JP2850834B2 - Method for manufacturing amorphous carbon film and semiconductor device - Google Patents

Method for manufacturing amorphous carbon film and semiconductor device

Info

Publication number
JP2850834B2
JP2850834B2 JP8049764A JP4976496A JP2850834B2 JP 2850834 B2 JP2850834 B2 JP 2850834B2 JP 8049764 A JP8049764 A JP 8049764A JP 4976496 A JP4976496 A JP 4976496A JP 2850834 B2 JP2850834 B2 JP 2850834B2
Authority
JP
Japan
Prior art keywords
film
amorphous carbon
carbon film
fluorine
benzene ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8049764A
Other languages
Japanese (ja)
Other versions
JPH09246263A (en
Inventor
和彦 遠藤
徹 辰巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP8049764A priority Critical patent/JP2850834B2/en
Priority to KR1019970007384A priority patent/KR100286075B1/en
Priority to CA002199347A priority patent/CA2199347A1/en
Priority to EP97103713A priority patent/EP0794569A3/en
Publication of JPH09246263A publication Critical patent/JPH09246263A/en
Application granted granted Critical
Publication of JP2850834B2 publication Critical patent/JP2850834B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • H01L21/0212Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC the material being fluoro carbon compounds, e.g.(CFx) n, (CHxFy) n or polytetrafluoroethylene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02115Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material being carbon, e.g. alpha-C, diamond or hydrogen doped carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/5329Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置におい
て配線に用いられる絶縁材料で、比誘電率が低く、従来
の半導体装置に比べて配線遅延を減少させることの出来
る絶縁材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulating material used for wiring in a semiconductor device, which has a low relative dielectric constant and can reduce wiring delay as compared with a conventional semiconductor device.

【0002】[0002]

【従来の技術】今後の半導体装置の配線幅、配線間隔の
減少によって、半導体装置の配線浮遊容量、及び配線抵
抗の増大が生じ、それにともなう配線遅延の増大から、
半導体装置の高速動作に障害が生じるようになってく
る。そこで、配線遅延を低減させる目的で、多層配線層
における絶縁材料の見直しが行われている。
2. Description of the Related Art As the wiring width and the wiring interval of a semiconductor device decrease in the future, the floating stray capacitance and the wiring resistance of the semiconductor device will increase.
Obstacles arise in high-speed operation of semiconductor devices. Therefore, for the purpose of reducing the wiring delay, the insulating material in the multilayer wiring layer is being reviewed.

【0003】一般に配線遅延は、絶縁材料の比誘電率の
平方根に比例するので、絶縁材料に比誘電率の低いもの
を用いることによって配線遅延を減少させることが可能
になる。
[0003] Generally, the wiring delay is proportional to the square root of the relative permittivity of the insulating material. Therefore, it is possible to reduce the wiring delay by using an insulating material having a low relative permittivity.

【0004】従来の層間絶縁膜材料としては、比誘電率
が約4程度であるSiO2 等が使用されている。この他
にも、SiO2 にフッ素を含有させて比誘電率を3.5
程度に低下させたSiOF膜も存在する。しかし、今後
の半導体装置の配線幅、配線間隔の更なる減少を考える
と、比誘電率を3以下に低下させることが望まれる。
As a conventional interlayer insulating film material, SiO 2 or the like having a relative dielectric constant of about 4 is used. In addition, the relative dielectric constant is set to 3.5 by adding fluorine to SiO 2.
Some SiOF films have been reduced to a certain extent. However, in view of the further reduction of the wiring width and the wiring interval of the semiconductor device in the future, it is desired to lower the relative dielectric constant to 3 or less.

【0005】そこで、SiO2 等の無機材料よりも誘電
率が低く、比誘電率が約3程度のポリイミド等の有機材
料が低誘電率の層間絶縁材料として検討されている。
Therefore, an organic material such as polyimide having a dielectric constant lower than that of an inorganic material such as SiO 2 and a relative dielectric constant of about 3 has been studied as an interlayer insulating material having a low dielectric constant.

【0006】しかし、有機材料を半導体装置の層間絶縁
膜に利用するには、有機材料を薄く、均一に基板上に堆
積させる必要がある。ポリイミド等の通常の有機材料
は、基板上に前駆体を均一に塗布し、続いて加熱重合に
よって高分子化する塗布法が用いられている。この場
合、膜を均一に塗布するためには溶液の粘度を下げる必
要があり、厚い膜を形成するためには何度も塗り重ねる
必要があった。
However, in order to use an organic material for an interlayer insulating film of a semiconductor device, it is necessary to deposit the organic material thinly and uniformly on a substrate. For an ordinary organic material such as polyimide, a coating method is used in which a precursor is uniformly coated on a substrate and then polymerized by heat polymerization. In this case, it is necessary to lower the viscosity of the solution in order to uniformly apply the film, and it is necessary to repeatedly apply the film in order to form a thick film.

【0007】それに対して、プラズマ重合法は、原料分
子をガスとして真空中に導入し、プラズマを生成して原
料分子を活性化して基板上で高分子化させる方法であ
る。このプラズマ重合法によれば、プラズマ中の活性種
の面内分布を均一化することにより、基板上に均一に膜
を形成することができ、また膜厚制御も容易である。
[0007] On the other hand, the plasma polymerization method is a method in which raw material molecules are introduced into a vacuum as a gas, and plasma is generated to activate the raw material molecules to polymerize them on a substrate. According to this plasma polymerization method, a uniform film can be formed on a substrate by making the in-plane distribution of active species in the plasma uniform, and the film thickness can be easily controlled.

