JP2006210429A - Surface emitting semiconductor laser - Google Patents

Surface emitting semiconductor laser Download PDF

Info

Publication number
JP2006210429A
JP2006210429A JP2005017349A JP2005017349A JP2006210429A JP 2006210429 A JP2006210429 A JP 2006210429A JP 2005017349 A JP2005017349 A JP 2005017349A JP 2005017349 A JP2005017349 A JP 2005017349A JP 2006210429 A JP2006210429 A JP 2006210429A
Authority
JP
Japan
Prior art keywords
region
insulating film
semiconductor laser
layer
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005017349A
Other languages
Japanese (ja)
Inventor
Yoshinori Yamauchi
義則 山内
Tomokimi Hino
智公 日野
Yoshiaki Watabe
義昭 渡部
Norihiko Yamaguchi
典彦 山口
Takeshi Masui
勇志 増井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2005017349A priority Critical patent/JP2006210429A/en
Publication of JP2006210429A publication Critical patent/JP2006210429A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface emitting semiconductor laser which can be easily manufactured and can suppress high order transverse mode oscillation without reducing optical output of a basic transverse mode. <P>SOLUTION: A lower DBR mirror layer 11 and an upper DBR mirror layer 15 are provided with an active layer 13 sandwiched, and a laser beam is emitted in a vertical direction through the layer 15. A laminate structure of a first insulating film 17 and a second insulating film 18 is provided on the center region of light emitting regions of the surface of the layer 15, and a third insulating region 19 is provided on a region (peripheral region) surrounding the center region, and the reflectivity of the peripheral region is lower than the reflectivity of the center region. Thus, the high order transverse oscillation can be suppressed without reducing the optical output of the basic transverse mode. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、上面にレーザ光の出射領域を有する面発光型半導体レーザに係り、特に、低次横モードの光出力が要求される用途に好適に適用可能な面発光型半導体レーザに関する。   The present invention relates to a surface emitting semiconductor laser having a laser light emitting region on its upper surface, and more particularly to a surface emitting semiconductor laser that can be suitably applied to applications requiring a low-order transverse mode light output.

面発光型半導体レーザは、従来のファブリペロー共振器型のものとは異なり、基板に対して直交する方向に光を出射するものであり、同じ基板上に2次元アレイ状に多数の素子を配列することが可能であることから、近年、データ通信分野で注目されている。   Unlike the conventional Fabry-Perot resonator type, the surface-emitting semiconductor laser emits light in a direction perpendicular to the substrate, and a large number of elements are arranged in a two-dimensional array on the same substrate. In recent years, it has attracted attention in the data communication field.

従来、この種の面発光型半導体レーザは、半導体基板上に一対の多層膜反射鏡が形成されており、その対の多層膜反射鏡の間に発光領域となる活性層を有している。そして、一方の多層膜反射鏡には、活性層への電流注入効率を高め、しきい値電流を下げるために、電流注入領域を狭めた構造を有する電流狭窄層が設けられている。また、下面側にはn側電極、上面側にはp側電極がそれぞれ設けられ、p側電極にはレーザ光を出射するために開口部が設けられている。この面発光型半導体レーザでは、電流は電流狭窄層により狭窄されたのち活性層に注入され、ここで発光し、これが一対の多層膜反射鏡で反射を繰り返しながらレーザ光としてp側電極の開口部から出射される。   Conventionally, this type of surface-emitting type semiconductor laser has a pair of multilayer reflectors formed on a semiconductor substrate, and has an active layer serving as a light emitting region between the pair of multilayer reflectors. One multilayer reflector is provided with a current confinement layer having a structure in which the current injection region is narrowed in order to increase the current injection efficiency into the active layer and reduce the threshold current. In addition, an n-side electrode is provided on the lower surface side, and a p-side electrode is provided on the upper surface side, and an opening is provided in the p-side electrode for emitting laser light. In this surface emitting semiconductor laser, the current is constricted by the current confinement layer and then injected into the active layer, where it emits light, and this is reflected by the pair of multilayer reflectors, and is reflected as laser light in the opening of the p-side electrode. It is emitted from.

ところで、上記した面発光型半導体レーザでは、レーザ光の出射領域のうち中央領域において主に基本横モード発振が生じる一方、周辺領域において主に高次横モード発振が生じることが知られており、この性質を利用した横モード発振の制御に関する技術が多数報告されている。   By the way, in the surface emitting semiconductor laser described above, it is known that fundamental transverse mode oscillation mainly occurs in the central region of the laser light emission region, while high-order transverse mode oscillation mainly occurs in the peripheral region. Many techniques relating to the control of transverse mode oscillation utilizing this property have been reported.

例えば、特許文献1では、レーザ光の出射領域に対して、その領域の中心部分を起点とし、その起点から離れるにつれて反射損失が漸進的に増大するような損失決定素子を設ける技術が開示されている。また、特許文献2では、光の出射面に、レーザ光の出射領域を囲む周辺領域の反射率を減少させるための第2調整層および第1調整層をこの順に設ける技術が開示されている。   For example, Patent Document 1 discloses a technique in which a loss determining element is provided with respect to an emission region of a laser beam, starting from a central portion of the region, and a reflection loss gradually increasing as the distance from the origin is increased. Yes. Patent Document 2 discloses a technique in which a second adjustment layer and a first adjustment layer for reducing the reflectance of a peripheral region surrounding a laser light emission region are provided on the light emission surface in this order.

特開平10−56233号公報JP-A-10-56233 特開2000−22271号公報JP 2000-22271 A

しかしながら、特許文献1記載の技術は、損失決定素子の表面を特定の曲面とする必要があり、そのような曲面を製造するのは容易ではないことから、実用的とはいえない。また、特許文献2記載の技術は、レーザ光の出射領域以外の領域の反射率を減少させるために、第2調整層を多層膜反射鏡のうちアルミニウム(Al)組成の多い低屈折率層上に形成すると共にその低屈折率層よりも少ないAl組成を有する高屈折率層とする必要がある。ところが、第2調整層を選択的にエッチングして上記低屈折率層を露出させることは非常に困難である。また、仮に第2調整層を選択的にエッチングすることができるとしても、Al組成の多い低屈折率層は酸化され易く、酸化による屈折率の変化を防止するために、その表面に酸化層やAl組成の少ない高屈折率層を設けることが必要となる。しかしながら、そのような層をその表面に設けると、レーザ光の出射領域の反射率が低下するため、基本横モードの光出力が低下するという問題があった。   However, the technique described in Patent Document 1 is not practical because the surface of the loss determining element needs to be a specific curved surface, and it is not easy to manufacture such a curved surface. Further, in the technique described in Patent Document 2, the second adjustment layer is placed on the low refractive index layer having a large aluminum (Al) composition in the multilayer reflector in order to reduce the reflectance of the region other than the laser light emitting region. And a high refractive index layer having an Al composition smaller than that of the low refractive index layer. However, it is very difficult to selectively etch the second adjustment layer to expose the low refractive index layer. Further, even if the second adjustment layer can be selectively etched, the low refractive index layer with a large Al composition is easily oxidized, and in order to prevent a change in the refractive index due to oxidation, an oxide layer or It is necessary to provide a high refractive index layer with a small Al composition. However, when such a layer is provided on the surface, the reflectance of the laser light emission region is lowered, and thus there is a problem that the light output in the fundamental transverse mode is lowered.

本発明はかかる問題点に鑑みてなされたもので、その目的は、光調整層を容易に製造することができ、かつ基本横モードの光出力を低減することなく高次横モード発振を抑制することが可能な面発光型半導体レーザを提供することにある。   The present invention has been made in view of such problems, and an object thereof is to easily manufacture a light adjustment layer and to suppress higher-order transverse mode oscillation without reducing the light output of the fundamental transverse mode. An object of the present invention is to provide a surface-emitting type semiconductor laser that can be used.

本発明の面発光型半導体レーザは、発光中心領域を有する活性層と、活性層を間にして設けられ、一方に光出射領域を有する一対の多層膜反射鏡と、光出射領域に対応して開口部を有する電極と、光出射領域に対応して設けられると共に、光出射領域のうち発光中心領域に対応する中央領域を囲む周辺領域の反射率が中央領域のそれよりも低くなるように構成された絶縁膜とを備えたものである。   The surface emitting semiconductor laser according to the present invention includes an active layer having a light emission center region, a pair of multilayer reflectors having a light emission region on one side, and a light emission region corresponding to the light emission region. An electrode having an opening and a light emitting region are provided so as to correspond to the light emitting region, and the reflectance of the peripheral region surrounding the central region corresponding to the light emitting central region is lower than that of the central region. And an insulating film formed.

本発明の面発光型半導体レーザでは、光出射領域のうち中央領域を囲む周辺領域の反射率が中央領域のそれよりも相対的に低くなっている。ここで、光出射領域のうち中央領域は、主に基本横モード発振が生じる領域(発光中心領域)、中央領域を囲む周辺領域は主に高次横モード発振が生じる領域にそれぞれ対応している。この中央領域と周縁との反射率の差は大きい方が好ましい。絶縁膜は、例えば酸化物または窒化物などの高抵抗物質により構成されており、互いに異なる物質よりなる複数の層を含んで構成されていてもよい。なお、電極と出射側の多層膜反射鏡との間に、コンタクト層などが介在していてもよい。   In the surface emitting semiconductor laser of the present invention, the reflectance of the peripheral region surrounding the central region in the light emitting region is relatively lower than that of the central region. Here, in the light emission region, the central region mainly corresponds to a region in which fundamental transverse mode oscillation occurs (light emission central region), and the peripheral region surrounding the central region corresponds to a region in which high-order transverse mode oscillation mainly occurs. . It is preferable that the difference in reflectance between the central region and the periphery is large. The insulating film is made of a high resistance material such as oxide or nitride, and may include a plurality of layers made of different materials. Note that a contact layer or the like may be interposed between the electrode and the multilayer reflector on the emission side.

