JP2748879B2 - Method for producing fluorinated amorphous carbon film material - Google Patents

Method for producing fluorinated amorphous carbon film material

Info

Publication number
JP2748879B2
JP2748879B2 JP7035023A JP3502395A JP2748879B2 JP 2748879 B2 JP2748879 B2 JP 2748879B2 JP 7035023 A JP7035023 A JP 7035023A JP 3502395 A JP3502395 A JP 3502395A JP 2748879 B2 JP2748879 B2 JP 2748879B2
Authority
JP
Japan
Prior art keywords
film
amorphous carbon
gas
carbon film
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7035023A
Other languages
Japanese (ja)
Other versions
JPH08236517A (en
Inventor
和彦 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12430468&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2748879(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP7035023A priority Critical patent/JP2748879B2/en
Priority to CA002157257A priority patent/CA2157257C/en
Priority to EP95114253A priority patent/EP0701283A3/en
Priority to KR1019950029566A priority patent/KR100188573B1/en
Priority to US08/526,902 priority patent/US5698901A/en
Publication of JPH08236517A publication Critical patent/JPH08236517A/en
Priority to US08/782,573 priority patent/US6033979A/en
Publication of JP2748879B2 publication Critical patent/JP2748879B2/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Formation Of Insulating Films (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、主に半導体装置の層間
絶縁膜用途の絶縁材料、特に低誘電率絶縁材料及びその
製造方法、また低誘電率絶縁材料を用いて配線遅延を減
少させた高速の半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention mainly relates to an insulating material for use in an interlayer insulating film of a semiconductor device, in particular, a low dielectric constant insulating material and a method for manufacturing the same, and a wiring delay is reduced by using a low dielectric constant insulating material. The present invention relates to a high-speed semiconductor device.

【0002】[0002]

【従来の技術】今後の半導体装置、及びその実装基板等
の配線幅、配線間隔の減少により、配線浮遊容量、及び
配線抵抗が増大するようになる。それにともなう配線遅
延の増大から、半導体装置の高速動作に障害が生じるよ
うになってくる。一般に配線遅延は、絶縁材料の比誘電
率の平方根に比例するので、絶縁材料に比誘電率の低い
ものを用いることによって配線遅延を減少させることが
可能になり、多層配線層における絶縁材料の見直しが行
われている。従来から半導体装置の層間絶縁膜には主と
してSiO2 が用いられており、プラズマCVDにより
製造する方法が確立されている。しかしこの方法で製造
されるSiO2 膜の比誘電率は約4程度であり、比誘電
率がそれ以下である膜の堆積方法の開発が望まれてい
る。そこで次世代の低誘電率層間絶縁材料として、比誘
電率が3以下になるフッ素化非晶質炭素材料が有力視さ
れている。
2. Description of the Related Art As the wiring width and the wiring interval of a semiconductor device and its mounting substrate decrease in the future, the wiring stray capacitance and the wiring resistance will increase. As a result, an increase in wiring delay causes a problem in high-speed operation of the semiconductor device. In general, the wiring delay is proportional to the square root of the dielectric constant of the insulating material, so it is possible to reduce the wiring delay by using an insulating material having a low relative dielectric constant. Has been done. Conventionally, SiO 2 has been mainly used for an interlayer insulating film of a semiconductor device, and a method of manufacturing by plasma CVD has been established. However, the relative dielectric constant of the SiO 2 film manufactured by this method is about 4, and the development of a method for depositing a film having a relative dielectric constant of less than that is desired. Therefore, as a next-generation low dielectric constant interlayer insulating material, a fluorinated amorphous carbon material having a relative dielectric constant of 3 or less is considered promising.

【0003】このフッ素化非晶質炭素材料は従来からプ
ラズマによる成膜が用いられており、例えば特願平06
−217470号等に示されているように、主にCxF
y(x=1−4,y=4−8)などのフッ化炭素ガス、
及びそれらに水素系のガスを添加したものが用いられて
いる。
[0003] This fluorinated amorphous carbon material has conventionally been formed by plasma deposition.
-217470, mainly CxF
a fluorocarbon gas such as y (x = 1-4, y = 4-8);
Further, those obtained by adding a hydrogen-based gas to them are used.

【0004】[0004]

【発明が解決しようとする課題】従来のフッ素化非晶質
炭素膜は比誘電率2.1程度を示すものであり、誘電率
は低い値を示しているが、耐熱温度がSiO2 よりも低
いため用途が限定されてしまう。例えば特願平06−2
17470号で示したものは約420℃で膜の分解が始
まり、膜厚の減少及びそれに伴うガスの発生が見られ、
この低誘電率材料を使用する場合、熱処理温度を420
℃以下に抑える必要があった。またこの非晶質炭素材料
を配線間絶縁材料に適用した場合、公知のリソグラフ技
術によるパターニングが必要となるが、非晶質炭素材料
はリソグラフに使用されるレジスト材料と同様の炭素材
料であるので、CF4 あるいはCHF3 ガスでエッチン
グした場合、レジストとのエッチング選択比を大きくす
る事ができず、例えば1μm堆積させた非晶質炭素膜を
パターニングするとすると、レジストは非晶質炭素膜状
上に約2μm 以上塗布しなければならない。また、レジ
ストを除去するときにも、通常は酸素プラズマによるレ
ジスト灰化が行われるが、非晶質炭素膜もそのときに灰
化されてしまうため、酸素プラズマにエッチングされに
くい構造を持った非晶質炭素膜材料が必要とされてい
る。
The conventional fluorinated amorphous carbon film has a relative dielectric constant of about 2.1 and has a low dielectric constant, but has a heat resistant temperature higher than that of SiO 2. Because of its low value, its use is limited. For example, Japanese Patent Application No. 06-2
In the case of No. 17470, decomposition of the film starts at about 420 ° C., and a decrease in the film thickness and generation of gas accompanying the film are observed.
When using this low dielectric constant material, the heat treatment temperature is set to 420
It was necessary to keep the temperature below ° C. When this amorphous carbon material is applied to an inter-wire insulating material, patterning by a known lithographic technique is required, but since the amorphous carbon material is a carbon material similar to a resist material used for lithography, , when etched with CF 4 or CHF 3 gas, it is impossible to increase the etching selectivity of the resist, for example, and patterning the amorphous carbon film is 1μm deposited, the resist on the amorphous carbon film-like Must be applied at least about 2 μm. When the resist is removed, the resist is usually ashed by oxygen plasma. However, since the amorphous carbon film is also ashed at that time, a non-amorphous structure having a structure that is hardly etched by oxygen plasma is obtained. There is a need for a crystalline carbon film material.

