JP2745224B2 - Ground improvement method and equipment - Google Patents

Ground improvement method and equipment

Info

Publication number
JP2745224B2
JP2745224B2 JP2180489A JP2180489A JP2745224B2 JP 2745224 B2 JP2745224 B2 JP 2745224B2 JP 2180489 A JP2180489 A JP 2180489A JP 2180489 A JP2180489 A JP 2180489A JP 2745224 B2 JP2745224 B2 JP 2745224B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
liquefied carbon
pressure
water
junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2180489A
Other languages
Japanese (ja)
Other versions
JPH02204520A (en
Inventor
昭一 鹿島
武彦 所
峰雄 村田
俊介 田沢
明良 堀場
光治 石田
Original Assignee
日本ソイル工業株式会社
日本綜合防水株式会社
山口機械工業株式会社
日東化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ソイル工業株式会社, 日本綜合防水株式会社, 山口機械工業株式会社, 日東化学工業株式会社 filed Critical 日本ソイル工業株式会社
Priority to JP2180489A priority Critical patent/JP2745224B2/en
Publication of JPH02204520A publication Critical patent/JPH02204520A/en
Application granted granted Critical
Publication of JP2745224B2 publication Critical patent/JP2745224B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、地盤の改良技術に係り、特に液化二酸化炭
素をその液状態を保持しながら、他のグラウト成分と合
流させるもので、たとえば液化二酸化炭素と水とを混合
させ炭酸水を得て、その後この炭酸水と反応する材料た
とえば水ガラスと合流接触させ、注入管の吐出口から地
盤に注入し、地盤の安定化を図る工法およびその装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a ground improvement technique, and particularly to a technique for combining liquefied carbon dioxide with other grout components while maintaining its liquid state. A method of mixing carbon dioxide and water to obtain carbonated water, and then bringing it into contact with a material that reacts with the carbonated water, for example, water glass, and injecting it into the ground from an outlet of an injection pipe to stabilize the ground, and a method for stabilizing the ground. Related to the device.

〔従来の技術〕[Conventional technology]

この種のグラウト注入工法としては、古くは1液のグ
ラウトを注入していたが、その後、改良されて、2液硬
化性グラウトの各液を、注入管の基端に設けたY字管に
て合流させる方式に代わり、その後、現在では、注入管
内部あるいは外部において両液を合流させ、混合した
後、周辺地盤に注入するものが主流となっている。
As a grout injection method of this type, in the past, one liquid grout was injected, but after that, it was improved and each liquid of two liquid hardening grout was injected into a Y-shaped pipe provided at the base end of the injection pipe. After that, instead of the method of combining the two liquids, the mainstream now is to combine the two liquids inside or outside the injection pipe, mix them, and then inject them into the surrounding ground.

この2液硬化性グラウトの種類としては、種々のもの
が知られているが、地盤を汚さない点で、現在は水ガラ
ス(ケイ酸ソーダ)系のものが主流である。この水ガラ
スに対して、反応剤としては、酸や酸塩等がある。
Various types of two-component curable grout are known, but water glass (sodium silicate) is currently the mainstream in that it does not contaminate the ground. For the water glass, the reactants include acids and acid salts.

これに対して、水ガラスに対する反応剤として炭酸水
を用いこれらの混合液を地盤に注入してその安定化を図
る方法は、例えば特開昭53−74709号公報等により公知
である。
On the other hand, a method of stabilizing the mixture by injecting a mixed solution thereof into the ground using carbonated water as a reactant for water glass is known, for example, from JP-A-53-74709.

炭酸ガスは安価で無害であるなどの本質的な利点があ
るが、炭酸ガスを水に吸収させて炭酸水を製造し、この
炭酸水を水ガラスと反応させる場合、炭酸水をいかに製
造するかにつき問題点があるため、一部実用化されてい
るのみであり、その工法の確立が急務となっている。
Carbon dioxide has the essential advantages of being inexpensive and harmless.However, when carbon dioxide is absorbed into water to produce carbonated water and this carbonated water is reacted with water glass, how to produce carbonated water However, only a part of the method has been put into practical use, and it is urgently necessary to establish a method for the method.

