JPH08321499A - Silicon compound film and forming method thereof - Google Patents

Silicon compound film and forming method thereof

Info

Publication number
JPH08321499A
JPH08321499A JP6279796A JP6279796A JPH08321499A JP H08321499 A JPH08321499 A JP H08321499A JP 6279796 A JP6279796 A JP 6279796A JP 6279796 A JP6279796 A JP 6279796A JP H08321499 A JPH08321499 A JP H08321499A
Authority
JP
Japan
Prior art keywords
compound
gas
fluorine
film
silicon compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6279796A
Other languages
Japanese (ja)
Inventor
Shunichi Fukuyama
俊一 福山
Jo Yamaguchi
城 山口
Yoshihiro Nakada
義弘 中田
Tomoko Katayama
倫子 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6279796A priority Critical patent/JPH08321499A/en
Publication of JPH08321499A publication Critical patent/JPH08321499A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a material enabling formation of a film which is not oxidized or decomposed in a heat treatment process used for a semiconductor manufacturing process, of which the moisture absorbing properties are small and which is not oxidized by an oxygen plasma treatment, and enabling realization of a dielectric constant of a specific value or below. CONSTITUTION: A silicon compound film which is constituted of a silicon compound containing a fluorocarbon group and has a dielectric constant of 3.0 or below is obtained by conducting plasma CVD in an atmosphere containing the gas of a fluorine-containing organic silane compound which is derived from an organic silane compound expressed by a general formula R<1> x SiR<2> 4-x (1) [where R<1> denotes 1-6C alkyl, R<2> H or 1-3C alkoxyl and (x) an integer of 1-3] and fluorine or a fluorine compound.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、硅素化合物膜およ
びその製造方法に関する。本発明の硅素化合物膜の形成
方法により得られる膜は、低誘電率であり、しかも吸湿
性が低い。したがって、この硅素化合物膜を用いて形成
した集積回路は、配線遅延の少ない高速デバイスを提供
することが可能となる。また、この硅素化合物膜は、S
i−パーフルオロ基とからなっているため半導体製造工
程で使用される酵素プラズマ処理に耐え得る材料であ
り、製造工程を通しても低誘電率を保持する。
TECHNICAL FIELD The present invention relates to a silicon compound film and a method for manufacturing the same. The film obtained by the method for forming a silicon compound film of the present invention has a low dielectric constant and low hygroscopicity. Therefore, an integrated circuit formed by using this silicon compound film can provide a high speed device with less wiring delay. In addition, this silicon compound film is S
Since it is composed of an i-perfluoro group, it is a material that can withstand the enzyme plasma treatment used in the semiconductor manufacturing process, and retains a low dielectric constant throughout the manufacturing process.

【0002】[0002]

【従来の技術】半導体集積回路の集積度の向上に伴い、
素子形成の表面段差が大きくなるとともに、配線の微細
化による配線抵抗の増大を防ぐために配線を厚くする必
要に迫られている。一方、配線遅延(t)は、配線抵抗
(R)と配線間の容量(C)とに影響を受け、 t=kCR で表される(kはコンスタントである)。したがって、
配線遅延を少なくするための方法としては、配線抵抗を
下げる方法と絶縁膜の誘電率を低下させる方法が挙げら
れる。本発明は、絶縁膜の低誘電率化により配線遅延を
少なくする方法である。従来から、絶縁材料としては、
化学的気相成長法(CVD)によるSiO 2 系材料が使
用されてきた。CVD系材料で最も低誘電率のSiO2
でその誘電率は約4.0であった。低誘電率CVD膜と
して、近年SiOF系材料が広く検討されているが、そ
の誘電率は3.0〜3.5であり、吸湿による誘電率の
上昇が見られるという問題がある。また、低誘電率材料
として古くから知られているフルオロカーボン系ポリマ
は、熱分解温度が400℃以下であり、半導体製造プロ
セスで使用される400℃以上の温度では熱分解を生じ
るため実用化が困難となっている。
2. Description of the Related Art As the degree of integration of semiconductor integrated circuits is improved,
As the surface level difference in device formation increases, fine wiring
In order to prevent increase in wiring resistance due to
In essence On the other hand, the wiring delay (t) is the wiring resistance
It is affected by (R) and the capacitance (C) between wirings, and is represented by t = kCR (k is constant). Therefore,
As a method to reduce wiring delay, wiring resistance is
There are two ways to reduce the dielectric constant of the insulating film:
Be done. The present invention reduces wiring delay by lowering the dielectric constant of the insulating film.
It is a way to reduce it. Conventionally, as an insulating material,
SiO by chemical vapor deposition (CVD) 2System material is used
It has been used. SiO having the lowest dielectric constant among CVD materials2
And its dielectric constant was about 4.0. Low dielectric constant CVD film
Recently, SiOF-based materials have been widely studied.
Has a dielectric constant of 3.0 to 3.5.
There is the problem of rising prices. Also, low dielectric constant materials
Fluorocarbon-based polymers that have long been known as
Has a thermal decomposition temperature of 400 ° C or lower,
Thermal decomposition occurs at temperatures above 400 ° C used in process
Therefore, practical application is difficult.

【0003】[0003]

【発明が解決しようとする課題】上述したように低誘電
率絶縁膜を用いた高速デバイスが検討されている。しか
し、従来のCVD膜はSiO2 系材料が用いられている
ため、従来の材料系での低誘電率化が困難である。ま
た、四官能シラン源とフッ素系ガスを用いて形成したS
iOF膜は、その誘電率が従来材料に比べて4.0から
3.0〜3.5へと低下するものの吸湿による誘電率の
上昇が見られるという課題がある。
As described above, a high speed device using a low dielectric constant insulating film has been studied. However, since the conventional CVD film uses a SiO 2 based material, it is difficult to reduce the dielectric constant in the conventional material system. In addition, S formed by using a tetrafunctional silane source and a fluorine-based gas
The iOF film has a problem that its dielectric constant decreases from 4.0 to 3.0 to 3.5 as compared with the conventional material, but the dielectric constant increases due to moisture absorption.