本発明の面発光型半導体レーザによれば、光出射領域に設ける絶縁膜のうち中央領域を囲む周辺領域の反射率が中央領域のそれよりも相対的に低くなるようにしたので、基本横モードの光出力を低減することなく高次横モード発振を抑制することができる。また、この絶縁膜による光調整層は、容易に製造することができる。   According to the surface emitting semiconductor laser of the present invention, the reflectance of the peripheral region surrounding the central region of the insulating film provided in the light emitting region is relatively lower than that of the central region. Higher-order transverse mode oscillation can be suppressed without reducing the optical output of. Moreover, the light adjustment layer by this insulating film can be manufactured easily.

以下、本発明の実施の形態について、図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

[第1の実施の形態]
図1は、本発明の一実施の形態に係る面発光型半導体レーザ1の断面構造を表したものである。また、図2(A),(B)は、この面発光型半導体レーザ1の開口部23近傍の構造と、開口部23における反射率の分布を表したものである。
[First Embodiment]
FIG. 1 shows a cross-sectional structure of a surface emitting semiconductor laser 1 according to an embodiment of the present invention. 2A and 2B show the structure near the opening 23 of the surface-emitting type semiconductor laser 1 and the reflectance distribution in the opening 23. FIG.

面発光型半導体レーザ1は、基板10の一面側に、下部DBRミラー層11(光出射領域を有さない多層膜反射鏡)、下部クラッド層12、活性層13、上部クラッド層14、上部DBRミラー層15(光出射領域を有する多層膜反射鏡)およびp側コンタクト層16をこの順に積層したレーザ構造部を備えている。ここで、下部クラッド層12の一部、活性層13、上部クラッド層14、上部DBRミラー層15およびp側コンタクト層16は、p側コンタクト層16まで形成されたのち、上面から選択的にエッチングされることにより凸状のメサポスト30となっている。   The surface-emitting type semiconductor laser 1 includes a lower DBR mirror layer 11 (a multilayer reflector having no light emission region), a lower cladding layer 12, an active layer 13, an upper cladding layer 14, and an upper DBR on one surface side of a substrate 10. A laser structure portion in which a mirror layer 15 (multilayer film reflecting mirror having a light emitting region) and a p-side contact layer 16 are stacked in this order is provided. Here, a part of the lower cladding layer 12, the active layer 13, the upper cladding layer 14, the upper DBR mirror layer 15 and the p-side contact layer 16 are formed up to the p-side contact layer 16, and then selectively etched from the upper surface. Thus, a convex mesa post 30 is formed.

メサポスト30の上部または周辺部には、第1絶縁膜17、第2絶縁膜18、第3絶縁膜19、保護膜20およびp側電極21(電極)が積層されている。基板10の裏面には、n側電極24が形成されている。   A first insulating film 17, a second insulating film 18, a third insulating film 19, a protective film 20, and a p-side electrode 21 (electrode) are stacked on an upper portion or a peripheral portion of the mesa post 30. An n-side electrode 24 is formed on the back surface of the substrate 10.

基板10、下部DBRミラー層11、下部クラッド層12、活性層13、上部クラッド層14、上部DBRミラー層15およびp側コンタクト層16は、例えばGaAs(ガリウム・ヒ素)系の化合物半導体によりそれぞれ構成されている。なお、GaAs系化合物半導体とは、短周期型周期表における3B族元素のうち少なくともガリウム(Ga)と、短周期型周期表における5B族元素のうち少なくともヒ素(As)とを含む化合物半導体のことをいう。   The substrate 10, the lower DBR mirror layer 11, the lower cladding layer 12, the active layer 13, the upper cladding layer 14, the upper DBR mirror layer 15 and the p-side contact layer 16 are each composed of, for example, a GaAs (gallium arsenide) based compound semiconductor. Has been. The GaAs compound semiconductor is a compound semiconductor containing at least gallium (Ga) among the 3B group elements in the short periodic table and at least arsenic (As) among the 5B elements in the short periodic table. Say.

基板10は、例えばn型GaAsにより構成されている。下部DBRミラー層11は、低屈折率層11Aiおよび高屈折率層11Bi(1≦i≦m,mは1以上の整数)を1組として、それをm組分積層して構成されたものである。低屈折率層11Aiは、例えば厚さがλ/4n4 (λは発振波長、n4 は屈折率)のn型Alx1Ga1-x1As(0<x1<1)、高屈折率層11Biは、例えば厚さがλ/4n5 (n5 は屈折率)のn型Alx2Ga1-x2As(0<x2<x1)によりそれぞれ形成されている。n型不純物としては、例えばケイ素(Si)またはセレン(Se)などが挙げられる。 The substrate 10 is made of, for example, n-type GaAs. The lower DBR mirror layer 11 is formed by stacking m sets of low refractive index layers 11Ai and high refractive index layers 11Bi (1 ≦ i ≦ m, where m is an integer of 1 or more). is there. The low refractive index layer 11Ai is, for example, an n-type Al x1 Ga 1-x1 As (0 <x1 <1) having a thickness of λ / 4n 4 (where λ is an oscillation wavelength and n 4 is a refractive index), and a high refractive index layer 11Bi. Are formed of n-type Al x2 Ga 1 -x2 As (0 <x2 <x1) having a thickness of λ / 4n 5 (n 5 is a refractive index), for example. Examples of the n-type impurity include silicon (Si) and selenium (Se).

下部クラッド層12は、例えばAlx3Ga1-x3As(0<x3<1)により構成されている。活性層13は、例えばGaAs系材料により構成されている。この活性層13では、後述の電流注入領域15C−1と対向する領域が発光領域であり、その発光領域の中心領域(発光中心領域13A)が主に基本横モード発振が生じる領域であり、発光領域のうち発光中心領域13Aを囲む領域が主に高次横モード発振が生じる領域となっている。上部クラッド層14は、例えばAlx4Ga1-x4As(0<x4<1)により構成されている。この下部クラッド層12、活性層13および上部クラッド層14は、アンドープであることが望ましいが、p型またはn型不純物が含まれていてもよい。 The lower cladding layer 12 is made of, for example, Al x3 Ga 1-x3 As (0 <x3 <1). The active layer 13 is made of, for example, a GaAs material. In the active layer 13, a region facing a later-described current injection region 15C-1 is a light emitting region, and a central region (light emitting center region 13A) of the light emitting region is a region in which fundamental transverse mode oscillation mainly occurs. Of the regions, the region surrounding the light emission center region 13A is a region where high-order transverse mode oscillation mainly occurs. The upper cladding layer 14 is made of, for example, Al x4 Ga 1 -x4 As (0 <x4 <1). The lower cladding layer 12, the active layer 13, and the upper cladding layer 14 are preferably undoped, but may contain p-type or n-type impurities.

上部DBRミラー層15は、低屈折率層15Ajおよび高屈折率層15Bj(1≦j≦n,nは1以上の整数)を1組として、それをn組分積層して構成されたものである。この低屈折率層15Ajは、例えば厚さがλ/4n6 (λは発振波長、n6 は屈折率)のp型Alx5Ga1-x5As(0<x5<1)、高屈折率層15Bjは、例えば厚さがλ/4n7 (n7 は屈折率)のp型Alx6Ga1-x6As(0<x6<x5)によりそれぞれ形成されている。p型不純物としては、亜鉛(Zn)、マグネシウム(Mg)、ベリリウム(Be)などが挙げられる。 The upper DBR mirror layer 15 is configured by laminating a low refractive index layer 15Aj and a high refractive index layer 15Bj (1 ≦ j ≦ n, where n is an integer of 1 or more) as a set, and n sets thereof. is there. The low refractive index layer 15Aj is, for example, a p-type Al x5 Ga 1-x5 As (0 <x5 <1) having a thickness of λ / 4n 6 (λ is an oscillation wavelength and n 6 is a refractive index), and a high refractive index layer. For example, 15Bj is formed of p-type Al x6 Ga 1-x6 As (0 <x6 <x5) having a thickness of λ / 4n 7 (n 7 is a refractive index). Examples of the p-type impurity include zinc (Zn), magnesium (Mg), and beryllium (Be).