この反応は、次式で示される。 This reaction is represented by the following equation.

2H++CO3 2-+Na2O・nSiO2 →Na2CO3+H2O+nSiO2↓ …(1) Na2O・nSiO2+2H2CO3 nSiO2+2NaHCO3+H2O …(2) したがって、炭酸水と水ガラスとを混合して注入する
と、シリカと炭酸ソーダとを地盤中に生成させ、地盤中
の弱い部分を強化できる。
2H + + CO 3 2- + Na 2 O · nSiO 2 → Na 2 CO 3 + H 2 O + nSiO 2 ↓… (1) Na 2 O · nSiO 2 + 2H 2 CO 3 nSiO 2 + 2NaHCO 3 + H 2 O… (2) Therefore, carbonic acid When water and water glass are mixed and injected, silica and sodium carbonate are generated in the ground, and a weak portion in the ground can be strengthened.

本発明者らは、炭酸水を製造する場合において、特開
昭62−228516号および特開昭63−11712号において、充
填反応塔内にガス状態炭酸ガスを充満させている中に水
をスプレー噴霧することで炭酸水を製造するとともに、
ボンベからの液化二酸化炭素が冬場においても充填反応
塔に入る段階では十分気化しているように、ボンベと充
填反応塔との間に気化器を設けることを開示した。
When producing carbonated water, the present inventors disclosed in Japanese Patent Application Laid-Open Nos. 62-228516 and 63-11712 that water was sprayed while filling a gaseous carbon dioxide gas in a packed reaction tower. While producing carbonated water by spraying,
It has been disclosed that a vaporizer is provided between the cylinder and the packed reaction tower so that the liquefied carbon dioxide from the cylinder is sufficiently vaporized at the stage of entering the packed reaction tower even in winter.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

前記公報記載の設備にて炭酸水を製造することができ
るが、注入量に見合った炭酸水を製造するために大きな
充填反応塔が必要であるとともに、その塔への炭酸ガス
供給量および水の供給量を、注入量に対応して塔内の炭
酸水レベル(液位)を適切に管理しないと、炭酸水の炭
酸濃度が大きく変動してしまい、水ガラス等の炭酸水と
反応する材料との反応性が安定せず、所要強度の固結体
が得られないことがある。
Although carbonated water can be produced with the equipment described in the above publication, a large packed reaction tower is required to produce carbonated water corresponding to the injection amount, and the amount of carbon dioxide supplied to the tower and the amount of water are increased. Unless the supply amount is properly controlled for the level of carbonated water (liquid level) in the tower in accordance with the amount of injection, the carbonic acid concentration in carbonated water will fluctuate greatly, and materials that react with carbonated water, such as water glass, will be used. Is not stable, and a compact having a required strength may not be obtained.

また、二酸化炭素がガスであると、充填反応塔への供
給量を調整する流量調整弁の精度誤差が比較的大きく、
正確な流量コントロールが難しいことも、上記問題を一
層顕在化させている。
Further, when carbon dioxide is a gas, the accuracy error of the flow control valve for adjusting the supply amount to the packed reaction tower is relatively large,
The difficulty of accurate flow control also makes the above problem more apparent.

そこで、本発明の主たる目的は、連続的に一定濃度の
炭酸水を、難しいまたは微妙な制御を要することなく、
容易に製造でき、もって所要強度の固結体を安定して得
ることができるとともに、設備のコンパクト化をも図る
ことができる地盤の改良工法と装置を提供することにあ
る。
Therefore, a main object of the present invention is to continuously produce carbonated water of a constant concentration without requiring difficult or delicate control,
It is an object of the present invention to provide an improved method and apparatus for improving the ground that can be easily manufactured, can stably obtain a consolidated body having a required strength, and can reduce the size of equipment.