【0005】本発明の課題は、従来の非晶質炭素膜材料
に変えて、耐熱性及びエッチング特性に優れる低誘電率
の絶縁材料及びその製造方法、ならびにそれを層間絶縁
膜に用いた半導体装置を提供することにある。
An object of the present invention is to provide a low-dielectric-constant insulating material having excellent heat resistance and etching characteristics, a method of manufacturing the same, and a semiconductor device using the same as an interlayer insulating film, instead of a conventional amorphous carbon film material. Is to provide.

【0006】[0006]

【課題を解決するための手段】本発明は、従来フッ素化
非晶質炭素膜へ別の原子を導入して上記問題点を解決す
る。通常のフッ素化非晶質炭素膜は、フッ化炭素系のガ
スかあるいはフッ素系ガスへ水素ガスを添加したものが
原料に用いられており、フッ素化非晶質炭素膜内には炭
素、フッ素、及び水素原子が存在していた。このうち炭
素原子は、膜中に炭素−炭素結合を形成し、すなわち膜
の骨格となる構造を形成し、フッ素原子は膜の低誘電率
化の役割を担っている。また水素原子は膜中の未結合軌
道を終端する役割を果たしている。本発明ではこの膜に
窒素原子あるいはシリコン原子を導入することにより、
膜中に炭素−窒素、あるいは炭素−シリコン結合という
強固な結合を出現させて膜中の架橋度を高め、耐熱性の
向上、ならびにエッチング耐性を向上させる。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems by introducing another atom into a conventional fluorinated amorphous carbon film. As a usual fluorinated amorphous carbon film, a fluorocarbon-based gas or a gas obtained by adding a hydrogen gas to a fluorine-based gas is used as a raw material. , And a hydrogen atom. Of these, carbon atoms form a carbon-carbon bond in the film, that is, form a structure serving as a skeleton of the film, and fluorine atoms play a role in lowering the dielectric constant of the film. In addition, hydrogen atoms play a role in terminating unbonded orbitals in the film. In the present invention, by introducing nitrogen atoms or silicon atoms into this film,
A strong bond such as a carbon-nitrogen bond or a carbon-silicon bond appears in the film to increase the degree of cross-linking in the film, thereby improving heat resistance and etching resistance.

【0007】[0007]

【作用】一般に炭素系材料の場合、膜の耐熱性を決めて
いる要因は、膜の架橋構造にある。架橋構造とは、炭素
−炭素結合がランダムに膜中に存在する構造である。従
来のフッ素樹脂は(CF2 n という構造、すなわち炭
素−炭素結合が鎖状にのびた構造をしており、この場合
鎖状分子間はファンデルワールス力によって結合が保た
れ、膜は架橋構造を持っていない。そのため約300℃
で分解が始まり、膜の耐熱性が低い。しかし通常の非晶
質炭素膜では、フッ化水素系のガスを用いてプラズマで
ガスを解離して成膜を行うため、炭素−炭素結合がラン
ダムに膜中に分布し、膜は架橋構造を持つ。そのため耐
熱性はフッ素樹脂よりも高くなり、約420℃程度から
膜成分の脱離が始まる。このフッ素化非晶質炭素膜から
の膜成分の脱離は、膜中に存在する−CF3 あるいは−
(CF2 n −CF3 といった側鎖の結合が約420℃
程度で切れて生じると考えられる。
In general, in the case of a carbon-based material, the factor that determines the heat resistance of a film is the crosslinked structure of the film. The crosslinked structure is a structure in which carbon-carbon bonds are randomly present in a film. The conventional fluororesin has a structure of (CF 2 ) n , that is, a structure in which carbon-carbon bonds extend in a chain shape. In this case, the bonds between the chain molecules are maintained by Van der Waals force, and the membrane has a cross-linked structure. I do not have. About 300 ℃
Starts decomposition, and the heat resistance of the film is low. However, in a normal amorphous carbon film, since a film is formed by dissociating the gas with plasma using a hydrogen fluoride-based gas, carbon-carbon bonds are randomly distributed in the film, and the film has a crosslinked structure. Have. Therefore, the heat resistance becomes higher than that of the fluororesin, and the desorption of the membrane components starts at about 420 ° C. Desorption of film components from the fluorinated amorphous carbon film is caused by the presence of -CF 3 or-
Bonding of side chain such as (CF 2 ) n -CF 3 is about 420 ° C
It is thought to be caused by cutting to the extent.

【0008】これらの側鎖同士をある新たな結合で束ね
て架橋度を増加させれば、脱離温度を上昇させることが
できる。本発明では膜中に架橋度を高める別の原子を含
有させ、これらの側鎖を束ねる。架橋度を高める原子と
しては、ガスとして供給できしかも炭素原子と共有結合
を形成でき、得られた含有物が絶縁性を保つものであれ
ばよい。本発明では非晶質炭素膜中に3配位の窒素原
子、あるいは4配位のシリコン原子を含有させて、これ
らの原子を炭素原子と結合させて膜中の特に架橋度の低
い側鎖に、新たな架橋構造を形成させる。またこれらの
炭素−シリコン結合、あるいは炭素−窒素結合が、従来
の炭素−炭素結合よりも強固であることを利用して、酸
素プラズマによるエッチング速度を通常の非晶質炭素膜
に比べて低下させ、レジストが灰化しても非晶質炭素膜
を灰化させない。さらにパターニング時にフッ化炭素系
のガスで非晶質炭素膜をエッチングする際、膜中にシリ
コンを含有させることで、通常のSiO2 のエッチング
と同様にエッチング速度をレジストに比べて高め、従来
のSiO2 と同様のパターニング工程を使用することが
できるようにする。
If the degree of crosslinking is increased by bundling these side chains with a new bond, the desorption temperature can be increased. In the present invention, another atom for increasing the degree of crosslinking is contained in the film, and these side chains are bundled. The atom that increases the degree of crosslinking may be any as long as it can be supplied as a gas and can form a covalent bond with a carbon atom, and the resulting material maintains insulation. In the present invention, a three-coordinate nitrogen atom or a four-coordinate silicon atom is contained in an amorphous carbon film, and these atoms are combined with carbon atoms to form a side chain having a particularly low degree of crosslinking in the film. To form a new crosslinked structure. Further, by utilizing the fact that these carbon-silicon bonds or carbon-nitrogen bonds are stronger than conventional carbon-carbon bonds, the etching rate by oxygen plasma is reduced as compared with a normal amorphous carbon film. Even if the resist is ashed, the amorphous carbon film is not ashed. In addition, when etching an amorphous carbon film with a fluorocarbon-based gas during patterning, silicon is contained in the film, thereby increasing the etching rate as compared with a resist, similarly to the etching of normal SiO 2 . The same patterning process as for SiO 2 can be used.