ただし、上部DBRミラー層15において、活性層13側から数えてj組離れた低屈折率層15Bjの部位には、低屈折率層15Bjの代わりに、電流狭窄層15Cが形成されている。この電流狭窄層15Cにおいて、その中央領域が電流注入領域15C−1であり、この電流注入領域15C−1を取り囲む周辺領域が電流狭窄領域15C−2となっている。電流注入領域15C−1は、例えば、Alx7Ga1-x7As(x5<x7≦1)により構成されており、電流狭窄領域15C−2は、これを酸化することにより得られたAl2 3 (酸化アルミニウム)となっている。 However, in the upper DBR mirror layer 15, a current confinement layer 15 </ b> C is formed instead of the low refractive index layer 15 </ b> Bj in a portion of the low refractive index layer 15 </ b> Bj that is j sets apart from the active layer 13 side. In the current confinement layer 15C, the central region is the current injection region 15C-1, and the peripheral region surrounding the current injection region 15C-1 is the current confinement region 15C-2. The current injection region 15C-1 is made of, for example, Al x7 Ga 1-x7 As (x5 <x7 ≦ 1), and the current confinement region 15C-2 is made of Al 2 O obtained by oxidizing it. 3 (aluminum oxide).

p側コンタクト層16は、例えばp型GaAsにより構成されており、上記の電流注入領域15C−1と対向する領域に、例えば円形の開口部が設けられている。この開口部の底部には上部DBRミラー層15が露出している。   The p-side contact layer 16 is made of, for example, p-type GaAs, and has, for example, a circular opening in a region facing the current injection region 15C-1. The upper DBR mirror layer 15 is exposed at the bottom of the opening.

p側電極21は、例えばチタン(Ti)層,白金(Pt)層および金(Au)層をこの順に積層して構成されたものであり、p側コンタクト層16と電気的に接続されている。また、p側電極21は、上記のp側コンタクト層16の開口部に対応する領域にレーザ光の光出射領域22となる開口部が設けられており、レーザ光の光軸方向から見ると、p側コンタクト層16およびp側電極21の開口部からなる一つの開口部23がメサポスト30上部に設けられているようにみえる。ただし、p側コンタクト層16およびp側電極21の開口部は、それぞれ同一の内径を有している必要はなく、p側電極21の開口部の内径がp側コンタクト層16のそれより大きくても良い。なお、この開口部23のうち中央領域23Aは主に基本横モード発振が生じる領域、中央領域23Aを囲む領域(周辺領域23B)は主に高次横モード発振が生じる領域にそれぞれ対応している。また、このp側電極21のうちメサポスト30の周辺基板上に形成された部分は、ワイヤーボンディングをするのに十分な表面積を有する平板状の形状となっている。   The p-side electrode 21 is formed by laminating, for example, a titanium (Ti) layer, a platinum (Pt) layer, and a gold (Au) layer in this order, and is electrically connected to the p-side contact layer 16. . In addition, the p-side electrode 21 is provided with an opening to be a laser light emission region 22 in a region corresponding to the opening of the p-side contact layer 16, and when viewed from the optical axis direction of the laser light, It seems that one opening 23 formed by the openings of the p-side contact layer 16 and the p-side electrode 21 is provided on the top of the mesa post 30. However, the openings of the p-side contact layer 16 and the p-side electrode 21 do not have to have the same inner diameter, and the inner diameter of the opening of the p-side electrode 21 is larger than that of the p-side contact layer 16. Also good. Of the opening 23, the central region 23A mainly corresponds to a region where basic transverse mode oscillation occurs, and the region surrounding the central region 23A (peripheral region 23B) mainly corresponds to a region where higher order transverse mode oscillation occurs. . Further, a portion of the p-side electrode 21 formed on the peripheral substrate of the mesa post 30 has a flat plate shape having a sufficient surface area for wire bonding.

第1絶縁膜17は、上記開口部23の中央領域23A、すなわち主に基本横モード発振が生じる領域に形成されており、具体的には、膜厚が(2a−1)λ/4n1 (aは1以上の整数,n1 は屈折率)で、屈折率n1 が上部DBRミラー層15の表面に設けられた高屈折率層15Bnの屈折率n7 より低い物質、例えば酸化物により構成されている。酸化物としては、例えばSiO2 (酸化シリコン)が挙げられる。また、この第1絶縁膜17の幅W1 は、開口部23の内径をA1 (内径A1 は開口部23のうち主にp側電極21の開口部の内径を指す)とすると、以下の式(1)を満たす範囲であることが好ましい。 The first insulating film 17 is formed in the central region 23A of the opening 23, that is, mainly in a region where fundamental transverse mode oscillation occurs. Specifically, the film thickness is (2a-1) λ / 4n 1 ( a is an integer of 1 or more, n 1 is a refractive index), and the refractive index n 1 is composed of a material, for example, an oxide, lower than the refractive index n 7 of the high refractive index layer 15Bn provided on the surface of the upper DBR mirror layer 15. Has been. Examples of the oxide include SiO 2 (silicon oxide). The width W 1 of the first insulating film 17 is as follows when the inner diameter of the opening 23 is A 1 (the inner diameter A 1 mainly indicates the inner diameter of the opening of the p-side electrode 21 in the opening 23). It is preferable that it is the range which satisfy | fills Formula (1).

1 /3≦W1 ≦2A1 /3…式(1) A 1/3 ≦ W 1 ≦ 2A 1/3 ... Formula (1)

第1絶縁膜17上には第2絶縁膜18が形成されている。第2絶縁膜18は、具体的には、膜厚が(2b−1)λ/4n2 (bは1以上の整数,n2 は屈折率)で、屈折率n2 が第1絶縁膜17より低い物質、例えば窒化物により構成されている。開口部23の周辺領域23B、すなわち主に高次横モード発振が生じる領域には第3絶縁膜19が形成されている。この第3絶縁膜19は、具体的には、膜厚が(2c−1)λ/4n3 (cは1以上の整数,n3 は屈折率)で屈折率n3 が第1絶縁膜17より低い物質、例えばSiN(窒化シリコン)などの窒化物により構成されている。 A second insulating film 18 is formed on the first insulating film 17. Specifically, the second insulating film 18 has a thickness of (2b-1) λ / 4n 2 (b is an integer of 1 or more, n 2 is a refractive index), and the refractive index n 2 is the first insulating film 17. It is composed of a lower material such as nitride. A third insulating film 19 is formed in the peripheral region 23B of the opening 23, that is, a region where high-order transverse mode oscillation mainly occurs. Specifically, the third insulating film 19 has a thickness of (2c-1) λ / 4n 3 (where c is an integer of 1 or more and n 3 is a refractive index) and a refractive index n 3 is the first insulating film 17. It is made of a lower material, for example, a nitride such as SiN (silicon nitride).

なお、開口部23の中央領域23A、すなわち第1絶縁膜17および第2絶縁膜18の積層構造の反射率をR1 、開口部23の周辺領域23B、すなわち第3絶縁膜19の反射率をR2 、開口部23にこれらの絶縁膜を設けなかった場合の開口部23の反射率をR3 とすると、以下の式(2)の関係を満たすようにそれぞれの屈折率を調節することが好ましい。 The reflectance of the central region 23A of the opening 23, that is, the laminated structure of the first insulating film 17 and the second insulating film 18, is R 1 , and the reflectance of the peripheral region 23B of the opening 23, that is, the third insulating film 19 is defined. When the reflectance of the opening 23 when these insulating films are not provided in R 2 and the opening 23 is R 3 , the respective refractive indexes can be adjusted so as to satisfy the relationship of the following formula (2). preferable.

1 ≧R3 >R2 …式(2) R 1 ≧ R 3 > R 2 Formula (2)

例えば、第1絶縁膜17の屈折率を1.6、第2絶縁膜18および第3絶縁膜19の屈折率を2.0とすると、中央領域23Aでの反射率R1 は99.6%、周辺領域23Bでの反射率R2 は97.2%となる。なお、R3は一般的に99.5%である。このように反射率がわずかな差で低下した場合であっても、周辺領域23Bでのゲインが下がるため、基本横モードの光出力を低減することなく、高次横モード発振のみを抑制することが可能となる。 For example, when the refractive index of the first insulating film 17 is 1.6 and the refractive indexes of the second insulating film 18 and the third insulating film 19 are 2.0, the reflectance R 1 in the central region 23A is 99.6%. The reflectance R 2 in the peripheral region 23B is 97.2%. R3 is generally 99.5%. Thus, even when the reflectivity is reduced by a slight difference, the gain in the peripheral region 23B is lowered, so that only high-order transverse mode oscillation is suppressed without reducing the light output of the fundamental transverse mode. Is possible.

また、第2絶縁膜18と第3絶縁膜19とは、同一の膜厚および材料により構成されていてもよい。後述のように製造工程を簡略化することができるからである。   Further, the second insulating film 18 and the third insulating film 19 may be made of the same film thickness and material. This is because the manufacturing process can be simplified as will be described later.

次に、保護膜20は例えば酸化物または窒化物により形成されたもので、p側コンタクト層16の周縁部からメサポスト30の側面、更にその近傍を覆うように形成されている。   Next, the protective film 20 is made of, for example, oxide or nitride, and is formed so as to cover the peripheral portion of the p-side contact layer 16 to the side surface of the mesa post 30 and the vicinity thereof.

n側電極24は、例えば、金(Au)とゲルマニウム(Ge)との合金層,ニッケル(Ni)層および金(Au)層とを基板10の側から順に積層した構造を有しており、基板10と電気的に接続されている。   The n-side electrode 24 has, for example, a structure in which an alloy layer of gold (Au) and germanium (Ge), a nickel (Ni) layer, and a gold (Au) layer are sequentially stacked from the substrate 10 side. It is electrically connected to the substrate 10.

本実施の形態に係る面発光型半導体レーザ1は、例えば次のようにして製造することができる。   The surface emitting semiconductor laser 1 according to the present embodiment can be manufactured, for example, as follows.