【0008】このプラズマ重合法を用い、ベンゼンやト
ルエンを原料ガスとして作製された膜は、基板上に均一
に形成され、また膜厚制御も容易であるが、その比誘電
率は3から3.5程度であった。
[0008] A film formed by using this plasma polymerization method and using benzene or toluene as a source gas is formed uniformly on a substrate and the film thickness can be easily controlled, but its relative dielectric constant is 3 to 3. It was about 5.

【0009】一方、比誘電率3以下を実現する絶縁膜と
しては、本発明者が特願平6−217470号明細書で
述べている、メタンなどの炭化水素ガスとCF4 などの
フッ素系ガスをプラズマ化し、生成されたラジカル分
子、イオンなどを基板上で反応させて形成される含フッ
素非晶質炭素膜がある。
On the other hand, as the insulating film for realizing a relative dielectric constant of 3 or less, a hydrocarbon gas such as methane and a fluorine-based gas such as CF 4 described in Japanese Patent Application No. 6-217470 by the present inventors. There is a fluorinated amorphous carbon film formed by converting a compound into a plasma and reacting generated radical molecules and ions on a substrate.

【0010】[0010]

【発明が解決しようとする課題】しかし、ポリイミド等
の有機材料は、比誘電率が3程度であるものの、塗布法
による膜形成を行うため、基板上に均一に膜を形成し、
厚い膜を形成するためには多くの工数を要す。さらに、
ポリイミド樹脂を層間絶縁膜として用いる場合には、ウ
ェットなプロセスで膜中水分が素子に影響を与えたり、
キュアー時の堆積収縮によってクラックの発生があるな
どの問題がある。
However, although organic materials such as polyimide have a relative dielectric constant of about 3, a film is formed by a coating method, so that a film is uniformly formed on a substrate.
A lot of man-hours are required to form a thick film. further,
When a polyimide resin is used as the interlayer insulating film, moisture in the film affects the element in a wet process,
There are problems such as the occurrence of cracks due to the shrinkage of the deposit during curing.

【0011】また、特願平6−217470号出願明細
書に記載の含フッ素非晶質炭素膜は、比誘電率3以下を
実現し、膜形成時に水分の発生がなく膜中水分が存在し
ないなど優れた特性があるものの、さらなる耐熱性が望
まれた。
The fluorine-containing amorphous carbon film described in the specification of Japanese Patent Application No. 6-217470 realizes a relative dielectric constant of 3 or less, and does not generate water at the time of film formation, and there is no water in the film. Although it has excellent properties such as these, further heat resistance was desired.

【0012】そこで本発明は、上記課題を解決し、比誘
電率が3以下で、かつ膜中水分が少なく、耐熱性に優れ
層間絶縁材料の製造方法を提供し、それを層間絶縁膜
として用いた半導体装置により配線遅延を減少すること
を目的とする。
Accordingly, the present invention has been made to solve the above problems, and provides a method for producing an interlayer insulating material having a relative dielectric constant of 3 or less, a low moisture content in the film, and excellent heat resistance. It is an object of the present invention to reduce wiring delay by using a semiconductor device.

【0013】[0013]

【課題を解決するための手段】本発明は、含フッ素非晶
質炭素膜中にベンゼン環が含有されていることを特徴と
する含フッ素非晶質炭素膜に関する
SUMMARY OF THE INVENTION The present invention relates to a fluorinated amorphous carbon film characterized in that a benzene ring is contained in the fluorinated amorphous carbon film .

【0014】環状で比較的強固な炭素の架橋構造を有す
るため耐熱性が高いベンゼン環を、比誘電率が小さい含
フッ素非晶質炭素膜中に含有させることにより、含フッ
素非晶質炭素膜全体の耐熱性を高めることができ、低誘
電率でかつ耐熱性が向上した含フッ素非晶質炭素膜が得
られる。
A fluorinated amorphous carbon film having a relatively high heat resistance due to having a cyclic cross-linking structure of carbon which is relatively strong is contained in a fluorinated amorphous carbon film having a small relative dielectric constant. The overall heat resistance can be increased, and a fluorine-containing amorphous carbon film having a low dielectric constant and improved heat resistance can be obtained.

【0015】本発明の膜中にベンゼン環を有する含フッ
素非晶質炭素膜の製造方法は、芳香族炭化水素ガスと
香族フッ化物ガスを除くフッ化物ガスを原料とし、プラ
ズマ化学気相成長法によって製造することを特徴とす
る。
The method for producing a fluorine-containing amorphous carbon film having a benzene ring in the film according to the present invention comprises the steps of:
It is characterized by being manufactured by a plasma chemical vapor deposition method using a fluoride gas other than an aromatic fluoride gas as a raw material.

【0016】ベンゼン、トルエン、キシレンなど芳香族
炭化水素や、CF4 、C2 8 ,C24 ,C2 2
のフルオロカーボン、SF6 、NF3 等のフッ化物は、
プラズマによりラジカルやイオンとなり基板上で反応
し、ベンゼン環を含有する含フッ素非晶質炭素膜が形成
する。
Aromatic hydrocarbons such as benzene, toluene and xylene, fluorocarbons such as CF 4 , C 2 F 8 , C 2 F 4 and C 2 F 2 and fluorides such as SF 6 and NF 3 are:
Radicals and ions are generated by the plasma and react on the substrate to form a fluorine-containing amorphous carbon film containing a benzene ring.

【0017】上記のように製造される膜中にベンゼン環
を有する含フッ素非晶質炭素膜を、層間絶縁膜として用
いた半導体装置とすることにより、低誘電率絶縁膜を用
いた配線を形成する際の熱処理上限温度を高めることが
でき、また配線遅延を減少することができる。
By forming a semiconductor device using a fluorine-containing amorphous carbon film having a benzene ring in the film manufactured as described above as an interlayer insulating film, a wiring using a low dielectric constant insulating film is formed. In this case, the upper limit temperature of the heat treatment can be increased, and the wiring delay can be reduced.

