JPH0447979Y2 - - Google Patents

Info

Publication number
JPH0447979Y2
JPH0447979Y2 JP600486U JP600486U JPH0447979Y2 JP H0447979 Y2 JPH0447979 Y2 JP H0447979Y2 JP 600486 U JP600486 U JP 600486U JP 600486 U JP600486 U JP 600486U JP H0447979 Y2 JPH0447979 Y2 JP H0447979Y2
Authority
JP
Japan
Prior art keywords
film
layer
reflection film
tin
power semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP600486U
Other languages
Japanese (ja)
Other versions
JPS62118469U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP600486U priority Critical patent/JPH0447979Y2/ja
Publication of JPS62118469U publication Critical patent/JPS62118469U/ja
Application granted granted Critical
Publication of JPH0447979Y2 publication Critical patent/JPH0447979Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 (イ) 産業上の利用分野 本考案は高出力型半導体レーザに関する。[Detailed explanation of the idea] (b) Industrial application fields The present invention relates to a high-power semiconductor laser.

(ロ) 従来の技術 現在、高出力型半導体レーザとしては、1対の
共振器端面の一方を高反射膜で被覆し、他方を低
反射膜で被覆してなる構成のものである。
(B) Prior Art Currently, high-power semiconductor lasers have a structure in which one of a pair of resonator end faces is coated with a high reflection film and the other is coated with a low reflection film.

例えば、アイイーイーイー・ジヤーナル・オ
ブ・クウオンタム・エレクトロニクス(IEEE
JOURNAL OF QUANTUM
ELECTRONICS)、VOL.QE−21、NO.6、
JUNE 1985 P623−P628には一方の共振器端面
をAl2O3(酸化アルミニウム)層とSi(シリコン)
層とを交互に複数層積層してなる反射率96%の高
反射膜で被覆し、他方の共振器端面をAl2O3から
なる反射率4%の低反射膜で被覆した高出力型半
導体レーザが開示されている。
For example, the International Journal of Quantum Electronics (IEEE
JOURNAL OF QUANTUM
ELECTRONICS), VOL.QE−21, NO.6,
JUNE 1985 P623-P628 has one resonator end face with Al 2 O 3 (aluminum oxide) layer and Si (silicon) layer.
A high-power semiconductor that is coated with a high-reflection film with a reflectance of 96% made by laminating multiple layers alternately, and the other cavity end face is coated with a low-reflection film with a reflectance of 4% made of Al 2 O 3 . A laser is disclosed.

また、上記高反射膜の他の例としては端面上に
SiO2(二酸化シリコン)、Al2O3,Si3N4(窒化シリ
コン)等からなる絶縁膜を形成し、かつ斯る絶縁
膜上にAu(金)膜を形成してなるものがある。
In addition, as another example of the above-mentioned high reflection film,
There is one in which an insulating film made of SiO 2 (silicon dioxide), Al 2 O 3 , Si 3 N 4 (silicon nitride), etc. is formed, and an Au (gold) film is formed on the insulating film.

(ハ) 考案が解決しようとする問題点 然るに、前者の高反射膜は各層の膜厚を精度良
く制御する必要があり、再現性の点で問題があ
り、またこの構造では放熱が悪いため発熱が大な
る高出力型半導体レーザには不適当である。
(c) Problems that the invention aims to solve: However, the former highly reflective film requires precise control of the thickness of each layer, which poses problems in terms of reproducibility. In addition, this structure has poor heat dissipation properties and is therefore unsuitable for high-output semiconductor lasers that generate a lot of heat.

一方、後者の構造ではAu膜が導電性であるた
め電気的短絡の惧れがある。
On the other hand, in the latter structure, since the Au film is conductive, there is a risk of an electrical short circuit.

(ニ) 問題点を解決するための手段 本考案は斯る点に鑑みてなされたものでその構
成的特徴は、共振器端面の一方をTiN(窒化チタ
ン)膜で被覆したことにある。
(d) Means for solving the problems The present invention was devised in view of this point, and its structural feature is that one of the end faces of the resonator is coated with a TiN (titanium nitride) film.

(ホ) 作用 TiN膜は熱伝導率が高く、かつ光反射率が高
いため、高出力型半導体レーザの高反射膜として
最適である。
(E) Effect Since the TiN film has high thermal conductivity and high optical reflectance, it is ideal as a highly reflective film for high-power semiconductor lasers.