【0004】本発明の目的は、これらの問題を解消する
ことにあり、半導体製造工程に用いられる熱処理工程で
酸化や分解を生じず、酸素プラズマ処理により酸化を受
けることのない膜を形成することが可能であり、3.0
以下の誘電率を実現することが可能な材料を提供するこ
とにある。さらに、吸湿性が低く、吸湿による加水分解
を生じない膜およびその製造方法を提供することにあ
る。
An object of the present invention is to solve these problems, and to form a film that does not undergo oxidation or decomposition in the heat treatment process used in the semiconductor manufacturing process and is not oxidized by oxygen plasma treatment. Is possible and 3.0
It is to provide a material capable of realizing the following dielectric constant. Another object of the present invention is to provide a film having low hygroscopicity and preventing hydrolysis due to moisture absorption, and a method for producing the film.

【0005】[0005]

【課題を解決するための手段】本発明によれば、上記課
題を解決するため、下記一般式(1)、 R1 x SiR2 4-x (1) 〔上式中、R1 は炭素数1〜6のアルキル基、好ましく
は炭素数1〜3のアルキル基を表し、R2 は水素原子ま
たは炭素数1〜3のアルコキシ基を表し、xは1〜3の
整数である〕で表される有機シラン化合物とフッ素また
はフッ素化合物とから誘導されたフッ素含有有機シラン
化合物のガスを含む雰囲気中でプラズマCVDを行うこ
とにより得られたフッ化炭素基含有硅素化合物からな
り、3.0以下の誘電率を有する硅素化合物膜が提供さ
れる。
According to the present invention, in order to solve the above-mentioned problems, the following general formula (1), R 1 x SiR 2 4-x (1) [wherein R 1 is a carbon number 1 to 6 represents an alkyl group, preferably an alkyl group having 1 to 3 carbon atoms, R 2 represents a hydrogen atom or an alkoxy group having 1 to 3 carbon atoms, and x is an integer of 1 to 3] A fluorocarbon group-containing silicon compound obtained by performing plasma CVD in an atmosphere containing a fluorine-containing organic silane compound gas derived from an organic silane compound and fluorine or a fluorine compound. A silicon compound film having a dielectric constant is provided.

【0006】すなわち、この硅素含有化合物膜は、上記
一般式(1)で表される有機シラン化合物とフッ素また
はフッ素化合物とから誘導されたフッ素含有有機シラン
化合物のガスを含む雰囲気中でプラズマCVDを行うこ
とにより得ることができるものである。例えば、上記の
フッ素含有有機シラン化合物のガスと酸素ガスとを含む
雰囲気中でプラズマCVDを行うことによりフッ化炭素
基含有酸化硅素化合物膜が得られる。同様に、上記のフ
ッ素含有有機シラン化合物のガスと窒素ガスとを含む雰
囲気中でプラズマCVDを行えばフッ化炭素基含有窒化
硅素化合物膜が得られ、フッ素含有有機シラン化合物の
ガスと酸化窒素ガスとを含む雰囲気中でプラズマCVD
を行えばフッ化炭素基含有窒化酸化硅素化合物膜が得ら
れる。
That is, this silicon-containing compound film is subjected to plasma CVD in an atmosphere containing a fluorine-containing organosilane compound gas derived from the organosilane compound represented by the general formula (1) and fluorine or a fluorine compound. It can be obtained by doing. For example, a fluorocarbon group-containing silicon oxide compound film is obtained by performing plasma CVD in an atmosphere containing the above-mentioned fluorine-containing organosilane compound gas and oxygen gas. Similarly, if plasma CVD is performed in an atmosphere containing the above-mentioned fluorine-containing organosilane compound gas and nitrogen gas, a fluorocarbon group-containing silicon nitride compound film is obtained, and the fluorine-containing organosilane compound gas and nitric oxide gas are obtained. Plasma CVD in an atmosphere containing
By carrying out, a fluorocarbon group-containing silicon nitride oxide compound film is obtained.

【0007】本発明において、フッ素含有有機シラン化
合物のガスの生成とプラズマCVDは、同一のチャンバ
中で行われてもよく、あるいは別々のチャンバ中で行わ
れてもよい。フッ素含有有機シラン化合物のガスの生成
とプラズマCVDとを別々のチャンバ中で行う場合、フ
ッ素含有有機シラン化合物のガスを第1のチャンバ中で
生成させ、次いでこのガスを第2のチャンバに導入し、
この第2のチャンバ中でプラズマCVDを行うことがで
きる。
In the present invention, the gas generation of the fluorine-containing organosilane compound and the plasma CVD may be performed in the same chamber or may be performed in different chambers. When the gas containing the fluorine-containing organosilane compound and the plasma CVD are performed in separate chambers, the gas containing the fluorine-containing organosilane compound is generated in the first chamber, and then this gas is introduced into the second chamber. ,
Plasma CVD can be performed in this second chamber.

【0008】フッ素含有有機シラン化合物のガスは、上
記一般式(1)で表される有機シラン化合物とフッ素ま
たはフッ素化合物との反応により得られる。ここで、フ
ッ素はフッ素ガスであり、フッ素化合物はNF3 などの
フッ化窒素化合物のガスまたはC2 6 などのフッ化炭
素化合物のガスであるのがよい。本発明は、また、下記
一般式(2)、 R3 3SiCF3 (2) 〔上式中、R3 は炭素数1〜6のアルキル基またはアル
コキシ基を表す〕で表される有機シラン化合物と酸素ガ
スを含む雰囲気中でプラズマCVDを行うことにより得
られたフッ化炭素基含有硅素化合物からなる硅素化合物
膜を提供する。
The gas of the fluorine-containing organosilane compound is obtained by reacting the organosilane compound represented by the general formula (1) with fluorine or a fluorine compound. Here, the fluorine is a fluorine gas, and the fluorine compound is preferably a gas of a nitrogen fluoride compound such as NF 3 or a gas of a fluorocarbon compound such as C 2 F 6 . The present invention also provides an organosilane compound represented by the following general formula (2), R 3 3 SiCF 3 (2) [wherein R 3 represents an alkyl group or an alkoxy group having 1 to 6 carbon atoms]. Provided is a silicon compound film made of a fluorocarbon group-containing silicon compound obtained by performing plasma CVD in an atmosphere containing oxygen gas.