【0018】 さらに、水素化非晶質炭素膜上にベンゼ
ン環を含有する含フッ素非晶質炭素膜が形成された膜を
層間絶縁膜として用いれば、SiやSiO 2 などの基板
と、含フッ素非晶質炭素膜との付着力を強化させること
ができる。
Furthermore, if a film in which a fluorine-containing amorphous carbon film containing a benzene ring is formed on a hydrogenated amorphous carbon film is used as an interlayer insulating film, Si or SiO 2 And the like, and the adhesive force between the fluorine-containing amorphous carbon film and the substrate.

【0019】[0019]

【発明の実施の形態】本発明の実施の形態を図面を参照
して説明する。図1はベンゼン環含有含フッ素非晶質炭
素膜を形成させるための装置の概略図である。図1
(a)は平行平板型プラズマ化学気相成膜装置、図1
(b)はヘリコン波励起プラズマ化学気相成膜装置の構
成概略図である。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic view of an apparatus for forming a fluorine-containing amorphous carbon film containing a benzene ring. FIG.
(A) is a parallel plate type plasma chemical vapor deposition apparatus, FIG.
(B) is a schematic configuration diagram of a helicon wave excited plasma chemical vapor deposition apparatus.

【0020】図1(a)の平行平板型装置は、支持台1
01に設置した真空槽104内に、電極105,107
を設け、その間に電源装置108から直流又は交流電力
を印加できるようになっている。また下部電極107に
は試料加熱装置が設けられており、試料を任意の温度に
加熱することが可能である。
The parallel plate type apparatus shown in FIG.
01, electrodes 105 and 107 in a vacuum chamber 104.
, During which DC or AC power can be applied from the power supply device 108. The lower electrode 107 is provided with a sample heating device, and can heat the sample to an arbitrary temperature.

【0021】図1(b)のヘリコン波型では、石英管に
アンテナが巻かれており、このアンテナに高周波を印加
することによりヘリコン波を生成し、プラズマを生成さ
せる。
In the helicon wave type shown in FIG. 1B, an antenna is wound around a quartz tube, and a helicon wave is generated by applying a high frequency to the antenna to generate plasma.

【0022】平行平板型の場合、下部電極上にシリコン
基板等の試料106を設置する。下部電極には高周波が
印加されるので、電極には約数百ボルトの負のバイアス
が印加される。下部電極に試料を設置して成膜した場合
は、試料にバイアスで加速されたイオンが照射され、架
橋した非晶質炭素膜が得られる。
In the case of the parallel plate type, a sample 106 such as a silicon substrate is placed on the lower electrode. Since a high frequency is applied to the lower electrode, a negative bias of about several hundred volts is applied to the electrode. When a sample is placed on the lower electrode to form a film, the sample is irradiated with ions accelerated by a bias, and a crosslinked amorphous carbon film is obtained.

【0023】試料を電極に設置後、装置にガスボンベ1
03からたとえばベンゼン、トルエン、キシレン等の芳
香族炭化水素ガスを導入し、真空度0.01−0.5T
orrで、電極間に高周波あるいは、直流電力を印加し
て放電させ、炭化水素プラズマを発生させ、この炭化水
素プラズマにより非晶質炭素膜を堆積させる。
After the sample is placed on the electrode, the gas cylinder 1
03, an aromatic hydrocarbon gas such as benzene, toluene, or xylene is introduced, and the degree of vacuum is 0.01-0.5T.
At orr, high frequency or direct current power is applied between the electrodes to cause discharge, thereby generating hydrocarbon plasma, and depositing an amorphous carbon film using the hydrocarbon plasma.

【0024】また芳香族炭化水素ガスを導入するととも
に、CF4 ,SF6 ,C2 4 ,NF3 ,C2 6 等の
フッ素系ガスを導入し、プラズマにより励起させて非晶
質炭素膜中に含有させる。
In addition to introducing an aromatic hydrocarbon gas, a fluorine-based gas such as CF 4 , SF 6 , C 2 F 4 , NF 3 , C 2 F 6 is introduced, and is excited by plasma to form amorphous carbon. It is contained in the film.

【0025】放電には、上記高周波放電の他、直流放
電、マイクロ波放電、マグネトロン型あるいはコイルに
よって放電させる誘導結合型等も使用可能である。
In addition to the high frequency discharge described above, a DC discharge, a microwave discharge, a magnetron type, an inductive coupling type in which discharge is performed by a coil, and the like can be used.

【0026】さらに、フッ素を含有する非晶質炭素膜
が、直接SiあるいはSiO2 などの非晶質炭素膜を堆
積させる試料と接すると、膜の付着力が弱いために膜が
剥がれやすい。そこでこれを防止するために、まずCH
4 等の炭化水素ガスでフッ素を含有しない水素化非晶質
炭素膜を試料上に堆積させた後に、フッ素を含有させた
非晶質炭素膜を堆積させるとよい。以下に、具体的な実
施例を示す。
Further, when the fluorine-containing amorphous carbon film is in direct contact with a sample on which an amorphous carbon film such as Si or SiO 2 is to be deposited, the film is easily peeled off due to weak adhesion of the film. Therefore, in order to prevent this, first, CH
After depositing a hydrogenated amorphous carbon film containing no fluorine with a hydrocarbon gas such as 4 on the sample, the amorphous carbon film containing fluorine may be deposited. Hereinafter, specific examples will be described.

【0027】[0027]

【実施例】CH4 を原料に用いて、流量10sccm、
圧力0.1Torr、電力200Wで10分間プラズマ
を生成させると、基板上に水素化非晶質炭素膜が約30
nm堆積された。
EXAMPLES Using CH 4 as a raw material, a flow rate of 10 sccm,
When plasma is generated at a pressure of 0.1 Torr and a power of 200 W for 10 minutes, a hydrogenated amorphous carbon film is formed on the substrate by about 30 minutes.
nm deposited.