〔課題を解決するための手段〕[Means for solving the problem]

上記課題を解決するための本発明法は、二酸化炭素を
液状態で水と混合し、その後前記二酸化炭素と反応する
材料と合流接触させながら地盤中に注入することを特徴
とするものである。
The method of the present invention for solving the above-mentioned problems is characterized in that carbon dioxide is mixed with water in a liquid state, and then injected into the ground while being brought into contact with a material that reacts with the carbon dioxide.

また、本発明に係る第1の装置は、液化二酸化炭素と
水との第1合流点と、生成した炭酸水とこれと反応する
材料との第2合流点と、前記液化二酸化炭素と第1合流
点または第2合流点との間に配設され、液化二酸化炭素
を液状に保つために所定圧力以上に保持する少なくとも
1つの保圧弁とを備えたことを特徴とする。
Further, the first apparatus according to the present invention includes a first confluence of liquefied carbon dioxide and water, a second confluence of generated carbonated water and a material reacting therewith, At least one pressure-holding valve is provided between the junction and the second junction and holds the liquefied carbon dioxide at a predetermined pressure or higher to keep the liquefied carbon dioxide in a liquid state.

また第2の装置は、液化二酸化炭素と水との第1合流
点と、生成した炭酸水とこれと反応する材料との第2合
流点と、前記液化二酸化炭素と第1合流点または第2合
流点との間に配設され、液化二酸化炭素を液状に保つた
めに所定圧力以上に保持する少なくとも1つの保圧弁
と、前記第1合流点と液化二酸化炭素源との間に配さ
れ、液化二酸化炭素の温度を調整してその液状態を少な
くとも前記保圧弁配設位置まで保持する液状保持手段と
を備えたことを特徴とする。
Further, the second device includes a first confluence of the liquefied carbon dioxide and water, a second confluence of the generated carbonated water and a material reacting therewith, and a second confluence of the liquefied carbon dioxide and the first confluence or the second confluence. At least one pressure-holding valve disposed between the first junction and the liquefied carbon dioxide source, the liquefied carbon dioxide being disposed between the first junction and the liquefied carbon dioxide source; Liquid holding means for adjusting the temperature of the carbon dioxide and holding the liquid state at least up to the position where the pressure holding valve is provided.

さらに、第3の装置は、液化二酸化炭素とこれと反応
する他のグラウト成分の合流点と、この合流点と二酸化
炭素源との間に配され、液化二酸化炭素を液状に保つた
めに所定圧力以上に保持する保圧弁と、この保圧弁と液
化二酸化炭素源との間に配され、液化二酸化炭素の温度
を調整してその液状態を少なくとも前記保圧弁配設位置
まで保持する液状保持手段とを備えたことを特徴とする
ものである。
Further, the third device is disposed between the confluence of the liquefied carbon dioxide and other grout components reacting with the liquefied carbon dioxide, and a predetermined pressure for maintaining the liquefied carbon dioxide in a liquid state. A pressure holding valve that holds the above, liquid holding means that is disposed between the pressure holding valve and the liquefied carbon dioxide source, adjusts the temperature of the liquefied carbon dioxide, and holds the liquid state at least up to the pressure holding valve arrangement position. It is characterized by having.

〔作用〕[Action]

本発明の主たる骨子と、液化二酸化炭素をその液化状
態を保ちながら注入経路の途中で、他のグラウト成分と
合流接触混合させることにある。
The main point of the present invention is to combine and contact liquefied carbon dioxide with other grout components in the middle of the injection route while maintaining the liquefied state of the liquefied carbon dioxide.