【0009】この珪素化合物膜は、上記一般式(2)で
表される有機シラン化合物と酸素ガスを含む雰囲気中で
プラズマCVDを行うことにより得ることができる。こ
の方法において、前記雰囲気中にフッ素ガスを添加して
もよく、かかるフッ素ガスは、好ましくは、フルオロカ
ーボン、F2 またはNF3 のガスである。
This silicon compound film can be obtained by performing plasma CVD in an atmosphere containing the organosilane compound represented by the general formula (2) and oxygen gas. In this method, fluorine gas may be added to the atmosphere, and the fluorine gas is preferably fluorocarbon, F 2 or NF 3 gas.

【0010】[0010]

【作用】本発明に係る硅素化合物膜は、SiCFx 結合
を有するフッ化炭素基含有硅素化合物からなり、低誘電
率皮膜の形成が可能である。また、形成した低誘電率皮
膜は、半導体製造工程での熱分解および酸化を受けにく
い。さらに、吸湿性が低く、誘電率変化を生じにくいた
めに低誘電率を維持できる。また、導入ガスの流量比を
変えることによりストレスを制御することも可能であ
る。したがって、本発明の硅素化合物膜を絶縁膜もしく
は耐湿性保護膜として用いることにより、高信頼性の半
導体装置を得ることができ、配線遅延の少ない高速デバ
イスを実現することができる。
The silicon compound film according to the present invention is made of a fluorocarbon group-containing silicon compound having a SiCF x bond and can form a low dielectric constant film. In addition, the formed low dielectric constant film is less susceptible to thermal decomposition and oxidation in the semiconductor manufacturing process. Furthermore, since the hygroscopicity is low and the change in the dielectric constant is unlikely to occur, the low dielectric constant can be maintained. Further, the stress can be controlled by changing the flow rate ratio of the introduced gas. Therefore, by using the silicon compound film of the present invention as an insulating film or a moisture resistant protective film, a highly reliable semiconductor device can be obtained and a high speed device with less wiring delay can be realized.

【0011】[0011]

【実施例】以下に実施例を挙げ、本発明をさらに説明す
る。 実施例1 平行平板型プラズマCVD装置を用い、以下の条件でS
i平板上に約0.5μm厚の薄膜を形成した。
EXAMPLES The present invention will be further described with reference to the following examples. Example 1 Using a parallel plate type plasma CVD apparatus, S under the following conditions
A thin film having a thickness of about 0.5 μm was formed on the i flat plate.

【0012】 POWER:高周波(13.56MHz )/80W 低周波(250KHz )/90W 圧力:5Torr 基板温度:400℃ 電極間距離:250mils ガス分圧:メチルトリエトキシシラン:C2 6 :O2
=480:700:350sccm (ただし、メチルトリエトキシシランはHeバブリング
にてチャンバ内へ導入しており、Heの流量である) 製膜速度:500Å/分 形成した薄膜の赤外吸収スペクトルを図1に示す。図1
からこの薄膜がSi−CF結合を有することがわかる。
この膜上に電極を形成し、誘電率を測定した結果ε=
2.5(周波数1MHz )の膜であることが確認できた。
POWER: High frequency (13.56 MHz) / 80 W Low frequency (250 KHz) / 90 W Pressure: 5 Torr Substrate temperature: 400 ° C. Electrode distance: 250 mils Gas partial pressure: Methyltriethoxysilane: C 2 F 6 : O 2
= 480: 700: 350 sccm (however, methyltriethoxysilane is introduced into the chamber by He bubbling, which is the flow rate of He) Film formation rate: 500 Å / min The infrared absorption spectrum of the formed thin film is shown in FIG. Shown in. FIG.
From this, it is understood that this thin film has a Si—CF bond.
An electrode was formed on this film and the dielectric constant was measured. Ε =
It was confirmed that the film was 2.5 (frequency 1 MHz).

【0013】次に、上記と同一の条件下に、配線厚80
00Å、最小線幅0.5μmのアルミ配線を施した基板
上にこの絶縁膜を形成し、500℃で熱処理し、さらに
酸素プラズマ処理を行ったところ、膜減りおよびクラッ
ク発生は見られなかった。また、大気中に1週間放置し
た後に誘電率を再測定した結果、誘電率の変化は全く認
められなかった。昇温脱離ガス分析による吸着水の測定
でも、CVD−SiN膜と同等の吸着水量であることが
確認された。
Next, under the same conditions as above, the wiring thickness 80
When this insulating film was formed on a substrate having an aluminum wiring of 00 Å and a minimum line width of 0.5 μm, heat-treated at 500 ° C., and further subjected to oxygen plasma treatment, film reduction and crack generation were not observed. In addition, as a result of re-measurement of the dielectric constant after leaving it in the atmosphere for one week, no change in the dielectric constant was observed. It was also confirmed by the measurement of the adsorbed water by the temperature programmed desorption gas analysis that the adsorbed water amount was equivalent to that of the CVD-SiN film.

【0014】実施例2 5個のリングオーシュレータを形成した基板上に実施例
1と同様の条件で薄膜を形成し、リングオーシュレータ
が直列に接続するようにスルーホールを形成し、2層目
配線まで形成した基板と、比較材料として絶縁膜として
ガス分圧を変えた以外は実施例1と同様の条件で形成し
たTEOS−SiO2 膜を用いた基板を準備した。
Example 2 A thin film was formed on a substrate on which five ring oscillators were formed under the same conditions as in Example 1, and through holes were formed so that the ring oscillators were connected in series, and the second layer was formed. a substrate formed to interconnect, were prepared substrate using TEOS-SiO 2 film formed under the same conditions as in example 1 except for changing the gas partial pressure of the insulating film as a comparative material.

【0015】それぞれの基板の配線遅延を比較した結
果、本発明による絶縁膜を用いた基板において約25%
の配線遅延短縮が可能であることがわかった。 実施例3 平行平板型プラズマCVD装置を用い、以下の条件でS
i平板上に約0.5μm厚の薄膜を形成した。
As a result of comparing the wiring delays of the respective substrates, about 25% is obtained in the substrate using the insulating film according to the present invention.
It was found that the wiring delay can be shortened. Example 3 Using a parallel plate type plasma CVD apparatus, S under the following conditions
A thin film having a thickness of about 0.5 μm was formed on the i flat plate.