【0028】つぎに、CF4 ガス及びトルエンを原料に
用いて、CF4 流量5sccm、トルエン流量5scc
m、圧力0.1Torr、電力200Wで約2〜10分
程度、平行平板型プラズマ化学気相成長法により成膜す
ることにより、膜中にベンゼン環を含有する含フッ素非
晶質炭素膜が、基板と剥がれなく約1μm堆積された。
Next, using CF 4 gas and toluene as raw materials, a CF 4 flow rate of 5 sccm and a toluene flow rate of 5 sccc are used.
m, a pressure of 0.1 Torr, a power of 200 W for about 2 to 10 minutes, and a film is formed by a parallel plate type plasma-enhanced chemical vapor deposition method to form a fluorine-containing amorphous carbon film containing a benzene ring in the film. About 1 μm was deposited without peeling off from the substrate.

【0029】フッ化物としてCF4 を用いた場合、膜中
のフッ素/炭素の含有比が1.2となり、比誘電率は
2.2であった。比誘電率は膜中のフッ素含有量によっ
て変化し、C2 6 を用いた場合にはフッ素/炭素比
1.1で、比誘電率2.3、C48 ではフッ素/炭素
比1.0で比誘電率2.4であり、フッ素/炭素の含有
比が小さいと比誘電率が大きくなる傾向がある。
When CF 4 was used as the fluoride, the content ratio of fluorine / carbon in the film was 1.2, and the relative dielectric constant was 2.2. The relative dielectric constant changes depending on the fluorine content in the film. When C 2 F 6 is used, the fluorine / carbon ratio is 1.1, the relative dielectric constant is 2.3, and the fluorine / carbon ratio is 1 when C 4 F 8 is used. The specific dielectric constant is 2.4 at 2.0 and the relative dielectric constant tends to increase when the fluorine / carbon content ratio is small.

【0030】本発明の方法により形成された含フッ素非
晶質炭素膜を、赤外吸収分光分析法により分析した結
果、いずれもベンゼン環、CH結合に由来するピークに
合わせて、C−F結合から由来するピークが出現し、従
って、本発明によればベンゼン環及びフッ素をともに含
む非晶質炭素膜が形成できたことが分かった。
The fluorinated amorphous carbon film formed by the method of the present invention was analyzed by infrared absorption spectroscopy. , And it was thus found that an amorphous carbon film containing both a benzene ring and fluorine could be formed according to the present invention.

【0031】次に、これらの膜の耐熱性を調べた。表1
の実施例1〜6に、膜が分解し始める温度を、各試料に
ついて調べた結果を示す。
Next, the heat resistance of these films was examined. Table 1
Examples 1 to 6 show the results of examining the temperature at which the film starts to decompose for each sample.

【0032】[0032]

【表1】 [Table 1]

【0033】トルエンなどベンゼン環含有分子を用いて
成膜した非晶質炭素膜の耐熱性が、ベンゼン環含有分子
を用いないで成膜した含フッ素非晶質炭素膜(比較例
1)に比べて上昇していることが分かる。このようにベ
ンゼン環を構造の一部に持つ分子を用いて成膜すると、
比誘電率が3以下でかつ非晶質炭素膜の耐熱性が向上す
ることが分かった。
The heat resistance of an amorphous carbon film formed using a benzene ring-containing molecule such as toluene is higher than that of a fluorine-containing amorphous carbon film formed without using a benzene ring-containing molecule (Comparative Example 1). You can see that it is rising. When a film is formed using a molecule having a benzene ring as a part of the structure,
It was found that the relative dielectric constant was 3 or less and the heat resistance of the amorphous carbon film was improved.

【0034】以上は平行平板型で成膜を行った場合の実
施例であるが、続いてヘリコン波プラズマCVDを用い
て成膜した実施例を示す。
The above is an embodiment in which the film is formed by the parallel plate type. Next, an embodiment in which the film is formed by using the helicon wave plasma CVD will be described.

【0035】フッ素を含有させた非晶質炭素膜が、直接
SiあるいはSiO2 等の基板と接すると、膜の付着力
が弱く膜が剥がれやすいため、これを防止するため、先
の平行平板型での実施例の場合と同様に、まずCH4
でフッ素を含有させていない水素化非晶質炭素膜を堆積
させた後に、フッ素を含有させた非晶質炭素膜を堆積さ
せる。
When the amorphous carbon film containing fluorine is in direct contact with a substrate such as Si or SiO 2 , the film is weak in adhesion and easily peeled off. In the same manner as in the embodiment described above, first, a hydrogenated amorphous carbon film containing no fluorine such as CH 4 is deposited, and then an amorphous carbon film containing fluorine is deposited.

【0036】CH4 を原料に用いて、流量100scc
m、圧力1mTorr、電力2kWで10秒間プラズマ
を生成させ、プラズマ化学気相成長法により成膜する
と、基板上に水素化非晶質炭素膜が約30nm堆積され
た。
Using CH 4 as a raw material, a flow rate of 100 scc
Plasma was generated for 10 seconds at m, pressure 1 mTorr, and power 2 kW, and a film was formed by plasma enhanced chemical vapor deposition. As a result, a hydrogenated amorphous carbon film was deposited to a thickness of about 30 nm on the substrate.

【0037】つぎに、CF4 ガス及びトルエンを原料に
用いて、CF4 流量50sccm、トルエン流量50s
ccm、圧力1mTorr、電力2kWで約2分程度成
膜することにより、膜中にベンゼン環を有するフッ素含
有非晶質炭素膜が、基板と剥がれなく約1μm堆積され
た。
Next, using CF 4 gas and toluene as raw materials, a CF 4 flow rate of 50 sccm and a toluene flow rate of 50 s were used.
By forming the film for about 2 minutes at ccm, pressure of 1 mTorr and power of 2 kW, a fluorine-containing amorphous carbon film having a benzene ring in the film was deposited at about 1 μm without peeling off from the substrate.