たとえば、炭酸水を製造するにあたり、ガス状二酸化
炭素と水とを接触させて炭酸水を製造するのではなく、
液化二酸化炭素を液の状態で水と接触させ、所要濃度の
炭酸水を製造するようにしている。したがって、液化二
酸化炭素と水との混合性は、同じ液の状態で合流させる
ため、きわめて優れ、かつ合流点に至るまでの液化二酸
化炭素量と水量とはそれぞれ流量を容易にコントロール
でき、かつ液化二酸化炭素量に対する水の量を変えるこ
とで、炭酸水濃度を容易かつ迅速に変更でき、もって水
ガラス等の二酸化炭素と反応する材料との反応性を変更
しながら、所望のゲルタイムをもったグラウトを容易に
得ることができる。したがって、ゲルタイムを瞬結と緩
結との間で逐次変えるいわゆる複合注入工法に有効に利
用できる。
For example, in producing carbonated water, instead of contacting gaseous carbon dioxide and water to produce carbonated water,
Liquid carbon dioxide is brought into contact with water in a liquid state to produce carbonated water of a required concentration. Therefore, the mixing properties of liquefied carbon dioxide and water are extremely excellent because they are merged in the same liquid state, and the amount of liquefied carbon dioxide and the amount of water up to the confluence can be easily controlled, and the liquefaction By changing the amount of water with respect to the amount of carbon dioxide, the concentration of carbonated water can be easily and quickly changed, thereby changing the reactivity with materials that react with carbon dioxide, such as water glass, and a grout with a desired gel time. Can be easily obtained. Therefore, the present invention can be effectively used for a so-called compound injection method in which the gel time is sequentially changed between instantaneous setting and slow setting.

他方、液化二酸化炭素と水との混合性に優れるため、
それらの合流にあたり、簡易なT字またはY字管等を用
いるだけで確実な混合を図ることができ、したがって、
従来のように、大きな充填反応塔を設けて設備が大型化
することを解消できるとともに、その塔の液レベルの微
妙なコントロールが不要となり、設備費の低減も図るこ
とができる。
On the other hand, because of the excellent mixability of liquefied carbon dioxide and water,
In joining them, reliable mixing can be achieved only by using a simple T-shaped or Y-shaped tube, and therefore,
Unlike the conventional case, it is possible to prevent the equipment from becoming large by providing a large packed reaction tower, and it is not necessary to delicately control the liquid level of the tower, and it is possible to reduce the equipment cost.

さらに、液化二酸化炭素を他のグラウト成分、たとえ
ば水や水ガラスと合流接触混合させるにあたり、二酸化
炭素がガスであると、ガスの流れが支配的となり混合性
がきわめて悪いため、二酸化炭素が液状であることが必
要となるが、少なくとも合流点まで液状を保つために保
圧弁を設けることがきわめて有効である。二酸化炭素が
液体であるか気体であるかはその気液平衡図を見ればわ
かる。二酸化炭素を液状に保つために合流点までの管路
の長い距離を保冷することは経済面などから実用的でな
い。また、たとえ保冷していても、かなり高い液化二酸
化炭素の圧力そのものが合流点に作用し、他のグラウト
成分の送給圧との大幅なアンバランスによって混合性が
きわめて悪い。
Furthermore, when liquefied carbon dioxide is mixed and mixed with other grout components, for example, water or water glass, if carbon dioxide is a gas, the gas flow is dominant and the mixing property is extremely poor, so the carbon dioxide is in a liquid state. Although it is necessary, it is very effective to provide a pressure-holding valve to keep the liquid at least up to the junction. Whether the carbon dioxide is a liquid or a gas can be understood from its vapor-liquid equilibrium diagram. In order to keep carbon dioxide in a liquid state, it is not practical from the economical point of view to keep a long distance of the pipe line to the junction point cool. Also, even if it is kept cool, the considerably high pressure of liquefied carbon dioxide itself acts on the junction, and the mixing property is extremely poor due to a large imbalance with the feeding pressure of other grout components.

そこで、本発明に従って、保圧弁を設けて、少なくと
もこの保圧弁に至るまで液状を保つ圧力に維持しておけ
ば、容易に二酸化炭素の液状態を維持でき、かつ実用的
であるし、さらに保圧弁より下流側は圧力を低下させる
ことができるので、他のグラウト成分との混合性に優れ
る。
Therefore, according to the present invention, if a pressure-holding valve is provided and maintained at a pressure at which a liquid is maintained at least up to the pressure-holding valve, the liquid state of carbon dioxide can be easily maintained, and it is practical and more practical. Since the pressure can be reduced on the downstream side of the pressure valve, the mixture with other grout components is excellent.