【0016】 POWER:高周波(13.56MHz )/80W 低周波(250KHz )/90W 圧力:5Torr 基板温度:400℃ 電極間距離:250mils ガス分圧:メチルシラン:C2 6 :O2 =20:70
0:350sccm 製膜速度:500Å/分 形成した薄膜の赤外吸収スペクトルは図1と同様である
ことからこの薄膜がSi−CF結合を有することがわか
る。この膜上に電極を形成し、誘電率を測定した結果ε
=2.5(周波数1MHz )の膜であることが確認でき
た。
POWER: High frequency (13.56 MHz) / 80 W Low frequency (250 KHz) / 90 W Pressure: 5 Torr Substrate temperature: 400 ° C. Electrode distance: 250 mils Gas partial pressure: Methylsilane: C 2 F 6 : O 2 = 20: 70
0: 350 sccm Film formation rate: 500 Å / min The infrared absorption spectrum of the formed thin film is similar to that shown in FIG. 1, which indicates that this thin film has a Si—CF bond. An electrode was formed on this film and the dielectric constant was measured.
It was confirmed that the film was 2.5 (frequency 1 MHz).

【0017】次に、上記と同一の条件下に、配線厚80
00Å、最小線幅0.5μmのアルミ配線を施した基板
上にこの絶縁膜を形成し、500℃で熱処理し、さらに
酸素プラズマ処理を行ったところ、膜減りおよびクラッ
ク発生は見られなかった。また、大気中に1週間放置し
た後に誘電率を再測定した結果、誘電率の変化は全く認
められなかった。昇温脱離ガス分析による吸着水の測定
でも、CVD−SiN膜と同等の吸着水量であることが
確認された。
Next, under the same conditions as above, the wiring thickness 80
When this insulating film was formed on a substrate having an aluminum wiring of 00 Å and a minimum line width of 0.5 μm, heat-treated at 500 ° C., and further subjected to oxygen plasma treatment, film reduction and crack generation were not observed. In addition, as a result of re-measurement of the dielectric constant after leaving it in the atmosphere for one week, no change in the dielectric constant was observed. It was also confirmed by the measurement of the adsorbed water by the temperature programmed desorption gas analysis that the adsorbed water amount was equivalent to that of the CVD-SiN film.

【0018】比較例1 平行平板型プラズマCVD装置を用い、以下の条件でS
i平板上に約0.5μm厚の薄膜を形成した。 POWER:高周波(13.56MHz )/80W 低周波(250KHz )/90W 圧力:5Torr 基板温度:400℃ 電極間距離:250mils ガス分圧:テトラエトキシシラン:C2 6 :O2 =4
80:700:350sccm (ただし、テトラエトキシシランはHeバブリングにて
チャンバ内へ導入しており、Heの流量である) 製膜速度:500Å/分 この膜上に電極を形成し、誘電率を測定した結果ε=
3.2(周波数1MHz )の膜であることが確認できた。
Comparative Example 1 Using a parallel plate type plasma CVD apparatus, S
A thin film having a thickness of about 0.5 μm was formed on the i flat plate. POWER: High frequency (13.56MHz) / 80W Low frequency (250KHz) / 90W Pressure: 5Torr Substrate temperature: 400 ° C Distance between electrodes: 250mils Gas partial pressure: Tetraethoxysilane: C 2 F 6 : O 2 = 4
80: 700: 350sccm (however, tetraethoxysilane is introduced into the chamber by He bubbling, which is the flow rate of He) Film formation rate: 500Å / min. An electrode is formed on this film and the dielectric constant is measured. Result ε =
It was confirmed that the film was 3.2 (frequency 1 MHz).

【0019】次に、上記と同じ条件下に、配線厚800
0Å、最小線幅0.5μmのアルミ配線を施した基板上
にこの絶縁膜を形成し、500℃で熱処理し、さらに酸
素プラズマ処理を行ったところ、膜減りおよびクラック
発生は見られなかった。しかし、大気中に1週間放置し
た後に誘電率を再測定したところ、ε=5.4(周波数
1MHz )と誘電率が上昇していた。昇温脱離ガス分析に
より吸着水の測定では、吸着水量が約一桁増えているこ
とが確認された。
Next, under the same conditions as above, the wiring thickness 800
When this insulating film was formed on a substrate on which aluminum wiring having a minimum line width of 0 .mu.m and a width of 0.5 .mu.m was formed, the insulating film was heat-treated at 500.degree. However, when the permittivity was measured again after being left in the atmosphere for 1 week, the permittivity increased to ε = 5.4 (frequency 1 MHz). It was confirmed by the thermal desorption gas analysis that the amount of adsorbed water increased by about one digit in the measurement of adsorbed water.

【0020】実施例4 平行平板型プラズマCVD装置を用い、先ず以下の条件
で反応を行った。 POWER:高周波(13.56MHz )/80W 低周波(250KHz )/90W 圧力:5Torr 温度:400℃ ガス分圧:メチルトリエトキシシラン:NF3 =48
0:700sccm (ただし、メチルトリエトキシシランはHeバブリング
にてチャンバ内へ導入しており、Heの流量である) 次いで、生成した反応ガスを上記と同じ構成を有する装
置に移し、この装置中において、次の条件下にSi平板
上に約0.5μm厚の薄膜を形成した。
Example 4 Using a parallel plate type plasma CVD apparatus, a reaction was first carried out under the following conditions. POWER: High frequency (13.56MHz) / 80W Low frequency (250KHz) / 90W Pressure: 5 Torr Temperature: 400 ° C Gas partial pressure: Methyltriethoxysilane: NF 3 = 48
0: 700 sccm (however, methyltriethoxysilane is introduced into the chamber by He bubbling, and the flow rate is He). Then, the generated reaction gas is transferred to an apparatus having the same configuration as above, and in this apparatus, A thin film having a thickness of about 0.5 μm was formed on a Si flat plate under the following conditions.