図3(A)〜(B)および図4(A)〜(B)は、その製造方法を工程順に表したものである。ここでは、GaAsからなる基板10上の化合物半導体層を、例えば、MOCVD(Metal Organic Chemical Vapor Deposition ;有機金属化学気相成長)法により形成する。この際、III−V族化合物半導体の原料としては、例えば、トリメチルアルミニウム(TMA)、トリメチルガリウム(TMG)、トリメチルインジウム(TMIn)、アルシン (AsH3)を用い、ドナー不純物の原料としては、例えば、H2 Seを用い、アクセプタ不純物の原料としては、例えば、ジメチルジンク(DMZ)を用いる。 3A to 3B and FIGS. 4A to 4B show the manufacturing method in the order of steps. Here, the compound semiconductor layer on the substrate 10 made of GaAs is formed by, for example, MOCVD (Metal Organic Chemical Vapor Deposition). At this time, for example, trimethylaluminum (TMA), trimethylgallium (TMG), trimethylindium (TMIn), or arsine (AsH 3 ) is used as a raw material for the III-V group compound semiconductor. , H 2 Se, and dimethyl zinc (DMZ), for example, is used as the acceptor impurity material.

まず、図3(A)に示したように、基板10上に、下部DBRミラー層11,下部クラッド層12,活性層13,上部クラッド層14,上部DBRミラー層15およびp側コンタクト層16をこの順に積層する。   First, as shown in FIG. 3A, a lower DBR mirror layer 11, a lower cladding layer 12, an active layer 13, an upper cladding layer 14, an upper DBR mirror layer 15 and a p-side contact layer 16 are formed on a substrate 10. Laminate in this order.

次に、図3(B)に示したように、例えば、p側コンタクト層16の上にマスク層(図示せず)を形成し、反応性イオンエッチング(Reactive Ion Etching;RIE)法により、p側コンタクト層16,上部DBRミラー層15,上部クラッド層14,活性層13および下部クラッド層12の一部を選択的に除去すると共に、p側コンタクト層16の一部をエッチングして開口部を形成する。   Next, as shown in FIG. 3B, for example, a mask layer (not shown) is formed on the p-side contact layer 16, and the reactive ion etching (RIE) method is used to form the p layer. The side contact layer 16, the upper DBR mirror layer 15, the upper cladding layer 14, the active layer 13, and the lower cladding layer 12 are selectively removed and part of the p-side contact layer 16 is etched to form openings. Form.

次に、図4(A)に示したように、水蒸気雰囲気中において、高温で酸化処理を行い、メサポスト30の外側からAlAs層15DのAlを選択的に酸化する。これによりAlAs層15Dの周辺領域が絶縁膜(酸化アルミニウム)となる。すなわち、周辺領域が電流狭窄領域15C−2であり、その中心領域のみが電流注入領域15C−1である電流狭窄層15Cが形成される。   Next, as shown in FIG. 4A, oxidation treatment is performed at a high temperature in a steam atmosphere to selectively oxidize Al in the AlAs layer 15D from the outside of the mesa post 30. Thereby, the peripheral region of the AlAs layer 15D becomes an insulating film (aluminum oxide). That is, the current confinement layer 15C is formed in which the peripheral region is the current confinement region 15C-2 and only the central region is the current injection region 15C-1.

次に、メサポスト30上およびメサポスト30の周辺基板上に例えばCVD(Chemical Vapor Deposition) 法により前述の絶縁材料を堆積させる。その後、図4(B)に示したように、エッチングにより絶縁材料のうちp側コンタクト層16の開口部の中央領域に対応する部分以外の領域を選択的に除去する。これにより開口部23の中央領域23Aに第1絶縁膜17が形成される。続いて、上記と同様の方法を用いて、第1絶縁膜17上に第2絶縁膜18を形成したのち、開口部23の中央領域23A以外の領域(周辺領域23B)に第3絶縁膜19を形成する。続いて、メサポスト30の側面および周辺基板上に保護膜20を形成する。上記のような絶縁材料は上部DBRミラー層15などの半導体材料に対して優れた選択性を有しており、さらに複雑な形状とする必要がないことから、エッチングにより第1絶縁膜17を容易に形成することができる。   Next, the insulating material is deposited on the mesa post 30 and the peripheral substrate of the mesa post 30 by, for example, a CVD (Chemical Vapor Deposition) method. Thereafter, as shown in FIG. 4B, a region other than the portion corresponding to the central region of the opening of the p-side contact layer 16 in the insulating material is selectively removed by etching. As a result, the first insulating film 17 is formed in the central region 23 </ b> A of the opening 23. Subsequently, after the second insulating film 18 is formed on the first insulating film 17 using the same method as described above, the third insulating film 19 is formed in a region (peripheral region 23B) other than the central region 23A of the opening 23. Form. Subsequently, the protective film 20 is formed on the side surface of the mesa post 30 and the peripheral substrate. Since the insulating material as described above has excellent selectivity with respect to the semiconductor material such as the upper DBR mirror layer 15 and does not need to have a complicated shape, the first insulating film 17 can be easily formed by etching. Can be formed.

なお、第2絶縁膜18、第3絶縁膜19および保護膜20を同一の膜厚および材料により構成する場合には、これらの層を同時に形成してもよい。この場合には、メサポスト30上およびメサポスト30の周辺基板上に例えばCVD法により絶縁材料を堆積したのち、エッチングにより絶縁材料のうちp側コンタクト層16に対応する部分以外の領域を選択的に除去することにより、開口部23の中央領域23Aに第2絶縁膜18を、開口部23の中央領域23A以外の領域(周辺領域23B)に第3絶縁膜19を、メサポスト30の側面および周辺基板上に保護膜20をそれぞれ形成する。このように、これらの層を同時に形成することにより、製造工程を簡略化することができる。   In the case where the second insulating film 18, the third insulating film 19 and the protective film 20 are made of the same film thickness and material, these layers may be formed simultaneously. In this case, after depositing an insulating material on the mesa post 30 and the peripheral substrate of the mesa post 30 by, for example, a CVD method, a region other than the portion corresponding to the p-side contact layer 16 is selectively removed by etching. As a result, the second insulating film 18 is formed in the central region 23A of the opening 23, the third insulating film 19 is formed in a region other than the central region 23A of the opening 23 (peripheral region 23B), the side surface of the mesa post 30 and the peripheral substrate. A protective film 20 is formed on each. In this way, the manufacturing process can be simplified by forming these layers simultaneously.

次に、図1に示したように、例えば真空蒸着法により、メサポスト30上およびメサポスト30の周辺基板上に前述の金属材料を積層させたのち、例えば選択エッチングにより、第2絶縁膜18および第3絶縁膜19を露出させて開口部を形成すると共に、メサポスト30の周辺基板上にワイヤーボンディング用のパッドを形成する。このようにしてp側電極21が形成されると共に、メサポスト30の上部に開口部23が形成される。   Next, as shown in FIG. 1, after laminating the above metal material on the mesa post 30 and the peripheral substrate of the mesa post 30 by, for example, vacuum deposition, the second insulating film 18 and the second insulating film 18 are formed by, for example, selective etching. 3 The insulating film 19 is exposed to form an opening, and a wire bonding pad is formed on the peripheral substrate of the mesa post 30. In this way, the p-side electrode 21 is formed, and the opening 23 is formed in the upper part of the mesa post 30.

次いで、基板11の裏面を適宜研磨してその厚さを調整した後、この基板11の裏面にn側電極24を形成する。このようにして面発光型半導体レーザ1が製造される。   Next, the back surface of the substrate 11 is appropriately polished to adjust its thickness, and then the n-side electrode 24 is formed on the back surface of the substrate 11. In this way, the surface emitting semiconductor laser 1 is manufactured.

このような構成の面発光型半導体レーザ1では、n側電極24とp側電極21との間に所定の電圧が印加されると、電流狭窄層15Cにおける電流注入領域15C−1を通して活性層13に電流が注入され、これにより電子と正孔の再結合による発光が生じる。この光は、一対の下部DBRミラー層11および上部DBRミラー層15により反射され、素子内を一往復したときの位相の変化が2πの整数倍となる波長でレーザ発振を生じ、レーザビームとして外部に出射される。   In the surface emitting semiconductor laser 1 having such a configuration, when a predetermined voltage is applied between the n-side electrode 24 and the p-side electrode 21, the active layer 13 is passed through the current injection region 15C-1 in the current confinement layer 15C. An electric current is injected into this, and light is emitted by recombination of electrons and holes. This light is reflected by the pair of the lower DBR mirror layer 11 and the upper DBR mirror layer 15 and causes laser oscillation at a wavelength at which the phase change when it reciprocates once in the element is an integral multiple of 2π. Is emitted.

ところで、上記した面発光型半導体レーザ1では、基本横モードの光出力は、一般的に、開口部23の中心部分で最も大きく、開口部23の中心部分から離れるにつれて小さくなる傾向がある。このため、面発光型半導体レーザ1を高出力の用途に用いる場合には、基本横モードのレーザ光をなるべく沢山取り出せるように開口部23の内径A1 のを大きくするのが好ましい。しかしながら、高次横モードの光出力は、一般的に、開口部23の中心部分から所定の距離離れた領域において最も大きく、開口部23の中心部分に向かうにつれて小さくなる傾向があるため、開口部23の内径A1 をあまり大きくすると高次横モードのレーザ光までもが高出力で出力されてしまう虞がある。 By the way, in the surface emitting semiconductor laser 1 described above, the light output in the fundamental transverse mode generally has the largest value at the center portion of the opening 23 and tends to decrease as the distance from the center portion of the opening 23 increases. For this reason, when the surface emitting semiconductor laser 1 is used for high-power applications, it is preferable to increase the inner diameter A 1 of the opening 23 so that as much of the fundamental transverse mode laser light as possible can be extracted. However, the light output in the high-order transverse mode generally has the largest value in a region away from the central portion of the opening 23 by a predetermined distance, and tends to decrease toward the central portion of the opening 23. If the inner diameter A 1 of the head 23 is made too large, even the higher-order transverse mode laser light may be output at a high output.