この場合、本発明にいう温度調節による液状保持手段
を併用すると、より液状保持性に優れたものとなる。
In this case, when the liquid holding means by temperature control according to the present invention is used in combination, the liquid holding property becomes more excellent.

〔発明の具体的構成〕[Specific configuration of the invention]

以下本発明をさらに詳説する。 Hereinafter, the present invention will be described in more detail.

第1図は本発明装置の概要図で、1は液化二酸化炭素
源としてのボンベで、ここから流出する液化二酸化炭素
CO2(1)は、好ましくは本発明の液状保持手段として
の冷凍機2により保冷されながら、第1ポンプ3によ
り、第1保圧弁4を介して第1合流点5に導かれる。一
方、水Wは貯槽6から第2ポンプ7により第1合流点5
に導かれ、この第1合流点5において、液化二酸化炭素
と合流接触混合され、炭酸水CWとなって、第2合流点8
に導かれる。この第2合流点8に対して、貯槽9中の水
ガラスNSが第3ポンプ10により導かれ、第2合流点8に
おいて、炭酸水CWと水ガラスNSとが合流接触混合され、
グラウトGとして、第2保圧弁12を有する注入管11内を
通り、周辺地盤中に注入されるようになっている。
FIG. 1 is a schematic view of the apparatus of the present invention. 1 is a cylinder as a source of liquefied carbon dioxide, and liquefied carbon dioxide flowing out of the cylinder is shown in FIG.
The CO 2 (1) is guided by the first pump 3 to the first junction 5 via the first pressure holding valve 4 while being kept cool by the refrigerator 2 as the liquid holding means of the present invention. On the other hand, the water W is supplied from the storage tank 6 to the first junction 5 by the second pump 7.
At the first junction 5, it is contacted and mixed with liquefied carbon dioxide to form carbonated water CW, and the second junction 8
It is led to. The water glass NS in the storage tank 9 is guided to the second junction 8 by the third pump 10, and at the second junction 8, the carbonated water CW and the water glass NS are joined and mixed,
The grout G is injected into the surrounding ground through the injection pipe 11 having the second pressure holding valve 12.

第2図には、同装置のより具体的な態様が示されてい
る。本態様では、ポンプ3,7,10をクランクシャフト20で
連結し、一つの駆動モータ21により駆動させるようにし
てある。22,23は変速機である。変速機23は、ポンプ3
側のクランクシャフトの回転速度を、その調整ハンドル
23aにより調節して、合流点5への液化二酸化炭素量を
調整する従来例の流量調整弁と同様な機能を有してい
る。24はフィルター、25は流量計および流量調節手段で
ある。
FIG. 2 shows a more specific embodiment of the apparatus. In this embodiment, the pumps 3, 7, and 10 are connected by a crankshaft 20 and driven by one drive motor 21. 22 and 23 are transmissions. The transmission 23 is a pump 3
Adjust the rotational speed of the side crankshaft by adjusting its handle
It has the same function as that of the conventional flow rate control valve for adjusting the amount of liquefied carbon dioxide to the junction 5 by adjusting the flow rate at 23a. 24 is a filter, 25 is a flow meter and flow control means.

また、符号2′の部分は、冷凍機2により、冷却さ
れ、液化二酸化炭素が夏場においてもガス化しないよう
液状状態で保持される低温室である。その液温は−20℃
〜+10℃が好ましい。
The portion denoted by reference numeral 2 'is a low-temperature chamber which is cooled by the refrigerator 2 and is kept in a liquid state so that liquefied carbon dioxide is not gasified even in summer. Its liquid temperature is -20 ℃
~ + 10 ° C is preferred.

第1保圧弁4は、ここに至るまでの間における液化二
酸化炭素の圧力を高い状態で、好ましくは30〜60kg/cm2
・G(ゲージ圧、以下同じ。)の圧力に維持し、液状状
態としておくためのものである。
The first pressure holding valve 4 keeps the pressure of liquefied carbon dioxide up to this point high, preferably 30 to 60 kg / cm 2.
-It is for maintaining a pressure of G (gauge pressure, the same applies hereinafter) and keeping it in a liquid state.