【0038】CF4 を用いた場合、膜中のフッ素/炭素
の含有比が1.2となり、比誘電率は2.2であった。
比誘電率は、膜中のフッ素含有量によって変化し、C2
6ではフッ素/炭素比1.1で比誘電率2.3、C4
8 ではフッ素/炭素比1.0で比誘電率2.4であっ
た。
When CF 4 was used, the content ratio of fluorine / carbon in the film was 1.2, and the relative dielectric constant was 2.2.
The relative dielectric constant changes depending on the fluorine content in the film, and C 2
In F 6 , the relative dielectric constant is 2.3 at a fluorine / carbon ratio of 1.1, and C 4
The ratio was permittivity 2.4 fluorine / carbon ratio of 1.0 in F 8.

【0039】次に、これらの膜の耐熱性を調べた。ヘリ
コン波プラズマCVDを用いて作製した本発明の膜が分
解し始める温度と比誘電率を、表1の実施例7〜12に
示す。
Next, the heat resistance of these films was examined. Examples 7 to 12 in Table 1 show the temperatures and relative dielectric constants at which the films of the present invention produced using helicon wave plasma CVD start to decompose.

【0040】トルエンなどベンゼン環含有分子を用いて
成膜した本発明の非晶質炭素膜の耐熱性が、ベンゼン環
含有分子を用いないで成膜した物(比較例2)に比べて
上昇していることが分かる。このようにベンゼン環を構
造の一部にもつ分子を用いて成膜すると、比誘電率が3
以下でかつ非晶質炭素膜の耐熱性が向上することが分か
った。
The heat resistance of the amorphous carbon film of the present invention formed using a benzene ring-containing molecule such as toluene is increased as compared with a film formed without using a benzene ring-containing molecule (Comparative Example 2). You can see that it is. When a film is formed using a molecule having a benzene ring as a part of the structure, the relative dielectric constant becomes 3
It was found that the heat resistance was improved below.

【0041】ヘリコン波プラズマCVD法より作製され
た本発明の含フッ素非晶質炭素膜を、赤外吸収分光分析
法により分析した結果、先の平行平板型プラズマCVD
法により作製した場合と同様に、いずれもベンゼン環、
CH結合に由来するピークに合わせて、C−F結合から
由来するピークが出現し、膜中にベンゼン環が含有され
た含フッ素非晶質炭素膜であることがわかった。
The fluorinated amorphous carbon film of the present invention produced by the helicon wave plasma CVD method was analyzed by infrared absorption spectroscopy.
As in the case where the benzene ring was prepared by the
A peak derived from a C—F bond appeared along with a peak derived from a CH bond, indicating that the film was a fluorine-containing amorphous carbon film containing a benzene ring in the film.

【0042】表1からわかるように、添加する芳香族炭
化水素としてキシレンを用いた場合も、トルエンを用い
た場合と同様に膜中にベンゼン環が含有され耐熱性が向
上した。さらにマグネトロン、及びマイクロ波を用いた
放電によって同様に成膜したベンゼン環含有含フッ素非
晶質炭素膜でも、同様の結果が得られた。
As can be seen from Table 1, when xylene was used as the aromatic hydrocarbon to be added, a benzene ring was contained in the film, and heat resistance was improved, similarly to the case where toluene was used. Further, similar results were obtained with a benzene ring-containing fluorine-containing amorphous carbon film similarly formed by magnetron and discharge using microwaves.

【0043】従来のトルエン等の芳香族炭化水素のみに
よるプラズマ重合膜では、膜に吸湿性があることが問題
となっていた。またポリイミド等の脱水重合反応を用い
て形成する高分子も膜中水分のために配線がダメージを
受ける等の問題点が存在した。しかし、本発明のベンゼ
ン環含有含フッ素非晶質炭素膜の吸湿性を調べたとこ
ろ、吸湿性は極めて少なく、膜中水分が非常に少ないこ
とが分かった。
In a conventional plasma polymerized film made only of an aromatic hydrocarbon such as toluene, there has been a problem that the film has hygroscopicity. In addition, a polymer formed by a dehydration polymerization reaction such as polyimide also has a problem that wiring is damaged due to moisture in the film. However, when the hygroscopic property of the fluorinated amorphous carbon film containing a benzene ring of the present invention was examined, it was found that the hygroscopic property was extremely low and the water content in the film was extremely low.

【0044】またフルオロカーボンなどフッ化物系のガ
スを芳香族炭化水素に添加して成膜すると、芳香族炭化
水素のみで成膜したプラズマ重合膜に比べて、成膜速度
を約2倍程度に向上できることが分かった。一般にプラ
ズマによる成膜では、プラズマにより生成された活性種
が、膜表面に存在する未結合手等の活性サイトに吸着し
て成膜が起こる。フッ素を添加したことにより、成膜速
度が向上したのは、プラズマにより活性化されたフッ素
の活性種が、プラズマ重合膜の膜表面に存在する水素を
除去し、表面の活性なサイトの密度を高めたためと考え
られる。
When a film is formed by adding a fluoride gas such as a fluorocarbon to an aromatic hydrocarbon, the film formation speed is improved to about twice that of a plasma polymerized film formed only with an aromatic hydrocarbon. I knew I could do it. Generally, in film formation by plasma, active species generated by plasma are adsorbed on active sites such as dangling bonds existing on the film surface, and film formation occurs. The addition of fluorine increased the film formation rate because the activated species of fluorine activated by the plasma removed the hydrogen present on the surface of the plasma polymerized film and increased the density of active sites on the surface. It is thought that it was raised.