このため、従来の面発光型半導体レーザでは、開口部23の内径A1 を小さくしたり、開口部23内に複雑な形状の構造物を設けるなどの対策を施して、高次横モードのレーザ光が出射されるのを抑制していた。また、面発光型半導体レーザ1を低出力の用途に用いる場合であっても、高次横モードのレーザ光を極力排除しようとすると、上記と同様の対策を施すことが必要であった。 For this reason, in the conventional surface-emitting type semiconductor laser, measures such as reducing the inner diameter A 1 of the opening 23 or providing a structure having a complicated shape in the opening 23 are used. The emission of light was suppressed. Even when the surface-emitting type semiconductor laser 1 is used for low-power applications, it is necessary to take the same measures as described above in order to eliminate as much as possible the high-order transverse mode laser light.

一方、本実施の形態では、第1絶縁膜17と第2絶縁膜18とが、開口部23の中央領域23Aにこの順に積層して設けられると共に、第3絶縁膜19が、開口部23の中央領域23A以外の領域(周辺領域23B)に設けられている。これにより、図2(B)に示したように、開口部23の中央領域23A以外の領域(周辺領域23B)の反射率が開口部23の中央領域23Aより低くなる。   On the other hand, in the present embodiment, the first insulating film 17 and the second insulating film 18 are stacked in this order on the central region 23A of the opening 23, and the third insulating film 19 is provided on the opening 23. It is provided in a region (peripheral region 23B) other than the central region 23A. As a result, as shown in FIG. 2B, the reflectance of the region (peripheral region 23 </ b> B) other than the central region 23 </ b> A of the opening 23 is lower than that of the central region 23 </ b> A of the opening 23.

このとき、上記したように、式(2)の関係を満たすようにそれぞれの屈折率を調節することにより、基本横モードの光出力を低減することなく高次横モード発振のみを抑制することが可能となる。   At this time, as described above, by adjusting the respective refractive indexes so as to satisfy the relationship of Expression (2), it is possible to suppress only the higher-order transverse mode oscillation without reducing the light output of the fundamental transverse mode. It becomes possible.

また、本実施の形態では、上記したように、第1絶縁膜17を選択的にエッチングすることが非常に容易であり、かつ第1絶縁膜17,第2絶縁膜18,第3絶縁膜19を複雑な形状とする必要がないことから、面発光型半導体レーザ1を容易に製造することができる。   In the present embodiment, as described above, it is very easy to selectively etch the first insulating film 17, and the first insulating film 17, the second insulating film 18, and the third insulating film 19. Therefore, the surface emitting semiconductor laser 1 can be easily manufactured.

[第2の実施の形態]
次に、本発明の第2の実施の形態について説明する。なお、本実施例において、第1の実施の形態の面発光型半導体レーザ1と共通する構成、作用、製法および効果については説明を適宜省略する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. In this example, the description of the configuration, operation, manufacturing method, and effects common to those of the surface-emitting type semiconductor laser 1 of the first embodiment will be omitted as appropriate.

図5(A),(B)は、本実施の形態に係る面発光型半導体レーザ2の開口部23近傍の構造と、開口部23における反射率の分布状態を表したものである。この面発光型半導体レーザ2は、開口部23に設けられた単一の層からなる第4絶縁膜27により、開口部23の中央領域23A以外の領域(周辺領域23B)の反射率だけが開口部23の中央領域23Aより低くなるようにした点で、第1の実施の形態に係る面発光型半導体レーザ1と相違する。以下、第4絶縁膜27について説明する。   5A and 5B show the structure in the vicinity of the opening 23 of the surface-emitting type semiconductor laser 2 according to the present embodiment and the distribution state of the reflectance in the opening 23. FIG. In the surface-emitting type semiconductor laser 2, only the reflectance of the region (peripheral region 23 </ b> B) other than the central region 23 </ b> A of the opening 23 is opened by the fourth insulating film 27 made of a single layer provided in the opening 23. It differs from the surface emitting semiconductor laser 1 according to the first embodiment in that it is lower than the central region 23A of the portion 23. Hereinafter, the fourth insulating film 27 will be described.

第4絶縁膜27は、図5(A)に示したように、上部DBRミラー層15のうち開口部23の底部に露出している部分の表面に設けられている。この第4絶縁膜27のうち開口部23の中央領域23Aの膜厚は、dλ/2n5 (dは1以上の整数,λは発光波長,n5 は屈折率)となっており、開口部23の中央領域23A以外の領域(周辺領域23B)の膜厚は、(2e−1)λ/4n5 (eは1以上の整数)となっている。また、第4絶縁膜27の屈折率n5 は、上部DBRミラー層15の表面より低い物質、例えば酸化物または窒化物により構成されている。なお、酸化物としては、例えばSiO2 が挙げられ、窒化物としては、例えばSiNが挙げられる。また、この第4絶縁膜27の幅W2 は、開口部23の内径をA2 (内径A2 は開口部23のうち主にp側電極21の開口部の内径を指す)とすると、以下の式(3)を満たす範囲であることが好ましい。 As shown in FIG. 5A, the fourth insulating film 27 is provided on the surface of the upper DBR mirror layer 15 that is exposed at the bottom of the opening 23. The film thickness of the central region 23A of the opening 23 in the fourth insulating film 27 is dλ / 2n 5 (d is an integer of 1 or more, λ is the emission wavelength, and n 5 is the refractive index). The film thickness of the area other than the central area 23A (the peripheral area 23B) is (2e-1) λ / 4n 5 (e is an integer of 1 or more). The refractive index n 5 of the fourth insulating film 27 is made of a material lower than the surface of the upper DBR mirror layer 15, for example, an oxide or a nitride. Examples of the oxide include SiO 2 , and examples of the nitride include SiN. The width W 2 of the fourth insulating film 27 is as follows when the inner diameter of the opening 23 is A 2 (the inner diameter A 2 mainly indicates the inner diameter of the opening of the p-side electrode 21 in the opening 23). It is preferable that it is the range which satisfy | fills Formula (3).

2 /3≦W2 ≦2A2 /3…式(3) A 2/3 ≦ W 2 ≦ 2A 2/3 ... Equation (3)

なお、開口部23の中央領域23Aの反射率をR1 、開口部23の中央領域23A以外の領域(周辺領域23B)の反射率をR2 、開口部23に絶縁膜を設けなかった場合の反射率をR3 とすると、以下の式(4)の関係を満たすように屈折率を調節することが好ましい。このような反射率の分布にすることにより、基本横モードの光出力を低減することなく高次横モード発振を抑制することが可能となる。 The reflectance of the central region 23A of the opening 23 is R 1 , the reflectance of the region other than the central region 23A of the opening 23 (peripheral region 23B) is R 2 , and the insulating film is not provided in the opening 23. When the reflectance is R 3 , it is preferable to adjust the refractive index so as to satisfy the relationship of the following formula (4). By adopting such a reflectance distribution, higher-order transverse mode oscillation can be suppressed without reducing the light output of the fundamental transverse mode.

1 ≧R3 >R2 …式(4) R 1 ≧ R 3 > R 2 Formula (4)

例えば、第4絶縁膜27の屈折率を2.0とすると、開口部23の中央領域23Aでの反射率R1 は99.2%、開口部23の中央領域23A以外の領域(周辺領域23B)での反射率R2 は97.2%となる。このように、わずかな反射率の差を設けた場合であっても、上記の第1の実施の形態の場合と同様に、基本横モードの光出力を低減することなく高次横モード発振のみを抑制することが可能となる。 For example, when the refractive index of the fourth insulating film 27 is 2.0, the reflectance R 1 at the central region 23A of the opening 23 is 99.2%, and the region other than the central region 23A of the opening 23 (the peripheral region 23B). ) reflectance R 2 in becomes 97.2%. As described above, even when a slight difference in reflectance is provided, only high-order transverse mode oscillation is performed without reducing the light output in the fundamental transverse mode, as in the case of the first embodiment. Can be suppressed.

この第4絶縁膜27は、例えば次のようにして製造することができる。メサポスト30上およびメサポスト30の周辺基板上に例えばCVD法により上記絶縁材料を堆積する。その後、図5(B)に示したように、エッチングにより絶縁材料のうちp側コンタクト層16の開口部に対応する部分以外の領域を選択的に除去すると共に、p側コンタクト層16の開口部の中央領域以外の領域(周辺領域)を所定の厚さになるまで削り、第4絶縁膜27を形成する。上記絶縁膜は上部DBRミラー層15などの半導体材料に対して優れた選択性を有しており、さらに複雑な形状とする必要がないことから、エッチングにより第4絶縁膜27を容易に成形することができる。   The fourth insulating film 27 can be manufactured, for example, as follows. The insulating material is deposited on the mesa post 30 and the peripheral substrate of the mesa post 30 by, for example, a CVD method. After that, as shown in FIG. 5B, the insulating material is selectively removed from the insulating material other than the portion corresponding to the opening of the p-side contact layer 16, and the opening of the p-side contact layer 16 is removed. A region other than the central region (peripheral region) is shaved to a predetermined thickness, and a fourth insulating film 27 is formed. Since the insulating film has excellent selectivity with respect to the semiconductor material such as the upper DBR mirror layer 15 and does not need to have a more complicated shape, the fourth insulating film 27 is easily formed by etching. be able to.

以上、実施の形態を挙げて本発明を説明したが、本発明は上記実施の形態に限定されるものではなく、種々変形可能である。   The present invention has been described with reference to the embodiment. However, the present invention is not limited to the above embodiment, and various modifications can be made.