(ヘ) 実施例 第1図は本考案の実施例を示し、1はP型
GaAsからなる基板、2は該基板の一主面上に積
層されたN型GaAsからなる電流狭窄層であり、
該狭窄層表面より基板1に達するV字溝が第1図
a中紙面垂直方向に延在している。3は上記狭窄
層2及び溝上に積層された第1クラツド層であ
り、該クラツド層はキヤリア濃度がある5×1017
〜3×1018/cm3のP型Ga0.5Al0.5Asからなり、そ
の層厚は上記溝上部で1〜2μm、その他の部分で
0.1〜0.3μmである。4は上記第1トラツド層3上
に積層された活性層であり、該活性層はキヤリア
濃度が1015〜1016/cm3のノンドープGa0.85Al0.15As
からなり、その層厚は0.05〜0.1μmである。5は
上記活性層4上に積層された第2クラツド層であ
り、該クラツド層はキヤリア濃度が1〜3×
1018/cm3のN型Ga0.5Al0.5Asからなりその層厚は
1〜2μmである。6は上記第2クラツド層5上に
積層されたキヤツプ層であり、該キヤツプ層はキ
ヤリア濃度が1017/cm3以上のN型GaAsからなる。
7は一方の共振器端面P上に形成された低反射膜
であり、該低反射膜はλ/4(λは発振レーザ光
の波長)の整数倍の層厚を有するAl2O3からなり
その反射率は約4%である。8は他方の共振器端
面Q上に形成された高反射膜であり、該高反射膜
はTiNからなる。
(f) Example Figure 1 shows an example of the present invention, and 1 is a P-type
A substrate made of GaAs, 2 is a current confinement layer made of N-type GaAs laminated on one main surface of the substrate,
A V-shaped groove reaching the substrate 1 from the surface of the constriction layer extends in a direction perpendicular to the plane of the paper in FIG. 1a. 3 is a first cladding layer laminated on the constriction layer 2 and the groove, and the cladding layer has a carrier concentration of 5×10 17
It consists of P-type Ga 0.5 Al 0.5 As with a thickness of ~3×10 18 /cm 3 , and the layer thickness is 1 to 2 μm at the top of the groove, and the thickness is 1 to 2 μm in the other parts.
It is 0.1-0.3 μm. Reference numeral 4 denotes an active layer laminated on the first conventional layer 3, and the active layer is made of non-doped Ga 0.85 Al 0.15 As with a carrier concentration of 10 15 to 10 16 /cm 3 .
The layer thickness is 0.05 to 0.1 μm. 5 is a second clad layer laminated on the active layer 4, and the clad layer has a carrier concentration of 1 to 3×
It is made of N-type Ga 0.5 Al 0.5 As of 10 18 /cm 3 and has a layer thickness of 1 to 2 μm. Reference numeral 6 denotes a cap layer laminated on the second cladding layer 5, and the cap layer is made of N-type GaAs having a carrier concentration of 10 17 /cm 3 or more.
7 is a low-reflection film formed on one of the resonator end faces P, and the low-reflection film is made of Al 2 O 3 and has a layer thickness that is an integral multiple of λ/4 (λ is the wavelength of the oscillation laser beam). Its reflectance is about 4%. 8 is a high reflection film formed on the other resonator end face Q, and the high reflection film is made of TiN.

第2図はTiN膜、Al2O3とSiとを交互に積層し
てなる膜及びAl2O3上にAuを積層してなる膜の
各々の光反射率、熱伝導率及びピツカース硬度を
示す。
Figure 2 shows the optical reflectance, thermal conductivity, and Pickers hardness of a TiN film, a film made by alternately laminating Al 2 O 3 and Si, and a film made by laminating Au on Al 2 O 3 . show.

第2図より明らかな如く、TiN膜の反射率は
Al2O3とSiとを交互に積層してなる膜及びAl2O3
上にAuを積層してなる膜に較べてやや低いが、
80%という高反射率を有し、かつ比抵抗も
250μΩ・cmと高いため単層で高反射膜が得られ、
従つて量産に適しており、またTiN膜の熱伝導
率は他の膜に比べて高いため高出力型半導体レー
ザに好適である。更にピツカース硬度も他の膜に
比べて高いため、端面も傷つき難い。
As is clear from Figure 2, the reflectance of the TiN film is
Film formed by alternately laminating Al 2 O 3 and Si and Al 2 O 3
Although it is slightly lower than a film made by laminating Au on top,
It has a high reflectance of 80% and also has a specific resistance.
Because it is high at 250μΩ・cm, a highly reflective film can be obtained with a single layer.
Therefore, it is suitable for mass production, and since the thermal conductivity of the TiN film is higher than that of other films, it is suitable for high-power semiconductor lasers. Furthermore, since the Pickkers hardness is higher than other films, the end surface is less likely to be damaged.

尚、このようなTiN膜は例えばスパツタガ
ス:Ar、入力電力:200〜300W、スパツタ圧
力:2〜4×10-2(Torr)、ターゲツト:TiN粉
末、基板温度:〜200℃という条件の下でスパツ
タリングすることにより形成できる。
Incidentally, such a TiN film can be produced under the following conditions: sputtering gas: Ar, input power: 200 to 300 W, sputtering pressure: 2 to 4 × 10 -2 (Torr), target: TiN powder, and substrate temperature: ~200°C. It can be formed by sputtering.