【0009】[0009]

【実施例】本発明を図面に基づいて説明する。図1は含
フッ素非晶質炭素膜を形成させるための装置の概略図で
ある。装置は支持台101に設置した真空槽内に、電極
105、107を設け、その間に高圧電源装置108か
ら直流及び交流電力を印加できるようになっている。ま
た下部電極には試料加熱装置が設けられており、試料を
任意の温度に加熱することが可能である。この装置によ
って非晶質炭素膜を形成させるには、下部電極上にシリ
コン基板等の試料106を設置する。下部電極には高周
波が印加されるので、電極には約数百ボルトの負のバイ
アスが印加され、バイアスで加速されたイオンが試料に
照射されて、架橋した非晶質炭素膜が得られる。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. FIG. 1 is a schematic view of an apparatus for forming a fluorine-containing amorphous carbon film. In the apparatus, electrodes 105 and 107 are provided in a vacuum chamber installed on a support 101, and between them, DC and AC power can be applied from a high voltage power supply 108. The lower electrode is provided with a sample heating device, and can heat the sample to an arbitrary temperature. In order to form an amorphous carbon film using this apparatus, a sample 106 such as a silicon substrate is placed on the lower electrode. Since a high frequency is applied to the lower electrode, a negative bias of about several hundred volts is applied to the electrode, and ions accelerated by the bias are applied to the sample to obtain a crosslinked amorphous carbon film.

【0010】試料を電極に設置後、CF4 、SF6 、C
2 4 、NF3 、C2 6 、C3 8 、C4 8 等のフ
ッ素系ガスと、CH4 などの炭化水素あるいは水素ガス
を導入し、真空度0.01−0.5Torrで、電極間
に高周波あるいは、直流電力を印加してグロー放電さ
せ、フッ化炭素のプラズマを発生させる。このフッ化炭
素プラズマによりフッ素化非晶質炭素膜を堆積させる。
この高周波を利用したプラズマ発生方以外にも、マイク
ロ波、ヘリコン波等を用いた高密度プラズマも同様に使
用できる。以上の場合通常のフッ素化非晶質炭素膜が堆
積されるが、本発明では同時に窒素ガスあるいはシリコ
ンガスを流入させて膜中にフッ素原子あるいはシリコン
原子を含有させて膜質を制御する。窒素ガスとしてはN
2 、NH3、NF3 、シリコンガスとしては、Si
4 、Si2 6 などが使用できる。
After placing the sample on the electrode, CF 4 , SF 6 , C
2 and F 4, NF 3, fluorine-based gas such as C 2 F 6, C 3 F 8, C 4 F 8, a hydrocarbon or hydrogen gas, such as CH 4 was introduced, the degree of vacuum 0.01-0.5Torr Then, a high frequency or DC power is applied between the electrodes to cause glow discharge to generate plasma of carbon fluoride. A fluorinated amorphous carbon film is deposited by this fluorocarbon plasma.
In addition to the plasma generation method using the high frequency, a high-density plasma using a microwave, a helicon wave, or the like can also be used. In the above case, a normal fluorinated amorphous carbon film is deposited, but in the present invention, a nitrogen gas or a silicon gas is caused to flow in at the same time to contain fluorine atoms or silicon atoms in the film to control the film quality. N as nitrogen gas
2 , NH 3 , NF 3 , and silicon gas as Si
H 4 and Si 2 H 6 can be used.

【0011】まず、窒素原子をフッ素化非晶質炭素膜に
含有させた場合の実施例を説明する。図1に示した高周
波放電を用いて成膜を行った場合について示す。C
4 、CH4 及びN2 ガスを原料に用いて、成膜を行っ
た。基板はSiO2 /Si(100)及びP+ Si(1
00)を用いて高周波が印加される電極に装着して成膜
した。ガス全流量を50sccm一定とし、高周波電力
を200W、CF4 /CH4 流量比を16に固定して、
2 流量を変化させて成膜を行った。
First, an embodiment in which nitrogen atoms are contained in a fluorinated amorphous carbon film will be described. A case where a film is formed by using the high-frequency discharge shown in FIG. 1 will be described. C
Film formation was performed using F 4 , CH 4 and N 2 gases as raw materials. Substrates were made of SiO 2 / Si (100) and P + Si (1).
00), a film was attached to an electrode to which a high frequency was applied. The total gas flow rate was fixed at 50 sccm, the high frequency power was fixed at 200 W, and the CF 4 / CH 4 flow ratio was fixed at 16,
Film formation was performed while changing the N 2 flow rate.