【0021】 POWER:高周波(13.56MHz )/80W 低周波(250KHz )/90W 圧力:5Torr 基板温度:400℃ 電極間距離:250mils ガス分圧:上記反応ガス:O2 =350:350sccm 製膜速度:3000Å/分 これにより、実施例1とほぼ同等の薄膜が得られた。POWER: High frequency (13.56 MHz) / 80 W Low frequency (250 KHz) / 90 W Pressure: 5 Torr Substrate temperature: 400 ° C. Electrode distance: 250 mils Gas partial pressure: The above reaction gas: O 2 = 350: 350 sccm Film formation rate : 3000Å / min As a result, a thin film almost equivalent to that of Example 1 was obtained.

【0022】実施例5 平行平板型プラズマCVD装置を用い、以下の条件でS
i平板上に約0.5μm厚の薄膜を形成した。 印加電力:13.56MHz /300W 圧力:5.0Torr 基板温度:400℃ 電極間距離:250mils ガス分圧:テトラエトキシシラン:CF4 =100:5
00sccm (ただし、テトラエトキシシランはHeバブリングにて
チャンバ内へ導入しており、Heの流量である) 形成した薄膜に導入されたC,F,SiおよびOの元素
濃度を図2に示す。図2からこの薄膜がSi−CF結合
を有することがわかる。この膜上に電極を形成し、誘電
率を測定した結果ε=2.5(周波数1MHz )の膜であ
ることが確認できた。
Example 5 Using a parallel plate type plasma CVD apparatus, S under the following conditions
A thin film having a thickness of about 0.5 μm was formed on the i flat plate. Applied power: 13.56MHz / 300W Pressure: 5.0Torr Substrate temperature: 400 ° C Distance between electrodes: 250mils Gas partial pressure: Tetraethoxysilane: CF 4 = 100: 5
00 sccm (however, tetraethoxysilane is introduced into the chamber by He bubbling, which is the flow rate of He) The element concentrations of C, F, Si, and O introduced into the formed thin film are shown in FIG. It can be seen from FIG. 2 that this thin film has a Si—CF bond. An electrode was formed on this film and the dielectric constant was measured. As a result, it was confirmed that the film had ε = 2.5 (frequency 1 MHz).

【0023】次に、図3に示すようにして、上記と同一
の条件下に、配線厚8000Å、最小線幅0.5μmの
アルミ配線を施した基板上にこの絶縁膜を形成し、50
0℃で熱処理し、さらに酸素プラズマ処理を行ったとこ
ろ、膜減りおよびクラック発生は見られなかった。ま
た、大気中に2週間放置した後に誘電率を再測定した結
果、誘電率の変化は全く認められなかった(図4)。
Next, as shown in FIG. 3, under the same conditions as described above, this insulating film is formed on a substrate on which aluminum wiring having a wiring thickness of 8000Å and a minimum line width of 0.5 μm is formed.
When heat treatment was performed at 0 ° C. and further oxygen plasma treatment was performed, film reduction and crack generation were not observed. Further, as a result of re-measurement of the dielectric constant after leaving it in the atmosphere for 2 weeks, no change in the dielectric constant was observed (FIG. 4).

【0024】実施例6 平行平板型プラズマCVD装置を用い、以下の条件でS
i平板上に約0.5μm厚の薄膜を形成した。 印加電力:13.56MHz /300W 圧力:1.0Torr 基板温度:350℃ 電極間距離:250mils ガス分圧:(CH3 3 SiCF3 :O2 =200:3
00sccm (ただし、(CH3 3 SiCF3 はArバブリングに
てチャンバ内へ導入しており、Arの流量である) 形成した薄膜の赤外吸収スペクトルを図5に、またXP
Sチャートを図6に示す。図5および図6からこの薄膜
がSi−CF結合を有することがわかる。この膜上に電
極を形成し、誘電率を測定した結果ε=2.51(周波
数1MHz )の膜であることが確認できた。
Example 6 Using a parallel plate type plasma CVD apparatus, S under the following conditions
A thin film having a thickness of about 0.5 μm was formed on the i flat plate. Applied power: 13.56 MHz / 300 W Pressure: 1.0 Torr substrate temperature: 350 ° C. distance between electrodes: 250Mils gas partial pressure: (CH 3) 3 SiCF 3 : O 2 = 200: 3
00 sccm (however, (CH 3 ) 3 SiCF 3 is introduced into the chamber by Ar bubbling, and is the flow rate of Ar). The infrared absorption spectrum of the formed thin film is shown in FIG.
The S chart is shown in FIG. It can be seen from FIGS. 5 and 6 that this thin film has a Si—CF bond. An electrode was formed on this film, and the dielectric constant was measured. As a result, it was confirmed that the film had ε = 2.51 (frequency 1 MHz).

【0025】次に、図3に示すようにして、上記と同一
の条件下に、配線厚8000Å、最小線幅0.5μmの
アルミ配線を施した基板上にこの絶縁膜を形成し、50
0℃で熱処理を行ったところ、膜減りおよびクラックの
発生は見られなかった。また、大気中に2週間放置した
後に誘電率を再測定した結果、誘電率の変化は全く認め
られなかった(図7)。さらに、昇温脱離ガス分析によ
る吸着水の測定でも、変化は認められなかった(図
8)。
Then, as shown in FIG. 3, under the same conditions as above, this insulating film is formed on a substrate provided with aluminum wiring having a wiring thickness of 8000 Å and a minimum line width of 0.5 μm.
When the heat treatment was performed at 0 ° C., neither film reduction nor generation of cracks was observed. Further, as a result of re-measurement of the dielectric constant after leaving it in the atmosphere for 2 weeks, no change in the dielectric constant was observed (FIG. 7). Furthermore, no change was observed in the measurement of adsorbed water by thermal desorption gas analysis (FIG. 8).

【0026】実施例7 5個のリングオーシュレーターを形成した基板上に、実
施例6と同様の条件下に、薄膜を形成し、リングオーシ
ュレーターが直列に接続するようにスルーホールを設け
て、2層目まで形成した基板と、比較資料としてガス組
成を変えた以外は実施例6と同じ条件でテトラエトキシ
シラン−SiO2 膜を形成した基板を用いた。
Example 7 A thin film was formed on a substrate on which five ring oscillators were formed under the same conditions as in Example 6, and through holes were provided so that the ring oscillators were connected in series. A substrate on which the second layer was formed and a substrate on which a tetraethoxysilane-SiO 2 film was formed under the same conditions as in Example 6 except that the gas composition was changed were used as comparative materials.