さて、注入管11の詳細構造例を示した第3図〜第5図
をも参照すると、前述の炭酸水CWおよび水ガラスNSは、
スイベル(図示せず)を介して、公知の2重管構造の連
結用注入管を通って、第3図に示す注入管先端装置部分
に至る。
Now, referring also to FIG. 3 to FIG. 5 showing a detailed structural example of the injection pipe 11, the above-mentioned carbonated water CW and water glass NS are:
Through a swivel (not shown), a known double pipe structure connecting pipe is used to reach the injection pipe tip device shown in FIG.

この部分には、外管要素20A〜20Eに、次述する種々の
部材が内装されている。
In this portion, various members described below are provided in the outer tube elements 20A to 20E.

すなわち、基端側には突子30、中間子31、連結子32、
尾子33が螺合連結された状態で内装されている。炭酸水
CWは、まず、突子30の中央部の第1路a1に入り、その終
端から斜め放射方向に複数形成された第2路a2を抜け、
突子30の外周と外管要素20A内面との間隙の第3路a3を
通り、その終端から斜め中心方向に向かう複数の第4路
a4を抜けて中間子31の中央部の第5路a5に入り込み、尾
子33を座とするバネ34によって付勢された第3保圧弁41
を押し下げながら、尾子33内の第6路a6に至る。
That is, on the base end side, the protrusion 30, the meson 31, the connector 32,
The tail 33 is screwed and connected. Carbonated water
First, the CW enters the first path a1 at the center of the projection 30 and passes through a plurality of second paths a2 formed obliquely in the radial direction from the end thereof.
A plurality of fourth paths that pass through the third path a3 in the gap between the outer periphery of the projection 30 and the inner surface of the outer tube element 20A and that extend obliquely toward the center from the end.
After passing through a4, it enters the fifth path a5 at the center of the meson 31, and the third pressure holding valve 41 urged by the spring 34 having the tail 33 as a seat.
While pushing down, the vehicle reaches the sixth road a6 in the tail child 33.

他方で、水ガラスNSは、突子30の外周と外管要素20A
との間隙の第1路b1から、突子30を軸心と平行的に貫く
複数の第2路b2を抜けて突子30の先端部中央の第3路b
に至り、さらに中間子31を座とするバネ35によって付勢
された逆止弁43を押し下げながら、中間子31の内部の第
4路b4から、中間子31の肉厚部分を軸心と平行的に貫く
複数の第5路b5を通って、中間子31,連結子32および尾
子33の外周と、外管要素20A,20Bの内面との間隙たる第
6路b6に至る。
On the other hand, the water glass NS includes the outer periphery of the projection 30 and the outer tube element 20A.
From the first path b1 having a gap between the second path b1 and the second path b2 penetrating the protrusion 30 in parallel with the axis, the third path b at the center of the tip of the protrusion 30
And, while pushing down the check valve 43 urged by the spring 35 having the meson 31 as a seat, penetrates through the thick portion of the meson 31 in parallel with the axis from the fourth path b4 inside the meson 31. Through a plurality of fifth paths b5, a sixth path b6, which is a gap between the outer circumference of the meson 31, the connector 32, and the tail 33, and the inner surfaces of the outer pipe elements 20A, 20B, is reached.

なお36はロックナットで、第3保圧弁41の作動圧力を
決めるために尾子33を中心軸回りに回動させてバネ34の
付勢力を決めた後、尾子33を連結子32に対して固定する
ものである。37はバネ35に対するガイド座である。
Reference numeral 36 denotes a lock nut. After determining the urging force of the spring 34 by rotating the tail 33 around the central axis in order to determine the operating pressure of the third pressure holding valve 41, the tail 33 is moved to the connector 32. Is fixed. 37 is a guide seat for the spring 35.