【0012】得られた膜を真空中で500℃まで加熱
し、膜厚の減少度を見積もることにより耐熱性を評価し
た。膜中の窒素含有量は、X線光電子分光法を用いて、
得られた信号のC1s、F1s、N1sピークの面積比を計算
して求めた。またAl/非晶質炭素膜/p+ Siでキャ
パシタを形成し、容量(1MHz)を測定することによ
って膜の比誘電率を求めた。図2に全流量中のN2 ガス
流量比に対する膜中の窒素含有量の変化を示す。ガス流
量の増加に伴い、膜中の窒素含有量が増加していくこと
が分かる。次に図3に全流量中のN2 ガス流量比に対す
る耐熱性の変化を示す。この場合耐熱性とは膜厚の減少
度で評価し、加熱後の膜厚が加熱前のどれだけに減少し
たかを示している。なお加熱方法は、図示してある温度
で1時間試料を真空中で加熱する事で行った。これら図
2、図3に示すように、N2 ガスを添加することにより
膜中に窒素が含有され、耐熱性は窒素を含有していない
非晶質炭素膜に比べて向上し、窒素を15%以上含有さ
せた膜では、470℃まで加熱しても膜厚が減少しない
耐熱性の高い膜が形成されることが分かった。
The obtained film was heated to 500 ° C. in a vacuum, and the heat resistance was evaluated by estimating the degree of decrease in the film thickness. The nitrogen content in the film was determined using X-ray photoelectron spectroscopy.
The area ratio of the C 1s , F 1s , and N 1s peaks of the obtained signal was calculated and obtained. Further, a capacitor was formed from Al / amorphous carbon film / p + Si, and the relative permittivity of the film was obtained by measuring the capacitance (1 MHz). FIG. 2 shows the change in the nitrogen content in the film with respect to the N 2 gas flow ratio in the total flow. It can be seen that the nitrogen content in the film increases as the gas flow rate increases. Next, FIG. 3 shows a change in heat resistance with respect to the N 2 gas flow ratio in the total flow. In this case, the heat resistance is evaluated based on the degree of decrease in film thickness, and indicates how much the film thickness after heating has decreased before heating. The heating was performed by heating the sample in a vacuum at the temperature shown in the figure for one hour. As shown in FIGS. 2 and 3, nitrogen is added to the film by adding N 2 gas, and the heat resistance is improved as compared with the amorphous carbon film not containing nitrogen. %, It was found that a film having high heat resistance, whose thickness did not decrease even when heated to 470 ° C., was formed.

【0013】次に図4の曲線1に静電容量から計算によ
り求められた窒素含有非晶質炭素膜の比誘電率を示す。
図に示すように膜中の窒素含有量の増加に伴い、比誘電
率は単調に増加していくことが分かった。この様に窒素
含有により比誘電率は上昇することが分かったが、比誘
電率は3以下に留まっている。また真空中300℃1時
間熱処理による、非晶質炭素膜の比誘電率の変化を曲線
2に示す。従来の窒素の含有されていない非晶質炭素
膜、あるいは含有量の少ない膜は、300℃の熱処理に
よって比誘電率が上昇するが、非晶質炭素膜に窒素を含
有させることにより、300℃熱処理による比誘電率の
上昇が抑えられることが分かった。この様に熱処理によ
る膜厚の減少、及び比誘電率の上昇が起こらなかったの
は、膜中にC−Nによる新たなネットワークが形成され
たためと考えられる。C−N結合の結合エネルギーは1
75kcal/mol、C−C結合の結合エネルギーは
145kcal/molであり、C−N結合はC−C結
合よりも安定であるため膜の耐熱性が向上したと考えら
れる。またX線光電子分光及び赤外吸収分光法により膜
中の結合状態について調べたところ、膜中の窒素はすべ
てC−N結合を形成して存在しており、N−F結合は膜
中には存在しなかった。すなわち窒素はすべて炭素原子
と結合して膜中に存在し、膜の架橋度を高めていると考
えられる。
Next, the relative dielectric constant of the nitrogen-containing amorphous carbon film calculated from the capacitance is shown by a curve 1 in FIG.
As shown in the figure, it was found that as the nitrogen content in the film increased, the relative dielectric constant monotonously increased. As described above, it was found that the relative dielectric constant increased due to the nitrogen content, but the relative dielectric constant remained at 3 or less. Curve 2 shows the change in the relative dielectric constant of the amorphous carbon film due to heat treatment at 300 ° C. for 1 hour in vacuum. A conventional amorphous carbon film containing no nitrogen or a film having a small content raises the relative dielectric constant by heat treatment at 300 ° C. It was found that the increase in the relative dielectric constant due to the heat treatment was suppressed. The reason why the film thickness did not decrease and the relative dielectric constant did not increase due to the heat treatment in this manner is considered to be due to the formation of a new network of CN in the film. The bond energy of the C—N bond is 1
75 kcal / mol, the bond energy of the CC bond is 145 kcal / mol, and it is considered that the heat resistance of the film is improved because the CN bond is more stable than the CC bond. In addition, when the bonding state in the film was examined by X-ray photoelectron spectroscopy and infrared absorption spectroscopy, all the nitrogen in the film was present in the form of CN bonds, and the NF bond was found in the film. Did not exist. That is, it is considered that all of the nitrogen is bonded to the carbon atoms and exists in the film, thereby increasing the degree of crosslinking of the film.

【0014】次に、膜中へシリコン含有を行った場合の
実施例について説明する。ガスはSiH4 を用いた。同
様に図1に示した高周波放電装置を用いて成膜を行った
場合について示す。基板はSiO2 /Si(100)及
びP+ Si(100)を用いて、高周波が印加される電
極に装着して成膜した。ガス全流量を50sccm一定
とし、高周波電力を200W、CF4 /CH4 流量比を
16に固定して、シリコンガスの流量を変化させて成膜
を行った。
Next, an embodiment in which silicon is contained in the film will be described. The gas used was SiH 4 . Similarly, a case where a film is formed using the high-frequency discharge device shown in FIG. 1 will be described. The substrate was formed using SiO 2 / Si (100) and P + Si (100) by attaching it to an electrode to which a high frequency was applied. The film was formed by changing the flow rate of the silicon gas while fixing the total flow rate of the gas at 50 sccm, the high-frequency power at 200 W, and the CF 4 / CH 4 flow rate ratio at 16, and changing the flow rate of the silicon gas.