第3図に本実施例装置の光出力−電流特性Aと
高反射膜としてAl2O3とSiとを交互に多層積層し
てなる膜を用いた従来装置の光出力−電流特性B
とを示す。
Figure 3 shows the optical output-current characteristic A of the device of this embodiment and the optical output-current characteristic B of the conventional device using a film made by alternately laminating multiple layers of Al 2 O 3 and Si as a high reflection film.
and

第3図より明らかなように最大光出力は本実施
例装置の方が高い。
As is clear from FIG. 3, the maximum optical output of the device of this embodiment is higher.

また、第4図に本実施例装置の寿命特性A及び
従来装置の寿命特性Bを示す。尚、斯る寿命特性
は60℃の高温雰囲気中で低反射膜側より40mWの
連続出力を行なつた際の駆動電流の経時変化を測
定したものである。
Further, FIG. 4 shows the life characteristic A of the device of this embodiment and the life characteristic B of the conventional device. The life characteristics were determined by measuring the change in drive current over time when a continuous output of 40 mW was applied from the low reflection film side in a high temperature atmosphere of 60°C.

第4図より明らかな如く、従来装置では1200時
間以上経過するとその駆動電流が上昇するのに対
して、本実施例装置では2000時間経過しても駆動
電流の変化は見られない。
As is clear from FIG. 4, in the conventional device, the driving current increases after 1200 hours or more, whereas in the device of this embodiment, no change in the driving current is observed even after 2000 hours.

(ト) 考案の効果 本考案の如く、高出力型半導体レーザの一共振
器端面を被覆する高反射膜をTiN膜で形成する
ことにより高出力化、高寿命化がはかれると共
に、単層で高反射膜が得られるため量産化に適し
ている。
(G) Effects of the invention By forming the high-reflection film that covers one cavity end face of a high-power semiconductor laser with a TiN film as in the present invention, it is possible to achieve high output and long life, and also to achieve high output with a single layer. Since a reflective film can be obtained, it is suitable for mass production.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の実施例を示し、第1図aは同
図bのA−A′線断面図、第1図bは同図aのB
−B′線断面図、第2図は各高反射膜の物理的特
性を示す図、第3図及び第4図は夫々光出力−電
流特性及び寿命特性を示す特性図である。 8……TiN膜、P,Q……共振器端面。
Fig. 1 shows an embodiment of the present invention, Fig. 1a is a sectional view taken along line A-A' in Fig.
-B' line sectional view, FIG. 2 is a diagram showing physical characteristics of each high reflection film, and FIGS. 3 and 4 are characteristic diagrams showing optical output-current characteristics and life characteristics, respectively. 8...TiN film, P, Q...resonator end face.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 1対の共振器端面の一方をTiN膜で被覆した
ことを特徴とする高出力型半導体レーザ。
A high-power semiconductor laser characterized by having one of a pair of cavity end faces coated with a TiN film.
JP600486U 1986-01-20 1986-01-20 Expired JPH0447979Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP600486U JPH0447979Y2 (en) 1986-01-20 1986-01-20

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP600486U JPH0447979Y2 (en) 1986-01-20 1986-01-20

Publications (2)

Publication Number Publication Date
JPS62118469U JPS62118469U (en) 1987-07-28
JPH0447979Y2 true JPH0447979Y2 (en) 1992-11-12

Family

ID=30788109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP600486U Expired JPH0447979Y2 (en) 1986-01-20 1986-01-20

Country Status (1)

Country Link
JP (1) JPH0447979Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3699842B2 (en) * 1998-12-04 2005-09-28 三菱化学株式会社 Compound semiconductor light emitting device
JP4236840B2 (en) * 2001-12-25 2009-03-11 富士フイルム株式会社 Semiconductor laser element

Also Published As

Publication number Publication date
JPS62118469U (en) 1987-07-28

Similar Documents

Publication Publication Date Title
JP3523700B2 (en) Nitride semiconductor laser device
JP2004088049A (en) Optical semiconductor device
JPH0447979Y2 (en)
JPH0722695A (en) Self-excited oscillation type semiconductor laser element
JPH11340573A5 (en)
CA1115401A (en) Glass coating for semiconductor optical devices
JPH0621265Y2 (en) Semiconductor laser device
JP3080312B2 (en) Manufacturing method of semiconductor laser
JPH0425720B2 (en)
JPS60214578A (en) Semiconductor light emitting device
JPH0447981Y2 (en)
JPH05102613A (en) Multiple wave length semiconductor laser device
JPH0582759B2 (en)
JP2565909B2 (en) Semiconductor laser device
JPH07111367A (en) Semiconductor laser device
JP2001042169A (en) Optical device
JPH07321406A (en) Semiconductor laser device
JPH11330540A (en) Superluminescent diode
JPS62285486A (en) semiconductor laser
JPH0513021Y2 (en)
JP2002223026A (en) Laser element
JPH0666514B2 (en) Integrated semiconductor laser
JPH04133485A (en) Semiconductor laser device
JPH0846285A (en) Semiconductor laser element
JP3139774B2 (en) Semiconductor laser device