【0045】次にこの膜を層間絶縁膜に用いることを特
徴とした半導体装置を形成した。図2は、本発明のベン
ゼン環含有含フッ素非晶質炭素膜を絶縁材料に用いるこ
とを特徴とした半導体装置の断面模式図である。
Next, a semiconductor device characterized by using this film as an interlayer insulating film was formed. FIG. 2 is a schematic cross-sectional view of a semiconductor device characterized by using the fluorine-containing amorphous carbon film containing a benzene ring of the present invention as an insulating material.

【0046】まず通常の技術でトランジスタ207をシ
リコン基板205上等に形成し、アルミニウム等の電極
材料203を堆積後、公知のリソグラフ技術により配線
にパターンを形成する。
First, a transistor 207 is formed on a silicon substrate 205 or the like by an ordinary technique, an electrode material 203 such as aluminum is deposited, and a pattern is formed on a wiring by a known lithographic technique.

【0047】次に配線202が形成されたシリコン基板
を図1の平行平板型装置あるいはヘリコン型装置中に設
置する。次にCH4 、CF4 、及びトルエンをプラズマ
装置内に導入しプラズマを生成し、非晶質炭素膜を堆積
させる。以下に非晶質炭素膜の形成方法を示す。
Next, the silicon substrate on which the wiring 202 is formed is placed in the parallel plate type device or the helicon type device shown in FIG. Next, CH 4 , CF 4 , and toluene are introduced into the plasma device to generate plasma, and an amorphous carbon film is deposited. Hereinafter, a method for forming an amorphous carbon film will be described.

【0048】平行平板型の場合、まずCH4 を原料に用
いて、流量10sccm、圧力0.1Torr、電力2
00Wで10分間プラズマを生成させ、基板上に水素化
非晶質炭素膜を約30nm堆積させた。つぎにCF4
ス及びトルエンを原料に用いて、CF4 流量5scc
m、トルエン流量5sccm、圧力0.1Torr、電
力200Wで約2〜10分程度成膜することにより、水
素化非晶質炭素膜上にベンゼン環フッ素含有非晶質炭素
膜201を約1μm堆積した。
In the case of the parallel plate type, first, using CH 4 as a raw material, a flow rate is 10 sccm, a pressure is 0.1 Torr, and a power is 2
Plasma was generated at 00 W for 10 minutes, and a hydrogenated amorphous carbon film was deposited on the substrate to a thickness of about 30 nm. Next, using CF 4 gas and toluene as raw materials, the CF 4 flow rate was 5 scc.
m, a toluene flow rate of 5 sccm, a pressure of 0.1 Torr, and a power of 200 W for about 2 to 10 minutes to deposit about 1 μm of a benzene ring fluorine-containing amorphous carbon film 201 on the hydrogenated amorphous carbon film. .

【0049】ヘリコン型の場合も同様に、CH4 を用い
て水素化非晶質炭素膜を約30nm堆積させた後に、C
4 およびトルエンを用いてベンゼン環含有含フッ素非
晶質炭素膜201を堆積させた。
Similarly, in the case of the helicon type, after depositing a hydrogenated amorphous carbon film of about 30 nm using CH 4 ,
A fluorine-containing amorphous carbon film 201 containing a benzene ring was deposited using F 4 and toluene.

【0050】これらのベンゼン環非晶質炭素膜201の
堆積の後、非晶質炭素膜のパターニングを行った。以下
に説明する。
After the deposition of the benzene ring amorphous carbon film 201, the amorphous carbon film was patterned. This will be described below.

【0051】ベンゼン環含有フッ素化非晶質炭素膜20
1上に、まず30nm程度の水素化非晶質炭素膜206
を緩衝層として挿入した後、SiO2 を約300nm堆
積させて、まずSiO2 を従来の微細加工技術によりパ
ターニングした。つづいてこれをマスクにして、非晶質
炭素膜201,206をエッチングし、ビアホールを形
成した。エッチングガスは酸素を用いて、リアクティブ
イオンエッチング(RIE)装置で非晶質炭素膜をエッ
チングした。
A fluorinated amorphous carbon film containing a benzene ring 20
First, a hydrogenated amorphous carbon film 206 of about 30 nm
After inserting the a buffer layer, the SiO 2 was carried out for approximately 300nm deposited, the first SiO 2 was patterned by conventional microfabrication techniques. Subsequently, using this as a mask, the amorphous carbon films 201 and 206 were etched to form via holes. An amorphous carbon film was etched by a reactive ion etching (RIE) apparatus using oxygen as an etching gas.

【0052】非晶質炭素膜のエッチング後にマスクとし
て用いたSiO2 はフッ酸により除去した。続いて非晶
質炭素膜に形成したビアホール、および非晶質炭素膜2
06上にアルミニウムをスパッタにより堆積し、第2層
の配線202およびそれと第1層とのコンタクトとし
た。
After the etching of the amorphous carbon film, SiO 2 used as a mask was removed with hydrofluoric acid. Subsequently, a via hole formed in the amorphous carbon film, and the amorphous carbon film 2
Aluminum was deposited on 06 by sputtering to form a second layer wiring 202 and a contact between the wiring 202 and the first layer.

【0053】水素化非晶質炭素膜206は、フッ素を含
有する非晶質炭素膜が、直接SiあるいはSiO2 等の
材料と接すると膜の付着力が弱く剥がれやすいことを防
止するために形成される。
The hydrogenated amorphous carbon film 206 is formed in order to prevent the fluorine-containing amorphous carbon film from being easily peeled off due to weak adhesion when the film is directly in contact with a material such as Si or SiO 2. Is done.