【0015】得られた膜を真空中で500℃で加熱し、
膜厚の減少度を見積もることにより耐熱性を評価した。
膜中のシリコン含有量はX線光電子分光法を用いて、得
られた信号のC1s、F1s、Si1sピークの面積比を計算
して求めた。またAl/非晶質炭素膜/p+ Siでキャ
パシタを形成し、容量(1MHz)を測定することによ
って膜の比誘電率を求めた。図5にSiH4 ガス流量に
対する膜中のシリコン含有量の変化を示す。この様に成
膜中にSiH4 ガスを添加するだけで膜中にシリコンが
含有される事が分かった。図6に耐熱性の変化を示す。
この場合の耐熱性も、1時間の熱処理後に、熱処理前の
どれだけに膜厚が減少したかで表している。これら図
5、図6に示すように、成膜時にSiH4 ガスを添加す
ることで膜中にシリコンが含有され、耐熱性はシリコン
を含有していない非晶質炭素膜に比べて向上し、シリコ
ンを20%以上含有させた膜では470℃までの耐熱性
が得られることが分かった。
The resulting film is heated at 500 ° C. in vacuum,
The heat resistance was evaluated by estimating the degree of decrease in the film thickness.
The silicon content in the film was determined by using X-ray photoelectron spectroscopy and calculating the area ratio of the C 1s , F 1s , and Si 1s peaks of the obtained signal. Further, a capacitor was formed from Al / amorphous carbon film / p + Si, and the relative permittivity of the film was obtained by measuring the capacitance (1 MHz). FIG. 5 shows a change in the silicon content in the film with respect to the flow rate of the SiH 4 gas. Thus, it was found that silicon was contained in the film only by adding the SiH 4 gas during the film formation. FIG. 6 shows the change in heat resistance.
The heat resistance in this case also indicates how much the film thickness has decreased after the heat treatment for one hour and before the heat treatment. As shown in FIGS. 5 and 6, by adding SiH 4 gas at the time of film formation, silicon is contained in the film, and the heat resistance is improved as compared with the amorphous carbon film not containing silicon. It was found that a film containing 20% or more of silicon can have heat resistance up to 470 ° C.

【0016】図7の曲線1に静電容量から計算により求
められたシリコン含有非晶質炭素膜の比誘電率を示す。
比誘電率は膜中のシリコン含有量が増加するに従って単
調に増加した。シリコンを20%含有させた非晶質炭素
膜で、比誘電率は2.8であった。この様にシリコン含
有によっても、窒素含有と同様に比誘電率は上昇するこ
とが分かったが、比誘電率は3以下に留まっている。ま
た真空中300℃1時間熱処理による非晶質炭素膜の比
誘電率の変化を曲線2に示す。図に示すようにシリコン
含有量の少ない非晶質炭素膜では、成膜後の熱処理によ
って比誘電率が上昇するが、非晶質炭素膜にシリコンを
含有させることにより熱処理による比誘電率の上昇が抑
えられることが分かった。シリコン含有非晶質炭素膜の
結合状態について調べた。X線光電子分光及び赤外吸収
分光法によって調べたところ、シリコンは膜中にSi−
C結合のみで存在していることが分かった。すなわち膜
中に含まれたシリコン原子がSi−Cという強固な結合
を形成して膜の耐熱性を高めていると考えられる。
The curve 1 in FIG. 7 shows the relative dielectric constant of the silicon-containing amorphous carbon film calculated from the capacitance.
The relative permittivity monotonically increased as the silicon content in the film increased. It was an amorphous carbon film containing 20% silicon and had a relative dielectric constant of 2.8. As described above, it has been found that the relative dielectric constant increases with the inclusion of silicon as in the case with the inclusion of nitrogen, but the relative dielectric constant remains at 3 or less. Curve 2 shows the change in the relative dielectric constant of the amorphous carbon film due to heat treatment at 300 ° C. for 1 hour in vacuum. As shown in the figure, in the case of an amorphous carbon film having a small silicon content, the relative dielectric constant increases due to heat treatment after film formation, but the relative dielectric constant increases due to the heat treatment when silicon is contained in the amorphous carbon film. Was found to be suppressed. The bonding state of the silicon-containing amorphous carbon film was examined. According to X-ray photoelectron spectroscopy and infrared absorption spectroscopy, silicon was found to be present in the film as Si-
It turned out that it exists only by C bond. In other words, it is considered that the silicon atoms contained in the film form a strong bond of Si—C to increase the heat resistance of the film.

【0017】続いてエッチング特性について調べた。ま
ず図1の装置にO2 ガスを100sccm流し、得られ
た膜を高周波電力200Wでエッチングし、耐酸素プラ
ズマ特性を調べた。図8に窒素含有されたフッ素化非晶
質炭素膜、及びシリコン含有させたフッ素化非晶質炭素
膜の酸素プラズマによるエッチング速度をそれぞれの含
有量に対して示している。このように膜に窒素あるいは
シリコンを含有させることで耐酸素プラズマ特性を持つ
非晶質炭素膜が得られた。
Subsequently, the etching characteristics were examined. First, O 2 gas was flowed at 100 sccm into the apparatus shown in FIG. 1, and the obtained film was etched with high-frequency power of 200 W to examine the oxygen-resistant plasma characteristics. FIG. 8 shows the etching rates of the fluorinated amorphous carbon film containing nitrogen and the fluorinated amorphous carbon film containing silicon by oxygen plasma with respect to the respective contents. By adding nitrogen or silicon to the film, an amorphous carbon film having oxygen-resistant plasma characteristics was obtained.

【0018】次にCF4 ガスによるエッチング特性につ
いて調べた。同様に図1の装置に、CF4 ガスを100
sccm流し、高周波を200W印加してプラズマを発
生させてエッチングした。図9にCF4 プラズマによる
エッチング速度を示す。このガスの場合は、膜中にシリ
コンを含有させた場合、エッチング速度を通常の非晶質
炭素膜に比べて高めることができた。これはCF4 等の
フッ化炭素プラズマでは、シリコン原子が炭素原子より
もエッチングされやすいため、非晶質炭素膜中のシリコ
ン原子がまずエッチングされ、そのシリコン成分が抜け
た場所にさらにエッチング物質のフッ素が吸着すること
によって、膜のエッチングが進行していくためであると
考えられる。
Next, the etching characteristics with CF 4 gas were examined. Similarly to the apparatus of FIG. 1, a CF 4 gas 100
The cell was etched by flowing a flow of sccm and applying a high frequency of 200 W to generate plasma. FIG. 9 shows the etching rate by CF 4 plasma. In the case of this gas, when silicon was contained in the film, the etching rate could be increased as compared with a normal amorphous carbon film. This is because, in a fluorocarbon plasma such as CF 4 , silicon atoms are more easily etched than carbon atoms, so silicon atoms in the amorphous carbon film are etched first, and an etching substance is further removed where the silicon component is removed. It is considered that the etching of the film proceeds due to the adsorption of fluorine.