【0027】それぞれの基板の配線遅延を比較した結
果、本発明による絶縁膜を用いた基板の方が約25%の
配線遅延短縮が可能であることが認められた。 実施例8 平行平板型プラズマCVD装置を用い、以下の条件でS
i平板上に約0.5μm厚の薄膜を形成した。
As a result of comparing the wiring delays of the respective substrates, it was found that the substrate using the insulating film according to the present invention can reduce the wiring delay by about 25%. Example 8 Using a parallel plate type plasma CVD apparatus, S under the following conditions
A thin film having a thickness of about 0.5 μm was formed on the i flat plate.

【0028】印加電力:13.56MHz /300W 圧力:1.0Torr 基板温度:350℃ 電極間距離:250mils ガス分圧:(CH3 3 SiCF3 :CF4 :O2 =2
00:100:300sccm 形成した薄膜の赤外吸収スペクトルを図9に、またXP
Sチャートを図10に示す。図9および図10からこの
薄膜がSi−CF結合を有することがわかる。この膜上
に電極を形成し、誘電率を測定した結果ε=2.51
(周波数1MHz )の膜であることが確認できた。
Applied power: 13.56 MHz / 300 W Pressure: 1.0 Torr Substrate temperature: 350 ° C. Electrode distance: 250 mils Gas partial pressure: (CH 3 ) 3 SiCF 3 : CF 4 : O 2 = 2
00: 100: 300 sccm The infrared absorption spectrum of the formed thin film is shown in FIG.
The S chart is shown in FIG. It can be seen from FIGS. 9 and 10 that this thin film has a Si—CF bond. An electrode was formed on this film and the dielectric constant was measured. Ε = 2.51
It was confirmed that the film had a frequency of 1 MHz.

【0029】次に、上記と同一の条件下に、配線厚80
00Å、最小線幅0.5μmのアルミ配線を施した基板
上にこの絶縁膜を形成し、500℃で熱処理を行ったと
ころ、膜減りおよびクラックの発生は見られなかった。
また、大気中に2週間放置した後に誘電率を再測定した
結果、誘電率の変化は全く認められなかった(図7)。
さらに、昇温脱離ガス分析による吸着水の測定でも、変
化は認められなかった(図8)。
Next, under the same conditions as above, the wiring thickness 80
When this insulating film was formed on a substrate provided with aluminum wiring having a line width of 00Å and a minimum line width of 0.5 μm, and heat treatment was performed at 500 ° C., no film reduction or crack generation was observed.
Further, as a result of re-measurement of the dielectric constant after leaving it in the atmosphere for 2 weeks, no change in the dielectric constant was observed (FIG. 7).
Furthermore, no change was observed in the measurement of adsorbed water by thermal desorption gas analysis (FIG. 8).

【0030】比較例2 平行平板型プラズマCVD装置を用い、以下の条件でS
i平板上に約0.5μm厚の薄膜を形成した。 印加電力:13.56MHz /300W 圧力:1.0Torr 基板温度:350℃ 電極間距離:250mils ガス分圧:SiH4 :CF4 =200:300sccm この膜上に電極を形成し、誘電率を測定した結果ε=
3.20(周波数1MHz)の膜であることが確認でき
た。
Comparative Example 2 Using a parallel plate type plasma CVD apparatus, S under the following conditions
A thin film having a thickness of about 0.5 μm was formed on the i flat plate. Applied power: 13.56MHz / 300W Pressure: 1.0Torr Substrate temperature: 350 ° C Distance between electrodes: 250mils Gas partial pressure: SiH 4 : CF 4 = 200: 300sccm Electrodes were formed on this film and the dielectric constant was measured. Result ε =
It was confirmed that the film was 3.20 (frequency 1 MHz).

【0031】次に、上記と同一の条件下に、配線厚80
00Å、最小線幅0.5μmのアルミ配線を施した基板
上にこの絶縁膜を形成し、500℃で熱処理を行ったと
ころ、膜減りおよびクラックの発生は見られなかった。
しかし、大気中に2週間放置した後に誘電率を再測定し
た結果、ε=3.20(周波数1MHz )と誘電率が増加
していた(図7)。さらに、昇温脱離ガス分析による吸
着水の測定では、吸着水量が約1桁増加していることが
認められた(図8)。
Next, under the same conditions as above, the wiring thickness 80
When this insulating film was formed on a substrate provided with aluminum wiring having a line width of 00Å and a minimum line width of 0.5 μm, and heat treatment was performed at 500 ° C., no film reduction or crack generation was observed.
However, as a result of re-measurement of the permittivity after leaving it in the atmosphere for 2 weeks, the permittivity increased to ε = 3.20 (frequency 1 MHz) (Fig. 7). Further, in the measurement of adsorbed water by thermal desorption gas analysis, it was confirmed that the amount of adsorbed water increased by about one digit (FIG. 8).

【0032】[0032]

【発明の効果】本発明に係る硅素化合物膜は、低誘電率
を示し、また吸湿性が低く、低誘電率を有する絶縁膜の
形成が可能であり、配線遅延の低減に効果的である。し
たがって、高速デバイスを実現するとともに信頼性の高
い半導体集積回路および回路基板を提供することができ
る。
The silicon compound film according to the present invention exhibits a low dielectric constant, has a low hygroscopic property, and can form an insulating film having a low dielectric constant, and is effective in reducing wiring delay. Therefore, it is possible to provide a high-speed device and a highly reliable semiconductor integrated circuit and circuit board.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例で得られた薄膜の赤外吸収スペクトル
図。
FIG. 1 is an infrared absorption spectrum diagram of a thin film obtained in an example.

【図2】実施例で得られた薄膜に導入されたC,F,S
iおよびOの元素濃度を示すグラフ。
FIG. 2 shows C, F, S introduced into the thin film obtained in the example.
The graph which shows the elemental concentration of i and O.

【図3】実施例で用いたアルミニウム配線形成プロセス
とCVD薄膜の熱処理試験を説明するための模式図。
FIG. 3 is a schematic diagram for explaining an aluminum wiring forming process and a heat treatment test of a CVD thin film used in the examples.