一方、尾子33の先端側には、混合促進体50が内装さ
れ、それより先端側には、第2保圧弁42の弁座61が配さ
れている。第2保圧弁42は、外管要素20Cに対して、ロ
ックナット62を介してロック固定されたバネ座63を座と
するバネ64によって弁座61側に付勢されている。
On the other hand, a mixing promoting body 50 is provided at the front end of the tail 33, and a valve seat 61 of the second pressure-holding valve 42 is provided at the front end. The second pressure holding valve 42 is urged toward the valve seat 61 by a spring 64 having a spring seat 63 locked and fixed via a lock nut 62 with respect to the outer pipe element 20C.

混合促進体50は、外管要素20B内面にほぼ密着状態で
配され、例えば長さ25cm程度のほぼ円柱状のものであ
る。この混合促進体50の外周面には溝が形成され、基端
側から先端側に向かった後、逆流するように基端側に戻
る経路が1回以上、実施例では5往復程度の混合促進路
51が形成されている。なお、最終的には、注入管の先端
に向かわせるために、往路溝が1本追加されている。し
たがって、液は(25×5×2+25)、合計約275cmの長
さの溝内を通る。
The mixing promoting body 50 is disposed substantially in close contact with the inner surface of the outer tube element 20B, and has a substantially columnar shape with a length of about 25 cm, for example. A groove is formed on the outer peripheral surface of the mixing promoting body 50, and a path for returning from the base end side to the front end side and returning to the base end side so as to flow backward once or more, in the embodiment, about 5 reciprocations. Road
51 are formed. In addition, finally, one outward groove is added in order to face the tip of the injection pipe. Thus, the liquid passes through (25 × 5 × 2 + 25) grooves totaling about 275 cm in length.

一般に混合促進路長は0.5m、特に1m以上であるのが好
ましい。
Generally, the length of the mixing promoting path is preferably 0.5 m, more preferably 1 m or more.

さて、前述のように、炭酸水CMの第1〜第6路a6と、
水ガラスNSの第1〜第6路b6には、尾子33の先端まで独
立的に形成されているが、炭酸水CWおよび水ガラスNS
は、尾子33の先端面を抜けると、混合促進体50の基端の
入口凹部52Aから混合促進路51に入り込もうとすると
き、始めて合流接触混合する。その後、これらの混合材
料は、長い混合促進路51を流速をもって通る過程で、十
分な反応時間と共に混合時間をもって、混合が十分にな
され、混合済グラウトとなって、最終的に出口凹部52B
から、弁座61内に入り込み、グラウト路g1〜g5を通っ
て、注入管11先端の注入口70から地盤に注入される。
Now, as described above, the first to sixth paths a6 of the carbonated water CM,
The first to sixth paths b6 of the water glass NS are formed independently up to the tip of the tail 33, but the carbonated water CW and the water glass NS
After passing through the distal end face of the tail 33, when it tries to enter the mixing promoting passage 51 from the inlet concave portion 52A at the base end of the mixing promoting body 50, the mixing and contact mixing is performed for the first time. Thereafter, these mixed materials are sufficiently mixed with sufficient reaction time and mixing time in the course of passing through the long mixing promotion path 51 at a flow rate, and become a mixed grout.
From the valve seat 61, and is injected into the ground from the injection port 70 at the tip of the injection pipe 11 through the grout passages g1 to g5.

なお、第3図および第4図中において、混合促進体50
の横断面形状として、図面の簡略化のために、2往復路
+1往路のみの形状として図示した。
3 and 4, the mixing accelerator 50
The cross-sectional shape of FIG. 2 is shown as a shape of only two reciprocating paths and one outward path for simplification of the drawing.