【0019】以上のN2 及びSiH4 を用いた実施例に
変えて、次に他のガスを原料として窒素及びシリコン含
有フッ素化非晶質炭素膜を成膜した。CF4 あるいはそ
れにCH4 を添加したガスにNO、NO2 、NH3 、N
3 を窒素ガスとして添加して窒素含有膜を成膜したと
ころ、N2 を添加した場合と同等の耐熱性、及びエッチ
ング特性を示す窒素含有非晶質炭素膜が得られた。また
フッ化炭素ガスをC26 、C3 8 、C4 8 、CH
3 とし、それらに添加する水素系ガスをH2、C2
6 、C2 4 、C2 2 、C3 8 として、それぞれに
ついてN2 、NO、NO2 、NH3 、NF3 を添加して
成膜したところ、これらの膜も同等の耐熱性、エッチン
グ特性を示した。またシリコン含有膜に関しては、CF
4 あるいはそれにCH4 を添加したガスにSi2 6
びSiF4 をシリコンガスとして添加して成膜したとこ
ろ、SiH4 を添加した場合と同等の耐熱性、及びエッ
チング特性を示すシリコン含有非晶質炭素膜が得られ
た。またフッ化炭素ガスをC2 6 、C3 8 、C4
8 、CHF3 にし、それらに添加する水素系ガスを
2 、C2 6 、C2 4 、C2 2 、C3 8 とし
て、それぞれについてSiH4 、Si2 6 、SiF4
を添加して成膜したところ、これらの膜も同等の耐熱
性、エッチング特性を示した。本発明の成膜方法はプラ
ズマを用いているのでこの様に窒素あるいはシリコンが
含有されているガスであればどのガスでも使用可能であ
る。さらにマイクロ波、及びヘリコン波放電による高密
度プラズマを用いて成膜を行っても、高周波放電と同様
の効果が得られることを確認した。
Instead of the above-described embodiment using N 2 and SiH 4 , a fluorinated amorphous carbon film containing nitrogen and silicon was formed using another gas as a raw material. CF 4 or NO in the gas it was added CH 4, NO 2, NH 3 , N
When a nitrogen-containing film was formed by adding F 3 as nitrogen gas, a nitrogen-containing amorphous carbon film having the same heat resistance and etching characteristics as those obtained by adding N 2 was obtained. In addition, fluorocarbon gas is used for C 2 F 6 , C 3 F 8 , C 4 F 8 , CH
F 3, and the hydrogen-based gas added to them is H 2 , C 2 H
6 , C 2 H 4 , C 2 H 2 , and C 3 H 8 were formed by adding N 2 , NO, NO 2 , NH 3 , and NF 3 , respectively, and these films also had the same heat resistance. And etching characteristics. For silicon-containing films, CF
When Si 2 H 6 and SiF 4 were added as a silicon gas to a gas to which CH 4 was added or a gas containing CH 4 was added, a silicon-containing amorphous material having the same heat resistance and etching characteristics as those when SiH 4 was added. A carbonaceous film was obtained. Also, fluorocarbon gas is used as C 2 F 6 , C 3 F 8 , C 4 F
8 , CHF 3 , and hydrogen-based gases added to them are H 2 , C 2 H 6 , C 2 H 4 , C 2 H 2 , and C 3 H 8 , each of which is SiH 4 , Si 2 H 6 , SiF 4
When these were added to form films, these films also exhibited the same heat resistance and etching characteristics. Since the film forming method of the present invention uses plasma, any gas containing nitrogen or silicon can be used. Further, it was confirmed that the same effect as the high-frequency discharge was obtained even when the film was formed using high-density plasma generated by microwave and helicon wave discharge.

【0020】この様に耐熱性が高くエッチング特性に優
れる非晶質炭素膜が得られたので、続いてこの非晶質炭
素膜を層間絶縁膜に使用した図10に示す構造のMOS
型FET半導体装置を作製した。なお配線のパターニン
グは公知のリソグラフィ技術を用いた。MOS型FET
の第1層アルミニウム1003と第2層アルミニウム1
002の間の絶縁膜として本発明の非晶質炭素膜100
1を用いた。従来の非晶質炭素膜を使用した半導体装置
は、非晶質炭素膜からのガスの発生があるので、420
℃までの耐熱性しか得られなかったが、本発明の非晶質
炭素膜を用いた場合、半導体装置の製造過程で470℃
までの熱処理を行う行程を使用する事ができ、配線のコ
ンタクト抵抗を低減させることができたので、従来の非
晶質炭素膜を使用した半導体装置に比べて約5%程度の
配線の信号伝搬速度の高速化を行うことができた。また
パターニングの際のエッチングに従来のSiO2 のエッ
チングと同様のガス及びレジストが使用でき、レジスト
の除去も酸素プラズマによる従来の方法が使用できるの
で、SiO2 を層間絶縁膜に用いるときと同様のパター
ニング行程を使用して、非晶質炭素膜を層間絶縁膜に持
つ半導体装置を形成することができた。なお図10はM
OS型電解効果トランジスタより構成されている半導体
装置に適用した実施例であるが、そのほかにもバイポー
ラトランジスタから構成される半導体装置に関しても、
同等の効果を得ることができた。
As described above, an amorphous carbon film having high heat resistance and excellent etching characteristics was obtained. Then, the amorphous carbon film having the structure shown in FIG.
A type FET semiconductor device was manufactured. A known lithography technique was used for patterning the wiring. MOS FET
First layer aluminum 1003 and second layer aluminum 1
The amorphous carbon film 100 of the present invention is used as an insulating film during the period 002.
1 was used. In a conventional semiconductor device using an amorphous carbon film, a gas is generated from the amorphous carbon film.
Although only the heat resistance up to ℃ was obtained, when the amorphous carbon film of the present invention was used, 470 ° C.
Up to about 5% of the signal propagation of the wiring compared to a conventional semiconductor device using an amorphous carbon film because the contact resistance of the wiring can be reduced. The speed could be increased. Also available are similar gas and the resist and conventional in the SiO 2 etching the etching in patterning, the conventional method for removing resist also by oxygen plasma can be used, similar to the case of using SiO 2 interlayer insulating film By using the patterning process, a semiconductor device having an amorphous carbon film as an interlayer insulating film could be formed. FIG. 10 shows M
Although the embodiment is applied to a semiconductor device constituted by an OS type field effect transistor, in addition to the semiconductor device constituted by a bipolar transistor,
The same effect was obtained.

