lの金属膜を介して第
2の金M4腹を備え、該第2の金属膜が該第1の金属膜
より反射率が大きい材料よりなることを特徴とする半導
体発光装置。
(1) A second gold M4 antinode is provided on one reflective surface of the resonator via a first metal film, and the second metal film is made of a material having a higher reflectance than the first metal film. A semiconductor light emitting device characterized by:
(2)前記第1の金属膜が、チタン、ニッケル、クロム
、モリブデン又はタングステンにスつて形成されること
を特徴とする特許請求の範囲順1項記載の半導体発光装
置。
(2) The semiconductor light emitting device according to claim 1, wherein the first metal film is formed of titanium, nickel, chromium, molybdenum, or tungsten.
(3)前記第2の金属膜が、アルミニウム、金1 fs
+銅又は白金によって形成されることを特徴とする特許
請求の範囲第1項又は第2項記載の半導体発光装置。
(3) The second metal film is made of aluminum, gold 1fs
+ The semiconductor light emitting device according to claim 1 or 2, characterized in that it is formed of copper or platinum.
JP7143284A 1984-04-10 1984-04-10 Semiconductor light emitting device Pending JPS60214578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7143284A JPS60214578A (en) 1984-04-10 1984-04-10 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7143284A JPS60214578A (en) 1984-04-10 1984-04-10 Semiconductor light emitting device

Publications (1)

Publication Number Publication Date
JPS60214578A true JPS60214578A (en) 1985-10-26

Family

ID=13460356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7143284A Pending JPS60214578A (en) 1984-04-10 1984-04-10 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JPS60214578A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0240070A2 (en) * 1986-03-29 1987-10-07 Philips Patentverwaltung GmbH Process for manufacturing semi-conductor devices
US4725450A (en) * 1986-02-28 1988-02-16 Mitsubishi Denki Kabushiki Kaisha Method for fabricating a semiconductor laser device
JPS6355566U (en) * 1986-09-30 1988-04-14
US4840922A (en) * 1986-07-29 1989-06-20 Ricoh Company, Ltd. Method of manufacturing masked semiconductor laser
US4855256A (en) * 1987-02-13 1989-08-08 Ricoh Company, Ltd. Method of manufacturing masked semiconductor laser
JPH0378283A (en) * 1989-08-21 1991-04-03 Ricoh Co Ltd Manufacture of mask semiconductor laser
US7317745B2 (en) 2004-09-14 2008-01-08 Samsung Electro-Mechanics Co., Ltd. Multi-wavelength laser diode

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4725450A (en) * 1986-02-28 1988-02-16 Mitsubishi Denki Kabushiki Kaisha Method for fabricating a semiconductor laser device
EP0240070A2 (en) * 1986-03-29 1987-10-07 Philips Patentverwaltung GmbH Process for manufacturing semi-conductor devices
US4840922A (en) * 1986-07-29 1989-06-20 Ricoh Company, Ltd. Method of manufacturing masked semiconductor laser
JPS6355566U (en) * 1986-09-30 1988-04-14
US4855256A (en) * 1987-02-13 1989-08-08 Ricoh Company, Ltd. Method of manufacturing masked semiconductor laser
JPH0378283A (en) * 1989-08-21 1991-04-03 Ricoh Co Ltd Manufacture of mask semiconductor laser
US7317745B2 (en) 2004-09-14 2008-01-08 Samsung Electro-Mechanics Co., Ltd. Multi-wavelength laser diode

Similar Documents

Publication Publication Date Title
US4178564A (en) Half wave protection layers on injection lasers
JP2006310413A (en) Semiconductor laser device
JP2001284722A (en) Surface-emitting semiconductor laser and its manufacturing method
JP2006210429A (en) Surface emitting semiconductor laser
JPH08213712A (en) Resonator optical device and manufacture of the same
JP2009533848A (en) Optoelectronic semiconductor module
JP2003264333A (en) Semiconductor laser device
JPS60214578A (en) Semiconductor light emitting device
JPS60242689A (en) Semiconductor laser element
US7286584B2 (en) Carrier bonded 1550 nm VCSEL with InP substrate removal
JPS5939083A (en) Light emitting surface type semiconductor laser
JP2000332355A5 (en)
US4210878A (en) Semiconductor laser element having a unitary film on a laser crystal and a heat sink thereof
US6285700B1 (en) Semiconductor laser
JP3243772B2 (en) Surface emitting semiconductor laser
JP3290646B2 (en) Semiconductor laser device, method of manufacturing the same, and optical disk device
JPH06342958A (en) Surface light emitting semiconductor laser
JP4066317B2 (en) Semiconductor laser device, manufacturing method thereof, and optical disc apparatus
JPH0745910A (en) Semiconductor laser
US6594294B1 (en) Segmented-mirror VCSEL
JPH0447979Y2 (en)
KR100714610B1 (en) High power wavelenth-converted semiconductor laser
JP6973480B2 (en) Laser device assembly
JPS61174687A (en) Plane-illumination type semiconductor laser
JP2004228282A (en) Surface-emitting laser element