【図4】実施例で得られた薄膜の誘電率の経時変化のグ
ラフ。
FIG. 4 is a graph showing changes with time in the dielectric constant of the thin films obtained in the examples.

【図5】実施例で得られた薄膜の赤外吸収スペクトル
図。
FIG. 5 is an infrared absorption spectrum diagram of the thin films obtained in the examples.

【図6】実施例で得られた薄膜のXPSチャート図。FIG. 6 is an XPS chart diagram of a thin film obtained in an example.

【図7】実施例で得られた薄膜の誘電率の経時変化のグ
ラフ。
FIG. 7 is a graph showing changes with time of the dielectric constant of the thin films obtained in the examples.

【図8】実施例で得られた薄膜の吸着水量のグラフ。FIG. 8 is a graph of the amount of adsorbed water of the thin film obtained in the example.

【図9】実施例で得られた薄膜の赤外吸収スペクトル
図。
FIG. 9 is an infrared absorption spectrum diagram of the thin films obtained in the examples.

【図10】実施例で得られた薄膜のXPSチャート図。FIG. 10 is an XPS chart diagram of thin films obtained in Examples.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中田 義弘 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 (72)発明者 片山 倫子 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Yoshihiro Nakata, 1015 Kamiodanaka, Nakahara-ku, Kawasaki City, Kanagawa Prefecture, Fujitsu Limited (72) Inventor, Rinko Katayama, 1015, Kamikodanaka, Nakahara-ku, Kawasaki, Kanagawa

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式(1)、 R1 x SiR2 4-x (1) 〔上式中、R1 は炭素数1〜6のアルキル基を表し、R
2 は水素原子または炭素数1〜3のアルコキシ基を表
し、xは1〜3の整数である〕で表される有機シラン化
合物とフッ素またはフッ素化合物とから誘導されたフッ
素含有有機シラン化合物のガスを含む雰囲気中でプラズ
マCVDを行うことにより得られたフッ化炭素基含有硅
素化合物からなり、3.0以下の誘電率を有する硅素化
合物膜。
1. The following general formula (1), R 1 x SiR 2 4-x (1) [wherein R 1 represents an alkyl group having 1 to 6 carbon atoms, R 1
2 represents a hydrogen atom or an alkoxy group having 1 to 3 carbon atoms, and x is an integer of 1 to 3] and a gas of a fluorine-containing organic silane compound derived from fluorine or a fluorine compound. A silicon compound film made of a fluorocarbon group-containing silicon compound obtained by performing plasma CVD in an atmosphere containing, and having a dielectric constant of 3.0 or less.
【請求項2】 フッ化炭素基含有硅素化合物がフッ化炭
素基含有酸化硅素化合物、フッ化炭素基含有窒化硅素化
合物またはフッ化炭素基含有窒化酸化硅素化合物である
請求項1記載の硅素化合物膜。
2. The silicon compound film according to claim 1, wherein the fluorocarbon group-containing silicon compound is a fluorocarbon group-containing silicon oxide compound, a fluorocarbon group-containing silicon nitride compound or a fluorocarbon group-containing silicon nitride oxide compound. .
【請求項3】 下記一般式(1)、 R1 x SiR2 4-x (1) 〔上式中、R1 は炭素数1〜6のアルキル基を表し、R
2 は水素原子または炭素数1〜3のアルコキシ基を表
し、xは1〜3の整数である〕で表される有機シラン化
合物とフッ素またはフッ素化合物とから誘導されたフッ
素含有有機シラン化合物のガスを含む雰囲気中でプラズ
マCVDを行うことを特徴とする硅素化合物膜の形成方
法。
3. The following general formula (1), R 1 x SiR 2 4-x (1) [wherein R 1 represents an alkyl group having 1 to 6 carbon atoms, R 1
2 represents a hydrogen atom or an alkoxy group having 1 to 3 carbon atoms, and x is an integer of 1 to 3] and a gas of a fluorine-containing organic silane compound derived from fluorine or a fluorine compound. A method for forming a silicon compound film, which comprises performing plasma CVD in an atmosphere containing
【請求項4】 フッ素含有有機シラン化合物のガスと酸
素ガス、窒素ガスまたは酸化窒素ガスとを含む雰囲気中
でプラズマCVDを行い、フッ化炭素基含有酸化硅素化
合物、フッ化炭素基含有窒化硅素化合物またはフッ化炭
素基含有窒化酸化硅素化合物が形成される請求項3記載
の方法。
4. A fluorocarbon group-containing silicon oxide compound, a fluorocarbon group-containing silicon nitride compound is obtained by performing plasma CVD in an atmosphere containing a fluorine-containing organosilane compound gas and oxygen gas, nitrogen gas or nitric oxide gas. Alternatively, the method of claim 3 wherein a fluorocarbon group-containing silicon nitride oxide compound is formed.
【請求項5】 フッ素含有有機シラン化合物のガスの生
成とプラズマCVDが同一のチャンバ中で行われる請求
項3または4記載の方法。
5. The method according to claim 3, wherein the gas generation of the fluorine-containing organosilane compound and the plasma CVD are performed in the same chamber.
【請求項6】 フッ素含有有機シラン化合物のガスを第
1のチャンバ中で生成させ、次いでこのガスを第2のチ
ャンバに導入し、この第2のチャンバ中でプラズマCV
Dを行う請求項3または4記載の方法。
6. A gas of a fluorine-containing organosilane compound is generated in a first chamber, and then this gas is introduced into a second chamber, where a plasma CV is performed in the second chamber.
The method according to claim 3 or 4, wherein D is performed.
【請求項7】 フッ素化合物が、フッ化窒素化合物また
はフッ化炭素化合物である請求項3〜6のいずれかに記
載の方法。
7. The method according to claim 3, wherein the fluorine compound is a nitrogen fluoride compound or a fluorocarbon compound.
【請求項8】 請求項1または2記載の硅素化合物膜を
絶縁膜として含む半導体装置。
8. A semiconductor device including the silicon compound film according to claim 1 as an insulating film.
【請求項9】 請求項1または2記載の硅素化合物膜を
耐湿性保護膜として含む半導体装置。
9. A semiconductor device comprising the silicon compound film according to claim 1 or 2 as a moisture resistant protective film.
【請求項10】 下記一般式(2)、 R3 3SiCF3 (2) 〔上式中、R3 は炭素数1〜6のアルキル基またはアル
コキシ基を表す〕で表される有機シラン化合物と酸素ガ
スを含む雰囲気中でプラズマCVDを行うことにより得
られたフッ化炭素基含有硅素化合物からなる硅素化合物
膜。
10. An organosilane compound represented by the following general formula (2), R 3 3 SiCF 3 (2) [wherein R 3 represents an alkyl group or an alkoxy group having 1 to 6 carbon atoms]. A silicon compound film made of a fluorocarbon group-containing silicon compound obtained by performing plasma CVD in an atmosphere containing oxygen gas.
【請求項11】 下記一般式(2)、 R3 3SiCF3 (2) 〔上式中、R3 は炭素数1〜6のアルキル基またはアル
コキシ基を表す〕で表される有機シラン化合物と酸素ガ
スを含む雰囲気中でプラズマCVDを行うことを特徴と
する硅素化合物膜の形成方法。
11. An organosilane compound represented by the following general formula (2), R 3 3 SiCF 3 (2) [wherein, R 3 represents an alkyl group or an alkoxy group having 1 to 6 carbon atoms]. A method for forming a silicon compound film, which comprises performing plasma CVD in an atmosphere containing oxygen gas.
【請求項12】 前記雰囲気中にフッ素ガスが添加され
る請求項11記載の方法。
12. The method according to claim 11, wherein fluorine gas is added to the atmosphere.
【請求項13】 フッ素ガスがフルオロカーボン、F2
またはNF3 のガスである請求項12記載の方法。
13. The fluorine gas is fluorocarbon, F 2
The method according to claim 12, wherein the gas is NF 3 gas.
【請求項14】 請求項10記載の硅素化合物膜を絶縁
膜として含む半導体装置。
14. A semiconductor device comprising the silicon compound film according to claim 10 as an insulating film.
【請求項15】 請求項10記載の硅素化合物膜を耐湿
性保護膜として含む半導体装置。
15. A semiconductor device comprising the silicon compound film according to claim 10 as a moisture resistant protective film.
JP6279796A 1995-03-20 1996-03-19 Silicon compound film and forming method thereof Withdrawn JPH08321499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6279796A JPH08321499A (en) 1995-03-20 1996-03-19 Silicon compound film and forming method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-61005 1995-03-20
JP6100595 1995-03-20
JP6279796A JPH08321499A (en) 1995-03-20 1996-03-19 Silicon compound film and forming method thereof