【0054】ベンゼン環含有非晶質炭素膜を層間絶縁膜
とすることにより、耐熱性が向上したため、金属配線材
料の堆積、及びそれに続く熱処理で、高温での加熱処理
を要する公知の配線形成手法が適用できるようになっ
た。本実施例では、上記金属配線材料の堆積の工程に続
いて400℃の熱処理を行った。
Since the heat resistance is improved by using the benzene ring-containing amorphous carbon film as the interlayer insulating film, a known wiring forming method that requires high-temperature heat treatment in deposition of metal wiring material and subsequent heat treatment. Can now be applied. In this embodiment, a heat treatment at 400 ° C. was performed following the above-described step of depositing the metal wiring material.

【0055】本発明による半導体装置の配線遅延時間を
測定したところ、従来のSiO2 を層間絶縁膜に用いた
半導体装置に比べて、配線遅延を約80%に減少させる
ことに成功した。
When the wiring delay time of the semiconductor device according to the present invention was measured, the wiring delay was successfully reduced to about 80% as compared with the conventional semiconductor device using SiO 2 as the interlayer insulating film.

【0056】またベンゼン環含有含フッ素非晶質炭素膜
を堆積する際に、原料のフッ化物源として上記CF4
はなくC2 6 やC4 8 などの他のフッ化物を用いた
場合、また芳香族炭化水素としてキシレンを用いた場合
も、同様の効果を得ることができた。
When depositing a fluorine-containing amorphous carbon film containing a benzene ring, when another fluoride such as C 2 F 6 or C 4 F 8 is used instead of the above-mentioned CF 4 as a raw material fluoride source The same effect could be obtained when xylene was used as the aromatic hydrocarbon.

【0057】このようにベンゼン環を含有する含フッ素
非晶質炭素膜を用いることにより、従来よりも配線遅延
の少ない非晶質炭素膜を、従来通りの配線形成手法を用
いて、半導体装置の層間絶縁膜とすることを可能とし
た。
By using the fluorine-containing amorphous carbon film containing a benzene ring as described above, an amorphous carbon film having less wiring delay than the conventional one can be formed by using a conventional wiring forming method. This makes it possible to form an interlayer insulating film.

【0058】[0058]

【発明の効果】本発明は、含フッ素非晶質炭素膜中にベ
ンゼン環を含有させることにより、耐熱性が450℃程
度まで向上し、しかも比誘電率が3以下で、極めて膜中
水分が少ない絶縁膜を実現することができた。
According to the present invention, by including a benzene ring in the fluorine-containing amorphous carbon film, the heat resistance is improved to about 450 ° C., the relative dielectric constant is 3 or less, and the moisture in the film is extremely low. A small number of insulating films could be realized.

【0059】また、本発明のベンゼン環含有含フッ素非
晶質炭素膜を半導体装置の多層配線間用絶縁膜に使用す
ることにより、低誘電率の絶縁膜を用いるため配線遅延
を減少することができ、しかも400℃程度の加熱を要
する従来の配線プロセスで製造することができる。
Further, by using the fluorine-containing amorphous carbon film containing a benzene ring of the present invention as the insulating film between the multilayer wirings of the semiconductor device, the wiring delay can be reduced because the insulating film having a low dielectric constant is used. It can be manufactured by a conventional wiring process requiring heating at about 400 ° C.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のベンゼン環含有含フッ素非晶質炭素膜
を形成するための成膜装置の構成概略図である。
FIG. 1 is a schematic configuration diagram of a film forming apparatus for forming a benzene ring-containing fluorine-containing amorphous carbon film of the present invention.

【図2】本発明のベンゼン環含有含フッ素非晶質炭素膜
を層間絶縁膜に用いた半導体装置の構成断面模式図であ
る。
FIG. 2 is a schematic sectional view of a configuration of a semiconductor device using a benzene ring-containing fluorine-containing amorphous carbon film of the present invention as an interlayer insulating film.

【符号の説明】[Explanation of symbols]

101 支持台 102 真空ポンプ 103 フッ化物、鎖状炭化水素供給用セル 104 真空容器 105 上部電極 106 試料 107 下部電極 108 高周波電源 109 上蓋 110 芳香族炭化水素供給用セル 201 ベンゼン環含有含フッ素非晶質炭素膜 202 第2層アルミニウム 203 第1層アルミニウム 204 SiO2 205 シリコン基板 206 水素化非晶質炭素膜 207 トランジスタReference Signs List 101 Support base 102 Vacuum pump 103 Cell for supplying fluoride and chain hydrocarbon 104 Vacuum container 105 Upper electrode 106 Sample 107 Lower electrode 108 High frequency power supply 109 Top lid 110 Cell for supplying aromatic hydrocarbon 201 Fluorine-containing amorphous containing benzene ring Carbon film 202 Second layer aluminum 203 First layer aluminum 204 SiO 2 205 Silicon substrate 206 Hydrogenated amorphous carbon film 207 Transistor

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01L 21/314 H01L 21/768──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) H01L 21/314 H01L 21/768