例えば、上記実施の形態では、光調整層を、第1絶縁膜17〜第3絶縁膜19、あるいは第4絶縁膜27により構成するようにしたが、光調整層は他の構成であってもよく、要は、光出射領域のうち中央領域に対して周辺領域の反射率が相対的に低くなるような構成となるものであればよい。   For example, in the above embodiment, the light adjustment layer is configured by the first insulating film 17 to the third insulating film 19 or the fourth insulating film 27. However, the light adjustment layer may have other configurations. In short, what is necessary is that the configuration is such that the reflectance of the peripheral region is relatively low with respect to the central region in the light emitting region.

本発明の第1の実施の形態に係る面発光型半導体レーザの断面構成図である。1 is a cross-sectional configuration diagram of a surface emitting semiconductor laser according to a first embodiment of the present invention. 図1のレーザの要部を反射率の分布と共に表す図である。It is a figure showing the principal part of the laser of FIG. 1 with the distribution of reflectance. 図1に示したレーザの製造過程を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing process of the laser shown in FIG. 図3に続く過程を説明するための断面図である。It is sectional drawing for demonstrating the process following FIG. 本発明の第2の実施の形態に係る面発光型半導体レーザの要部を反射率の分布と共に表す図である。It is a figure showing the principal part of the surface emitting semiconductor laser which concerns on the 2nd Embodiment of this invention with distribution of reflectance.

符号の説明Explanation of symbols

1,2…面発光型半導体レーザ、10…基板、11…下部DBRミラー層、11Ai,15Aj…低屈折率層、11Bi,15Bj…高屈折率層、12…下部クラッド層、13…活性層、13A…発光中心領域、14…上部クラッド層、15…上部DBRミラー層、15C…電流狭窄層、15C−1…電流注入領域、15C−2…電流狭窄領域、15D…AlAs層、16…p側コンタクト層、17…第1絶縁膜、18…第2絶縁膜、19…第3絶縁膜、20…保護膜、21…p側電極、22…光出射領域、23…開口部、23A…中央領域、23B…周辺領域、24…n側電極、27…第4絶縁膜、30…メサポスト
DESCRIPTION OF SYMBOLS 1, 2 ... Surface emitting semiconductor laser, 10 ... Substrate, 11 ... Lower DBR mirror layer, 11Ai, 15Aj ... Low refractive index layer, 11Bi, 15Bj ... High refractive index layer, 12 ... Lower clad layer, 13 ... Active layer, 13A ... emission center region, 14 ... upper cladding layer, 15 ... upper DBR mirror layer, 15C ... current confinement layer, 15C-1 ... current injection region, 15C-2 ... current confinement region, 15D ... AlAs layer, 16 ... p side Contact layer, 17 ... first insulating film, 18 ... second insulating film, 19 ... third insulating film, 20 ... protective film, 21 ... p-side electrode, 22 ... light emitting region, 23 ... opening, 23A ... central region , 23B ... peripheral region, 24 ... n-side electrode, 27 ... fourth insulating film, 30 ... mesa post

Claims (9)

発光中心領域を有する活性層と、
前記活性層を間にして設けられ、一方に光出射領域を有する一対の多層膜反射鏡と、
前記光出射領域に対応して開口部を有する電極と、
前記光出射領域に対応して設けられると共に、前記光出射領域のうち前記発光中心領域に対応する中央領域を囲む周辺領域の反射率が前記中央領域のそれよりも低くなるように構成された絶縁膜と
を備えたことを特徴とする面発光型半導体レーザ。
An active layer having an emission center region;
A pair of multilayer reflectors provided with the active layer in between and having a light output region on one side;
An electrode having an opening corresponding to the light emitting region;
Insulation provided so as to correspond to the light emitting region and configured such that the reflectance of the peripheral region surrounding the central region corresponding to the light emission central region of the light emitting region is lower than that of the central region. A surface emitting semiconductor laser comprising: a film;
前記絶縁膜の、前記光射出領域のうち中央領域に対応する部分は、膜厚が(2a−1)λ/4n1 (aは1以上の整数,λは発光波長,n1 は屈折率)、屈折率n1 が前記出射側の多層膜反射鏡の表面のそれよりも低い値を有する第1絶縁膜と、膜厚が(2b−1)λ/4n2 (bは1以上の整数,n2 は屈折率)、屈折率n2 が前記第1絶縁膜のそれよりも低い値を有する第2絶縁膜とをこの順に積層した構造であり、前記光出射領域のうち周辺領域に対応する部分は、膜厚が(2c−1)λ/4n3 (cは1以上の整数,n3 は屈折率)、屈折率n3 が前記第1絶縁膜のそれよりも低い値を有する第3絶縁膜である
ことを特徴とする請求項1に記載の面発光型半導体レーザ。
The portion of the insulating film corresponding to the central region of the light emission region has a film thickness of (2a-1) λ / 4n 1 (a is an integer of 1 or more, λ is an emission wavelength, and n 1 is a refractive index). , A first insulating film having a refractive index n 1 lower than that of the surface of the multilayer reflector on the exit side, and a film thickness of (2b-1) λ / 4n 2 (b is an integer greater than or equal to 1, n 2 is a refractive index), and a second insulating film having a refractive index n 2 having a value lower than that of the first insulating film is laminated in this order, and corresponds to the peripheral region of the light emitting region. The portion has a thickness of (2c-1) λ / 4n 3 (c is an integer of 1 or more, n 3 is a refractive index), and a refractive index n 3 is a third value lower than that of the first insulating film. The surface emitting semiconductor laser according to claim 1, wherein the surface emitting semiconductor laser is an insulating film.
前記第1絶縁膜は酸化物、前記第2絶縁膜および第3絶縁膜は窒化物によりそれぞれ構成されている
ことを特徴とする請求項2に記載の面発光型半導体レーザ。
3. The surface emitting semiconductor laser according to claim 2, wherein the first insulating film is made of an oxide, and the second insulating film and the third insulating film are made of a nitride.
前記第1絶縁膜の幅をW1 、前記開口部の内径をA1 とすると、以下の式を満たす
ことを特徴とする請求項2に記載の面発光型半導体レーザ。
1 /3≦W1 ≦2A1 /3…式(1)
3. The surface-emitting type semiconductor laser according to claim 2, wherein a width of the first insulating film is W 1 and an inner diameter of the opening is A 1 , the following formula is satisfied.
A 1/3 ≦ W 1 ≦ 2A 1/3 ... Formula (1)
前記光出射領域のうち中央領域の絶縁膜による反射率をR1 、前記光出射領域のうち周辺領域の絶縁膜による反射率をR2 、前記光出射領域に絶縁膜がない場合の反射率をR3 とすると、以下の式を満たす
ことを特徴とする請求項2に記載の面発光型半導体レーザ。
1 ≧R3 >R2 …式(2)
The reflectance of the insulating region in the central region of the light emitting region is R 1 , the reflectance of the insulating region in the peripheral region of the light emitting region is R 2 , and the reflectance when there is no insulating film in the light emitting region. The surface emitting semiconductor laser according to claim 2, wherein R 3 satisfies the following formula.
R 1 ≧ R 3 > R 2 Formula (2)
前記絶縁膜は、前記光出射領域のうち中央領域に対応する部分の膜厚がdλ/2n5 (dは1以上の整数,λは発光波長,n5 は屈折率)、前記光出射領域のうち周辺領域に対応する部分の膜厚が(2e−1)λ/4n5 (eは1以上の整数)である第4絶縁膜であり、屈折率n5 は前記出射側の多層膜反射鏡の表面のそれよりも低い値を有する
ことを特徴とする請求項1に記載の面発光型半導体レーザ。
The insulating film has a thickness corresponding to the central region of the light emitting region of dλ / 2n 5 (d is an integer of 1 or more, λ is an emission wavelength, and n 5 is a refractive index), Among these, the film thickness of the portion corresponding to the peripheral region is a fourth insulating film whose thickness is (2e-1) λ / 4n 5 (e is an integer greater than or equal to 1), and the refractive index n 5 is the multilayer film reflecting mirror on the exit side. The surface emitting semiconductor laser according to claim 1, wherein the surface emitting semiconductor laser has a value lower than that of the surface of the surface.
前記第4絶縁膜は、酸化物または窒化物により構成されている
ことを特徴とする請求項6に記載の面発光型半導体レーザ。
The surface emitting semiconductor laser according to claim 6, wherein the fourth insulating film is made of an oxide or a nitride.
前記第4絶縁膜のうち膜厚がdλ/2n5 の領域の幅をW2 、前記開口部の内径をA2 とすると、以下の式を満たす
ことを特徴とする請求項6に記載の面発光型半導体レーザ。
2 /3≦W2 ≦2A2 /3…式(3)
7. The surface according to claim 6, wherein a width of a region having a film thickness of dλ / 2n 5 in the fourth insulating film is W 2 , and an inner diameter of the opening is A 2. Light emitting semiconductor laser.
A 2/3 ≦ W 2 ≦ 2A 2/3 ... Equation (3)
前記第4絶縁膜のうち、前記光出射領域の中央領域に対応する部分の反射率をR1 、前記光出射領域の周辺領域に対応する部分の反射率をR2 とし、前記光出射領域に前記絶縁膜がない場合の反射率をR3 とすると、以下の式を満たす
ことを特徴とする請求項6に記載の面発光型半導体レーザ。
1 ≧R3 >R2 …式(4)
Of the fourth insulating film, the reflectance of the portion corresponding to the central region of the light emitting region is R 1 , and the reflectance of the portion corresponding to the peripheral region of the light emitting region is R 2. The surface emitting semiconductor laser according to claim 6, wherein the following expression is satisfied, where R 3 is a reflectance when the insulating film is not provided.
R 1 ≧ R 3 > R 2 Formula (4)
JP2005017349A 2005-01-25 2005-01-25 Surface emitting semiconductor laser Pending JP2006210429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005017349A JP2006210429A (en) 2005-01-25 2005-01-25 Surface emitting semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005017349A JP2006210429A (en) 2005-01-25 2005-01-25 Surface emitting semiconductor laser