【0021】[0021]

【発明の効果】以上説明したように、本発明はシリコン
あるいは窒素を含有させた耐熱性及びエッチング特性の
優れる非晶質炭素膜、ならびにそれを製造する手法を提
供した。またこの非晶質炭素膜を半導体装置の層間絶縁
膜に使用することで、信頼性を損ねることなく半導体装
置の高速化を行うことのできる半導体装置を実現させ
た。
As described above, the present invention provides an amorphous carbon film containing silicon or nitrogen and having excellent heat resistance and etching characteristics, and a method for producing the same. Further, by using this amorphous carbon film as an interlayer insulating film of a semiconductor device, a semiconductor device capable of increasing the speed of a semiconductor device without deteriorating reliability has been realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】窒素あるいはシリコンが含有されたフッ素化非
晶質炭素膜を製造するための装置の概略図である。
FIG. 1 is a schematic view of an apparatus for producing a fluorinated amorphous carbon film containing nitrogen or silicon.

【図2】全ガス流量中のN2 ガス流量比に対する膜中の
窒素含有量の変化を示す図である。
FIG. 2 is a diagram showing a change in a nitrogen content in a film with respect to an N 2 gas flow ratio in a total gas flow.

【図3】全ガス流量中のN2 ガス流量比に対する耐熱性
の変化を示す図である。
FIG. 3 is a diagram showing a change in heat resistance with respect to a N 2 gas flow ratio in the entire gas flow.

【図4】窒素が含有されたフッ素化非晶質炭素膜の比誘
電率を示す図である。
FIG. 4 is a view showing the relative dielectric constant of a fluorinated amorphous carbon film containing nitrogen.

【図5】全ガス流量中のSiH4 ガス流量比に対する膜
中のシリコン含有量の変化を示す図である。
FIG. 5 is a diagram showing a change in a silicon content in a film with respect to a SiH 4 gas flow ratio in a total gas flow.

【図6】全ガス流量中のSiH4 ガス流量比に対する耐
熱性の変化を示す図である。
FIG. 6 is a diagram showing a change in heat resistance with respect to a SiH 4 gas flow ratio in the entire gas flow.

【図7】シリコンが含有されたフッ素化非晶質炭素膜の
比誘電率を示す図である。
FIG. 7 is a view showing the relative dielectric constant of a fluorinated amorphous carbon film containing silicon.

【図8】O2 プラズマによる非晶質炭素膜のエッチング
速度を示す図である。
FIG. 8 is a diagram showing an etching rate of an amorphous carbon film by O 2 plasma.

【図9】CF4 プラズマによる非晶質炭素膜のエッチン
グ速度を示す図である。
FIG. 9 is a diagram showing an etching rate of an amorphous carbon film by CF 4 plasma.

【図10】本発明の非晶質炭素膜を用いた半導体装置の
断面図を示す。
FIG. 10 is a sectional view of a semiconductor device using the amorphous carbon film of the present invention.

【符号の説明】[Explanation of symbols]

101 支持台 102 真空ポンプ 103 ガスボンベ 104 真空容器 105 上部電極 106 試料 107 下部電極 108 高周波電源 109 上蓋 1001 非晶質炭素膜 1002 第2層アルミニウム 1003 第1層アルミニウム 1004 SiO2 1005 シリコン基板REFERENCE SIGNS LIST 101 support base 102 vacuum pump 103 gas cylinder 104 vacuum vessel 105 upper electrode 106 sample 107 lower electrode 108 high frequency power supply 109 upper lid 1001 amorphous carbon film 1002 second layer aluminum 1003 first layer aluminum 1004 SiO 2 1005 silicon substrate

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 フッ化炭素ガスCF4 、C26
38 、C48、CHF3 の少なくとも1つ、
あるいはそれらに水素ガスH2 または炭化水素ガスC
4 、C26 、C24 、C22 、C3
8 の少なくとも1つを添加したガスに、さらにN2ある
いはNO、NO2 、NH3 、NF3 の少なくとも1
つを添加したガスを原料としてプラズマによる化学気相
堆積法(プラズマCVD)を用いて成膜することを特徴
とする窒素が含有されたフッ素化非晶質炭素膜材料の製
造方法。
1. Fluorocarbon gases CF 4 , C 2 F 6 ,
At least one of C 3 F 8 , C 4 F 8 , CHF 3 ,
Alternatively, hydrogen gas H 2 or hydrocarbon gas C
H 4, C 2 H 6, C 2 H 4, C 2 H 2, C 3 H
A gas prepared by adding at least one of 8, further N 2 or NO, NO 2, NH 3, at least one of NF 3
It is characterized by forming a film by chemical vapor deposition (plasma CVD) using plasma from a gas to which one is added.
A method for producing a fluorinated amorphous carbon film material containing nitrogen .
【請求項2】 フッ化炭素ガスCF4 、C26
38 、C48、CHF3 の少なくとも1つ、
あるいはそれらに水素ガスH2 または炭化水素ガスC
4 、C26 、C24 、C22 、C3
8 の少なくとも1つを添加したガスに、さらにSiH4
、Si26 、SiF4 の少なくとも1つのガス
を添加したガスを原料として、プラズマCVDを用いて
成膜することを特徴とするシリコンが含有されたフッ素
化非晶質炭素膜材料の製造方法。
2. Fluorocarbon gases CF 4 , C 2 F 6 ,
At least one of C 3 F 8 , C 4 F 8 , CHF 3 ,
Alternatively, hydrogen gas H 2 or hydrocarbon gas C
H 4, C 2 H 6, C 2 H 4, C 2 H 2, C 3 H
A gas prepared by adding at least one of 8, further SiH 4
The gas added at least one gas of Si 2 H 6, SiF 4 as a raw material, the production method of the fluorine amorphous carbon film material is silicon, wherein are contained be formed by a plasma CVD .
JP7035023A 1994-09-12 1995-02-23 Method for producing fluorinated amorphous carbon film material Expired - Lifetime JP2748879B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP7035023A JP2748879B2 (en) 1995-02-23 1995-02-23 Method for producing fluorinated amorphous carbon film material
CA002157257A CA2157257C (en) 1994-09-12 1995-08-30 Semiconductor device with amorphous carbon layer and method of fabricating the same
EP95114253A EP0701283A3 (en) 1994-09-12 1995-09-11 Semiconductor device with amorphous carbon layer and method of fabricating the same
KR1019950029566A KR100188573B1 (en) 1994-09-12 1995-09-11 Semiconductor device with amorphous carbon layer
US08/526,902 US5698901A (en) 1994-09-12 1995-09-12 Semiconductor device with amorphous carbon layer for reducing wiring delay
US08/782,573 US6033979A (en) 1994-09-12 1997-01-10 Method of fabricating a semiconductor device with amorphous carbon layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7035023A JP2748879B2 (en) 1995-02-23 1995-02-23 Method for producing fluorinated amorphous carbon film material