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 芳香族炭化水素ガスと芳香族フッ化物ガ
スを除くフッ化物ガスを原料とし、プラズマ化学気相成
長法によって製造することを特徴とする膜中にベンゼン
環を含有する含フッ素非晶質炭素膜の製造方法。
1. An aromatic hydrocarbon gas and an aromatic fluoride gas.
A method for producing a fluorine-containing amorphous carbon film containing a benzene ring in a film, wherein the film is produced by a plasma enhanced chemical vapor deposition method using a fluoride gas other than a source gas as a raw material.
【請求項2】 膜中にベンゼン環を含有する含フッ素非
晶質炭素膜を層間絶縁膜として用いることを特徴とする
半導体装置。
2. A fluorine-containing film containing a benzene ring in a film.
A semiconductor device using a crystalline carbon film as an interlayer insulating film.
【請求項3】 水素化非晶質炭素膜上にベンゼン環を含
有する含フッ素非晶質炭素膜が形成された膜を、層間絶
縁膜として用いることを特徴とする半導体装置。
3. A hydrogenated amorphous carbon film containing a benzene ring.
A film on which a fluorine-containing amorphous carbon film formed is used as an interlayer insulating film.
JP8049764A 1996-03-07 1996-03-07 Method for manufacturing amorphous carbon film and semiconductor device Expired - Lifetime JP2850834B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP8049764A JP2850834B2 (en) 1996-03-07 1996-03-07 Method for manufacturing amorphous carbon film and semiconductor device
KR1019970007384A KR100286075B1 (en) 1996-03-07 1997-03-06 Semiconductor device using amorphous fluorinated carbon film having benzene ring and manufacturing method thereof
CA002199347A CA2199347A1 (en) 1996-03-07 1997-03-06 Amorphous carbon film, formation process therof, and semiconductor device making use of the film
EP97103713A EP0794569A3 (en) 1996-03-07 1997-03-06 Amorphous carbon film, formation process thereof, and semiconductor device making use of the film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8049764A JP2850834B2 (en) 1996-03-07 1996-03-07 Method for manufacturing amorphous carbon film and semiconductor device

Publications (2)

Publication Number Publication Date
JPH09246263A JPH09246263A (en) 1997-09-19
JP2850834B2 true JP2850834B2 (en) 1999-01-27

Family

ID=12840252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8049764A Expired - Lifetime JP2850834B2 (en) 1996-03-07 1996-03-07 Method for manufacturing amorphous carbon film and semiconductor device

Country Status (4)

Country Link
EP (1) EP0794569A3 (en)
JP (1) JP2850834B2 (en)
KR (1) KR100286075B1 (en)
CA (1) CA2199347A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5989998A (en) 1996-08-29 1999-11-23 Matsushita Electric Industrial Co., Ltd. Method of forming interlayer insulating film
JP3469761B2 (en) * 1997-10-30 2003-11-25 東京エレクトロン株式会社 Method for manufacturing semiconductor device
JP3429171B2 (en) 1997-11-20 2003-07-22 東京エレクトロン株式会社 Plasma processing method and semiconductor device manufacturing method
WO1999028962A1 (en) 1997-11-27 1999-06-10 Tokyo Electron Limited Method for forming plasma films
WO2000019507A1 (en) * 1998-09-28 2000-04-06 Tokyo Electron Limited Method of plasma-assisted film deposition
SG81992A1 (en) * 1999-05-25 2001-07-24 Tokyo Electron Ltd Plasma thin-film deposition method
JP4290953B2 (en) * 2002-09-26 2009-07-08 奇美電子股▲ふん▼有限公司 Image display device, organic EL element, and method of manufacturing image display device
JPWO2006077847A1 (en) * 2005-01-24 2008-06-19 国立大学法人京都大学 Fluorocarbon film and method for producing the same
US8753986B2 (en) 2009-12-23 2014-06-17 Air Products And Chemicals, Inc. Low k precursors providing superior integration attributes
KR101978427B1 (en) 2017-12-18 2019-08-28 대구대학교 산학협력단 Control facilities of odor and particulate matter emissions from livestock facilities

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5017403A (en) * 1989-04-13 1991-05-21 Massachusetts Institute Of Technology Process for forming planarized films

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Thin Solid Films,Vol.167(1988)p.255−260

Also Published As

Publication number Publication date
KR970067603A (en) 1997-10-13
EP0794569A3 (en) 1998-04-08
KR100286075B1 (en) 2001-04-16
JPH09246263A (en) 1997-09-19
EP0794569A2 (en) 1997-09-10
CA2199347A1 (en) 1997-09-07

Similar Documents

Publication Publication Date Title
KR100188573B1 (en) Semiconductor device with amorphous carbon layer
EP0826791B1 (en) Method of forming interlayer insulating film
JP2748864B2 (en) Semiconductor device, method of manufacturing the same, method of manufacturing amorphous carbon film, and plasma CVD apparatus
JP2000114252A (en) Semiconductor device and its manufacture
JP3178375B2 (en) Method of forming insulating film
JP2850834B2 (en) Method for manufacturing amorphous carbon film and semiconductor device
JPH098032A (en) Formation of insulation film
JP2011511476A (en) Eliminate photoresist material collapse and poisoning at 45 nm feature size using dry or immersion lithography
JP2003503849A (en) Method and apparatus for forming a film on a substrate
JP2632879B2 (en) Method of forming silicone coating
JP2748879B2 (en) Method for producing fluorinated amorphous carbon film material
JP3469761B2 (en) Method for manufacturing semiconductor device
KR100382387B1 (en) Method of plasma processing
JPS59154029A (en) Formation of insulating film
US5567658A (en) Method for minimizing peeling at the surface of spin-on glasses
JP2000106363A (en) Formation of insoluble coating
JP4032447B2 (en) Manufacturing method of semiconductor device
JP3086234B2 (en) Surface treatment method
CN1241243C (en) Method of forming a macromolecular layer on pattern material
JPH11111712A (en) Low-dielectric constant insulating film, manufacture thereof and semiconductor device using the film
JP2830874B2 (en) Semiconductor device, method of manufacturing the same, and method of manufacturing an amorphous carbon film
JP3501407B2 (en) Method for forming organic silicone resin film and method for manufacturing semiconductor device
Dobkin et al. Plasma formation of buffer layers for multilayer resist structures
JPH03139838A (en) Manufacture of semiconductor device
JPH0766179A (en) Fabrication of semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071113

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081113

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081113

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091113

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091113

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101113

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101113

Year of fee payment: 12

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101113

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101113

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111113

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111113

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 15

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term