Publications (1)

Publication Number Publication Date
JP2006210429A true JP2006210429A (en) 2006-08-10

Family

ID=36966966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005017349A Pending JP2006210429A (en) 2005-01-25 2005-01-25 Surface emitting semiconductor laser

Country Status (1)

Country Link
JP (1) JP2006210429A (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007142184A1 (en) * 2006-06-08 2007-12-13 Sony Corporation Planar light emission semiconductor laser and its manufacturing method
JP2009188382A (en) * 2008-01-10 2009-08-20 Sony Corp Vertical cavity surface-emitting laser
JP2010045250A (en) * 2008-08-14 2010-02-25 Sony Corp Surface emitting semiconductor laser
JP2010050412A (en) * 2008-08-25 2010-03-04 Sony Corp Surface-emitting semiconductor laser
CN101834408A (en) * 2009-03-09 2010-09-15 索尼公司 Semiconductor laser and manufacture method thereof
JP2010251342A (en) * 2009-03-23 2010-11-04 Sony Corp Semiconductor laser
WO2010137389A1 (en) * 2009-05-28 2010-12-02 Ricoh Company, Ltd. Method of manufacturing surface emitting laser, and surface emitting laser, surface emitting laser array, optical scanning device, and image forming apparatus
JP2011009368A (en) * 2009-06-24 2011-01-13 Ricoh Co Ltd Method of manufacturing surface-emitting laser, surface-emitting laser manufactured by the same, surface-emitting laser array element using the same, optical scanning device, and image formation device
JP2011060993A (en) * 2009-09-10 2011-03-24 Canon Inc Surface emitting laser and surface emitting laser array
JP2011066125A (en) * 2009-09-16 2011-03-31 Fuji Xerox Co Ltd Surface-emitting semiconductor laser, surface-emitting semiconductor laser device, optical transmission device, and information processor
EP2328244A1 (en) 2009-11-27 2011-06-01 Ricoh Company, Ltd. Surface-emitting laser element, surface-emitting laser array, optical scanner device, and image forming apparatus
EP2330698A1 (en) 2009-11-26 2011-06-08 Ricoh Company, Ltd. Surface-emitting laser element, surface-emitting laser array, optical scanning device, and image forming apparatus
JP2011124314A (en) * 2009-12-09 2011-06-23 Fuji Xerox Co Ltd Surface-emitting semiconductor laser, surface-emitting semiconductor laser device, optical transmission device, and information processing device
EP2381544A2 (en) 2010-04-22 2011-10-26 Ricoh Company, Limited Surface emitting laser device, surface emitting laser array, optical scanning device, image forming apparatus, and manufacturing method of surface emitting laser device
US8059689B2 (en) 2009-09-08 2011-11-15 Fuji Xerox Co., Ltd. Vertical cavity surface emitting laser, vertical cavity surface emitting laser device, optical transmission device, and information processing apparatus
WO2011148957A1 (en) * 2010-05-25 2011-12-01 Ricoh Company, Ltd. Surface-emitting laser device, surface-emitting laser array, optical scanner, and image forming apparatus
US8077752B2 (en) 2008-01-10 2011-12-13 Sony Corporation Vertical cavity surface emitting laser
EP2438662A1 (en) * 2009-06-04 2012-04-11 Ricoh Company, Ltd. Surface-emitting laser element, surface-emitting laser array, optical scanning apparatus, image forming apparatus, and method of manufacturing surface-emitting laser element
JP2012104522A (en) * 2010-11-05 2012-05-31 Canon Inc Surface emitting laser and surface emitting laser array, method for manufacturing surface emitting laser and surface emitting laser array, and optical apparatus including surface emitting laser array
JP2012124433A (en) * 2010-12-10 2012-06-28 Canon Inc Surface emitting laser
US8295318B2 (en) 2010-06-29 2012-10-23 Fuji Xerox Co., Ltd. Vertical cavity surface emitting laser, vertical-cavity-surface-emitting-laser device, optical transmission apparatus, and information processing apparatus
US8368972B2 (en) 2011-01-05 2013-02-05 Fuji Xerox Co., Ltd. Surface-emitting semiconductor laser, surface-emitting semiconductor laser device, optical transmission apparatus, and information processing apparatus
JP2013191855A (en) * 2008-11-27 2013-09-26 Ricoh Co Ltd Surface emitting laser element, surface emitting laser array, optical scanner and image formation device
US8649407B2 (en) 2008-11-27 2014-02-11 Ricoh Company, Ltd. Surface-emitting laser device, surface-emitting laser array, optical scanning apparatus and image forming apparatus
JP2014036027A (en) * 2012-08-07 2014-02-24 Fuji Xerox Co Ltd Vertical cavity surface-emitting semiconductor laser, vertical cavity surface-emitting semiconductor laser device, optical transmission device, and information processing device
US8731012B2 (en) 2012-01-24 2014-05-20 Fuji Xerox Co., Ltd. Surface emitting semiconductor laser and its manufacturing method, surface emitting semiconductor laser device, optical transmitter, and information processor
JP2014168074A (en) * 2009-05-28 2014-09-11 Ricoh Co Ltd Method of manufacturing surface emitting laser element
JP2014199897A (en) * 2013-03-29 2014-10-23 新科實業有限公司SAE Magnetics(H.K.)Ltd. Vertical cavity surface emitting semiconductor laser
US8900902B2 (en) 2010-01-06 2014-12-02 Canon Kabushiki Kaisha Process for producing surface-emitting laser and process for producing surface-emitting laser array
US9281660B2 (en) 2010-10-16 2016-03-08 Canon Kabushiki Kaisha Surface emitting laser, surface-emitting-laser array, and image forming apparatus
US11901701B2 (en) 2019-11-22 2024-02-13 Ricoh Company, Ltd. Surface emitting laser element, surface emitting laser, surface emitting laser device, light source device, and detection apparatus