Publications (1)

Publication Number Publication Date
JPH08321499A true JPH08321499A (en) 1996-12-03

Family

ID=26402053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6279796A Withdrawn JPH08321499A (en) 1995-03-20 1996-03-19 Silicon compound film and forming method thereof

Country Status (1)

Country Link
JP (1) JPH08321499A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6716770B2 (en) 2001-05-23 2004-04-06 Air Products And Chemicals, Inc. Low dielectric constant material and method of processing by CVD
US7074489B2 (en) 2001-05-23 2006-07-11 Air Products And Chemicals, Inc. Low dielectric constant material and method of processing by CVD
JP2009277686A (en) * 2008-05-12 2009-11-26 Taiyo Nippon Sanso Corp Method of forming insulating film, and insulating film
JP2016189432A (en) * 2015-03-30 2016-11-04 株式会社日立国際電気 Method of manufacturing semiconductor device, substrate processing apparatus and program

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6716770B2 (en) 2001-05-23 2004-04-06 Air Products And Chemicals, Inc. Low dielectric constant material and method of processing by CVD
US7074489B2 (en) 2001-05-23 2006-07-11 Air Products And Chemicals, Inc. Low dielectric constant material and method of processing by CVD
EP1918415A1 (en) 2002-12-12 2008-05-07 Air Products and Chemicals, Inc. Low dielectric constant material and method of processing by CVD
JP2009277686A (en) * 2008-05-12 2009-11-26 Taiyo Nippon Sanso Corp Method of forming insulating film, and insulating film
JP2016189432A (en) * 2015-03-30 2016-11-04 株式会社日立国際電気 Method of manufacturing semiconductor device, substrate processing apparatus and program

Similar Documents

Publication Publication Date Title
KR960013151B1 (en) Chemical depositing method for silicon oxide film
JP3515074B2 (en) Low-κ dielectric inorganic / organic hybrid film and method for producing the same
KR100453612B1 (en) Method for producing hydrogenated silicon oxycarbide films having low dielectric constant
US6514880B2 (en) Siloxan polymer film on semiconductor substrate and method for forming same
JP2664866B2 (en) Method for etching boron nitride
JP2004312041A (en) Low-dielectric constant material and treatment method by cvd
KR20020096963A (en) Methods for forming low-k dielectric films
US5217567A (en) Selective etching process for boron nitride films
US6190788B1 (en) Method for the formation of a siliceous coating film
US6858195B2 (en) Process for forming a low dielectric constant fluorine and carbon-containing silicon oxide dielectric material
US6572925B2 (en) Process for forming a low dielectric constant fluorine and carbon containing silicon oxide dielectric material
JP4473378B2 (en) High dielectric film forming method
JP3148183B2 (en) Method for manufacturing semiconductor device
JP2006519496A (en) Method for producing a hydrogenated silicon oxycarbide film.
JPH05279838A (en) Formation of silicon nitride film and semiconductor device
JPH08321499A (en) Silicon compound film and forming method thereof
US7015168B2 (en) Low dielectric constant fluorine and carbon-containing silicon oxide dielectric material characterized by improved resistance to oxidation
US20040198068A1 (en) Method for manufacturing semiconductor device
JP3485425B2 (en) Method for forming low dielectric constant insulating film and semiconductor device using this film
JPH07161705A (en) Method of forming interlayer insulating film of multilayered wiring of semiconductor device
US6551949B2 (en) Deposition method of dielectric films having a low dielectric constant
JPH05121572A (en) Manufacture of semiconductor device
JP3443978B2 (en) Method of forming low dielectric film
JPH11111712A (en) Low-dielectric constant insulating film, manufacture thereof and semiconductor device using the film
JPH0950995A (en) Silicon-based oxide and interlayer insulating film for semiconductor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030603