Publications (2)

Publication Number Publication Date
JPH08236517A JPH08236517A (en) 1996-09-13
JP2748879B2 true JP2748879B2 (en) 1998-05-13

Family

ID=12430468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7035023A Expired - Lifetime JP2748879B2 (en) 1994-09-12 1995-02-23 Method for producing fluorinated amorphous carbon film material

Country Status (1)

Country Link
JP (1) JP2748879B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2956571B2 (en) 1996-03-07 1999-10-04 日本電気株式会社 Semiconductor device
JP3400918B2 (en) 1996-11-14 2003-04-28 東京エレクトロン株式会社 Method for manufacturing semiconductor device
JP3228183B2 (en) * 1996-12-02 2001-11-12 日本電気株式会社 Insulating film, semiconductor device having the insulating film, and method of manufacturing the same
US6104092A (en) * 1997-04-02 2000-08-15 Nec Corporation Semiconductor device having amorphous carbon fluoride film of low dielectric constant as interlayer insulation material
JP3050165B2 (en) 1997-05-29 2000-06-12 日本電気株式会社 Semiconductor device and manufacturing method thereof
JP3429171B2 (en) * 1997-11-20 2003-07-22 東京エレクトロン株式会社 Plasma processing method and semiconductor device manufacturing method
KR100477402B1 (en) * 1997-11-20 2005-03-22 동경 엘렉트론 주식회사 Method of forming film by plasma
JP3574734B2 (en) * 1997-11-27 2004-10-06 東京エレクトロン株式会社 Method for manufacturing semiconductor device
JP4355039B2 (en) 1998-05-07 2009-10-28 東京エレクトロン株式会社 Semiconductor device and manufacturing method of semiconductor device
KR100430807B1 (en) * 1998-09-28 2004-05-10 동경 엘렉트론 주식회사 Method of plasma-assisted film deposition
EP1199991A1 (en) * 1999-07-30 2002-05-02 Drukker International B.V. A cutting blade for a surgical instrument
KR100436565B1 (en) * 2001-10-31 2004-06-19 한국과학기술연구원 Silicon incorporated tetrahedral amorphous carbon film and preparation method thereof
JP2005123406A (en) * 2003-10-16 2005-05-12 Tokyo Electron Ltd Plasma etching method
WO2005069367A1 (en) * 2004-01-13 2005-07-28 Tokyo Electron Limited Method for manufacturing semiconductor device and film-forming system
JP4695024B2 (en) * 2006-06-14 2011-06-08 三菱樹脂株式会社 Light reflector

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0327336B1 (en) * 1988-02-01 1997-12-10 Semiconductor Energy Laboratory Co., Ltd. Electronic devices incorporating carbon films
US5559367A (en) * 1994-07-12 1996-09-24 International Business Machines Corporation Diamond-like carbon for use in VLSI and ULSI interconnect systems

Also Published As

Publication number Publication date
JPH08236517A (en) 1996-09-13

Similar Documents

Publication Publication Date Title
JP2748879B2 (en) Method for producing fluorinated amorphous carbon film material
EP1207217B1 (en) Method of forming an interlayer insulating film
US6033979A (en) Method of fabricating a semiconductor device with amorphous carbon layer
JP2748864B2 (en) Semiconductor device, method of manufacturing the same, method of manufacturing amorphous carbon film, and plasma CVD apparatus
JPH098032A (en) Formation of insulation film
JPH10335322A (en) Method of forming insulation film
JPH10284486A (en) Method of forming layer insulation film
JP2850834B2 (en) Method for manufacturing amorphous carbon film and semiconductor device
KR100463858B1 (en) Method of forming interlayer insulating film
JPH11111712A (en) Low-dielectric constant insulating film, manufacture thereof and semiconductor device using the film
JP2000277507A (en) Method of forming interlayer insulating film, semiconductor processing device and semiconductor device
JP2723051B2 (en) Semiconductor device
US6472330B1 (en) Method for forming an interlayer insulating film, and semiconductor device
US20010051228A1 (en) Method of forming interlayer insulating film
JPH10209275A (en) Manufacture of semiconductor device
JPH09312334A (en) Method of forming interlayer insulating film
JP3676314B2 (en) Manufacturing method of semiconductor device
JP2830874B2 (en) Semiconductor device, method of manufacturing the same, and method of manufacturing an amorphous carbon film
JP2000156375A (en) Formation of insulation film
JPH09148323A (en) Method for forming insulating film
JPH11233500A (en) Formation of insulating film, semiconductor device using the same and manufacture of semiconductor device
JP3999234B2 (en) Manufacturing method of semiconductor device
JP2003297821A (en) Siloxane polymer film on semiconductor substrate and method of manufacturing the same
JPH1079385A (en) Method of forming insulating film
JPH09199490A (en) Formation of interlayer insulating film

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19970909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980120