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7920615B2 (en) 2006-06-08 2011-04-05 Sony Corporation Surface-emitting laser diode and method of manufacturing the same
WO2007142184A1 (en) * 2006-06-08 2007-12-13 Sony Corporation Planar light emission semiconductor laser and its manufacturing method
JP2009188382A (en) * 2008-01-10 2009-08-20 Sony Corp Vertical cavity surface-emitting laser
US8363687B2 (en) 2008-01-10 2013-01-29 Sony Corporation Vertical cavity surface emitting laser
JP2010135854A (en) * 2008-01-10 2010-06-17 Sony Corp Surface-emitting semiconductor laser
USRE48577E1 (en) 2008-01-10 2021-06-01 Sony Corporation Vertical cavity surface emitting laser
JP4582237B2 (en) * 2008-01-10 2010-11-17 ソニー株式会社 Surface emitting semiconductor laser
US8077752B2 (en) 2008-01-10 2011-12-13 Sony Corporation Vertical cavity surface emitting laser
JP4626686B2 (en) * 2008-08-14 2011-02-09 ソニー株式会社 Surface emitting semiconductor laser
JP2010045250A (en) * 2008-08-14 2010-02-25 Sony Corp Surface emitting semiconductor laser
US8218594B2 (en) 2008-08-14 2012-07-10 Sony Corporation Vertical cavity surface emitting laser
US8290009B2 (en) 2008-08-25 2012-10-16 Sony Corporation Vertical cavity surface emitting laser
JP2010050412A (en) * 2008-08-25 2010-03-04 Sony Corp Surface-emitting semiconductor laser
JP2013191855A (en) * 2008-11-27 2013-09-26 Ricoh Co Ltd Surface emitting laser element, surface emitting laser array, optical scanner and image formation device
US8649407B2 (en) 2008-11-27 2014-02-11 Ricoh Company, Ltd. Surface-emitting laser device, surface-emitting laser array, optical scanning apparatus and image forming apparatus
US8958449B2 (en) 2008-11-27 2015-02-17 Ricoh Company, Ltd. Surface-emitting laser device, surface-emitting laser array, optical scanning apparatus and image forming apparatus
CN101834408A (en) * 2009-03-09 2010-09-15 索尼公司 Semiconductor laser and manufacture method thereof
JP2010251342A (en) * 2009-03-23 2010-11-04 Sony Corp Semiconductor laser
EP2436090A4 (en) * 2009-05-28 2017-08-09 Ricoh Company Ltd. Method of manufacturing surface emitting laser, and surface emitting laser, surface emitting laser array, optical scanning device, and image forming apparatus
CN102439806A (en) * 2009-05-28 2012-05-02 株式会社理光 Method of manufacturing surface emitting laser, and surface emitting laser, surface emitting laser array, optical scanning device, and image forming apparatus
US8809089B2 (en) 2009-05-28 2014-08-19 Ricoh Company, Ltd. Method of manufacturing surface emitting laser, and surface emitting laser, surface emitting laser array, optical scanning device and image forming apparatus
WO2010137389A1 (en) * 2009-05-28 2010-12-02 Ricoh Company, Ltd. Method of manufacturing surface emitting laser, and surface emitting laser, surface emitting laser array, optical scanning device, and image forming apparatus
JP2011009693A (en) * 2009-05-28 2011-01-13 Ricoh Co Ltd Method of manufacturing surface emitting laser element, surface emitting laser element, surface emitting laser array, optical scanning device, and image forming apparatus
US8609447B2 (en) 2009-05-28 2013-12-17 Ricoh Company, Ltd. Method of manufacturing surface emitting laser, and surface emitting laser, surface emitting laser array, optical scanning device and image forming apparatus
KR101347963B1 (en) 2009-05-28 2014-01-07 가부시키가이샤 리코 Method of manufacturing surface emitting laser, and surface emitting laser, surface emitting laser array, optical scanning device, and image forming apparatus
JP2014168074A (en) * 2009-05-28 2014-09-11 Ricoh Co Ltd Method of manufacturing surface emitting laser element
EP2438662A1 (en) * 2009-06-04 2012-04-11 Ricoh Company, Ltd. Surface-emitting laser element, surface-emitting laser array, optical scanning apparatus, image forming apparatus, and method of manufacturing surface-emitting laser element
EP2438662A4 (en) * 2009-06-04 2013-09-11 Ricoh Co Ltd Surface-emitting laser element, surface-emitting laser array, optical scanning apparatus, image forming apparatus, and method of manufacturing surface-emitting laser element
US8937982B2 (en) 2009-06-04 2015-01-20 Ricoh Company, Ltd. Surface-emitting laser element, surface-emitting laser array, optical scanning apparatus, image forming apparatus, and method of manufacturing surface-emitting laser element
JP2011009368A (en) * 2009-06-24 2011-01-13 Ricoh Co Ltd Method of manufacturing surface-emitting laser, surface-emitting laser manufactured by the same, surface-emitting laser array element using the same, optical scanning device, and image formation device
US8059689B2 (en) 2009-09-08 2011-11-15 Fuji Xerox Co., Ltd. Vertical cavity surface emitting laser, vertical cavity surface emitting laser device, optical transmission device, and information processing apparatus
JP2011060993A (en) * 2009-09-10 2011-03-24 Canon Inc Surface emitting laser and surface emitting laser array
JP2011066125A (en) * 2009-09-16 2011-03-31 Fuji Xerox Co Ltd Surface-emitting semiconductor laser, surface-emitting semiconductor laser device, optical transmission device, and information processor
US8275014B2 (en) 2009-11-26 2012-09-25 Ricoh Company, Ltd. Surface-emitting laser element, surface-emitting laser array, optical scanning device, and image forming apparatus
JP2011135031A (en) * 2009-11-26 2011-07-07 Ricoh Co Ltd Surface emitting laser element, surface emitting laser array, optical scanner, and image formation apparatus
EP2330698A1 (en) 2009-11-26 2011-06-08 Ricoh Company, Ltd. Surface-emitting laser element, surface-emitting laser array, optical scanning device, and image forming apparatus
EP2328244A1 (en) 2009-11-27 2011-06-01 Ricoh Company, Ltd. Surface-emitting laser element, surface-emitting laser array, optical scanner device, and image forming apparatus
JP2011135030A (en) * 2009-11-27 2011-07-07 Ricoh Co Ltd Surface emitting laser element, surface emitting laser array, optical scanner device, and image forming apparatus
US8855159B2 (en) 2009-11-27 2014-10-07 Ricoh Company, Ltd. Surface-emitting laser element, surface-emitting laser array, optical scanner device, and image forming apparatus
US8465993B2 (en) 2009-12-09 2013-06-18 Fuji Xerox Co., Ltd. Vertical cavity surface emitting laser, vertical cavity surface emitting laser device, optical transmission device, and information processing apparatus
JP2011124314A (en) * 2009-12-09 2011-06-23 Fuji Xerox Co Ltd Surface-emitting semiconductor laser, surface-emitting semiconductor laser device, optical transmission device, and information processing device
US8900902B2 (en) 2010-01-06 2014-12-02 Canon Kabushiki Kaisha Process for producing surface-emitting laser and process for producing surface-emitting laser array
EP2381544A2 (en) 2010-04-22 2011-10-26 Ricoh Company, Limited Surface emitting laser device, surface emitting laser array, optical scanning device, image forming apparatus, and manufacturing method of surface emitting laser device
US8989231B2 (en) 2010-04-22 2015-03-24 Hiroyoshi Shouji Surface emitting laser device, surface emitting laser array, optical scanning device, image forming apparatus, and manufacturing method of surface emitting laser device
US8498319B2 (en) 2010-04-22 2013-07-30 Ricoh Company, Ltd. Surface emitting laser device, surface emitting laser array, optical scanning device, image forming apparatus, and manufacturing method of surface emitting laser device
CN102474073A (en) * 2010-05-25 2012-05-23 株式会社理光 Surface-emitting laser device, surface-emitting laser array, optical scanner, and image forming apparatus
WO2011148957A1 (en) * 2010-05-25 2011-12-01 Ricoh Company, Ltd. Surface-emitting laser device, surface-emitting laser array, optical scanner, and image forming apparatus
JP2012009818A (en) * 2010-05-25 2012-01-12 Ricoh Co Ltd Surface emitting laser element, surface emitting laser array, optical scanner, image forming apparatus, and manufacturing method of surface emitting laser element
US9176417B2 (en) 2010-05-25 2015-11-03 Ricoh Company, Ltd. Surface-emitting laser device, surface-emitting laser array, optical scanner, image forming apparatus, and method for manufacturing surface-emitting laser device
US8736652B2 (en) 2010-05-25 2014-05-27 Ricoh Company, Ltd. Surface-emitting laser device, surface-emitting laser array, optical scanner, image forming apparatus, and method for manufacturing surface-emitting laser device
US8295318B2 (en) 2010-06-29 2012-10-23 Fuji Xerox Co., Ltd. Vertical cavity surface emitting laser, vertical-cavity-surface-emitting-laser device, optical transmission apparatus, and information processing apparatus
US9281660B2 (en) 2010-10-16 2016-03-08 Canon Kabushiki Kaisha Surface emitting laser, surface-emitting-laser array, and image forming apparatus
JP2012104522A (en) * 2010-11-05 2012-05-31 Canon Inc Surface emitting laser and surface emitting laser array, method for manufacturing surface emitting laser and surface emitting laser array, and optical apparatus including surface emitting laser array
JP2012124433A (en) * 2010-12-10 2012-06-28 Canon Inc Surface emitting laser
US9046807B2 (en) 2010-12-10 2015-06-02 Canon Kabushiki Kaisha Surface emitting laser
US8368972B2 (en) 2011-01-05 2013-02-05 Fuji Xerox Co., Ltd. Surface-emitting semiconductor laser, surface-emitting semiconductor laser device, optical transmission apparatus, and information processing apparatus
US8731012B2 (en) 2012-01-24 2014-05-20 Fuji Xerox Co., Ltd. Surface emitting semiconductor laser and its manufacturing method, surface emitting semiconductor laser device, optical transmitter, and information processor
JP2014036027A (en) * 2012-08-07 2014-02-24 Fuji Xerox Co Ltd Vertical cavity surface-emitting semiconductor laser, vertical cavity surface-emitting semiconductor laser device, optical transmission device, and information processing device
US8842709B2 (en) 2012-08-07 2014-09-23 Fuji Xerox Co., Ltd. Surface emitting semiconductor laser, manufacturing method for surface emitting semiconductor laser, surface emitting semiconductor laser device, optical transmission device, and information processing device
JP2014199897A (en) * 2013-03-29 2014-10-23 新科實業有限公司SAE Magnetics(H.K.)Ltd. Vertical cavity surface emitting semiconductor laser
US11901701B2 (en) 2019-11-22 2024-02-13 Ricoh Company, Ltd. Surface emitting laser element, surface emitting laser, surface emitting laser device, light source device, and detection apparatus

Similar Documents

Publication Publication Date Title
JP2006210429A (en) Surface emitting semiconductor laser
JP4872987B2 (en) Surface emitting semiconductor laser
JP5376104B2 (en) Surface emitting semiconductor laser
US7912105B2 (en) Vertical cavity surface emitting laser
JP5304694B2 (en) Surface emitting semiconductor laser
JP4992503B2 (en) Surface emitting semiconductor laser and manufacturing method thereof
US8077752B2 (en) Vertical cavity surface emitting laser
JP4626686B2 (en) Surface emitting semiconductor laser
US8040934B2 (en) Vertical cavity surface emitting laser and method of manufacturing thereof
JP5434201B2 (en) Semiconductor laser
US20110007769A1 (en) Laser diode
JP5093480B2 (en) Surface emitting semiconductor laser and manufacturing method thereof
JP2006222196A (en) Surface emitting laser element
JP2023083422A (en) Surface-emitting laser
JP2010045249A (en) Semiconductor light emitting device and method of manufacturing the same
JP2011061083A (en) Semiconductor laser
JP2011222721A (en) Semiconductor laser
JP2006302955A (en) Vertical cavity surface emitting laser
JP5261201B2 (en) Surface emitting laser, surface emitting laser array and manufacturing method thereof
JP2006190762A (en) Semiconductor laser
JP2006210430A (en) Semiconductor laser
JP2006228959A (en) Surface-emitting semiconductor laser
CN113725726A (en) External cavity type VCSEL laser, VCSEL array and preparation method of laser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091027