上記のように、往復する混合促進路51をもった混合促
進体50を内装すると、その長さあたりの何倍もの滞留時
間を取ることができ、したがって混合反応が十分になさ
れる。その結果、炭酸水CWと水ガラスNSとが分離したま
ま地盤に注入されることがない。この種以外の2液硬化
性グラウトの場合、合流させればさほど混合に注意を払
わなくともよいのであるが、炭酸水と水ガラスとの混合
性が悪い点に鑑みれば、本発明に係る上記手段の採用が
有効性を示す。
As described above, when the mixing promoting body 50 having the reciprocating mixing promoting path 51 is internally provided, a residence time many times longer than the length of the mixing promoting body 50 can be taken, so that the mixing reaction is sufficiently performed. As a result, the carbonated water CW and the water glass NS are not injected into the ground while being separated. In the case of two-component curable grouts other than this type, it is not necessary to pay much attention to mixing if they are merged, but in view of the poor mixing property between carbonated water and water glass, The adoption of the means shows effectiveness.

一方、混合性が悪い炭酸水と水ガラスを取り扱う場
合、単に反応時間の増大を図るのみならず、混合部内の
圧力を比較的高い圧力すなわち1kg/cm2G以上、望ましく
は3kg/cm2G、より好ましくは5kg/cm2G以上に維持して混
合し反応させることが重要である。
On the other hand, if the miscibility handle bad carbonated water and water glass, not only achieve an increase in reaction time, the pressure in the mixing portion relatively high pressure or 1 kg / cm 2 G or more, preferably 3 kg / cm 2 G It is important to mix and react while maintaining the pressure at 5 kg / cm 2 G or more, more preferably.

このために、本実施例では混合促進体50の基端側およ
び先端側に第3保圧弁41および第2保圧弁42を設けてい
る。すなわち、混合促進路51内を比較的高圧力に保持す
るためには、第3保圧弁41へ5kg/cm2G以上、望ましくは
10kg/cm2G以上、特に15kg/cm2G以上で40kg/cm2G以下程
度で炭酸水を供給すると共に、第2保圧弁42の作動圧力
は1kg/cm2G以上、望ましくは3kg/cm2G以上、特に5kg/cm
2G以上とされる。
For this purpose, in the present embodiment, a third pressure holding valve 41 and a second pressure holding valve 42 are provided on the base end side and the tip end side of the mixing promoting body 50. That is, in order to maintain the inside of the mixing promotion passage 51 at a relatively high pressure, the pressure of the third pressure holding valve 41 should be 5 kg / cm 2 G or more, preferably,
Supply carbonated water at about 10 kg / cm 2 G or more, particularly about 15 kg / cm 2 G or more and about 40 kg / cm 2 G or less, and the operating pressure of the second pressure holding valve 42 is 1 kg / cm 2 G or more, preferably 3 kg / cm 2 G or more. cm 2 G or more, especially 5 kg / cm
2 G or more.

これによって、混合部内の圧力は、第2保圧弁の作動
圧に維持される。なお、水ガラスNSについては、その動
圧が作用すれば逆止弁43が作動するようにしてある。水
ガラスの供給圧力は、1.5〜10kg/cm2G、好ましくは3〜
7kg/cm2Gとされる。
Thereby, the pressure in the mixing section is maintained at the operating pressure of the second pressure holding valve. The check valve 43 is operated when the dynamic pressure acts on the water glass NS. The supply pressure of the water glass is 1.5 to 10 kg / cm 2 G, preferably 3 to 10 kg / cm 2 G.
It is 7 kg / cm 2 G.

一般的な逆止弁は、動圧さえ作用すれば、作動するの
に対して、本実施例のように、保圧弁41,42間の混合促
進部を高圧に保持するために、保圧弁41,42を設けるこ
とは、グラウト注入において嚆矢であると考えられる。
A general check valve operates as long as the dynamic pressure acts, but as in the present embodiment, in order to maintain the mixing promoting portion between the pressure holding valves 41 and 42 at a high pressure, a pressure holding valve 41 is used. , 42 is considered to be the first step in grouting.

なお、上記実施例における混合促進体50に代えて、第
6図のような螺旋状の混合促進体51′をもった混合促進
体50′であってもよい。同例は、一条おきの螺旋溝を通
って先端へ向かい、反転部53′から他の一条おきの螺旋
溝を通って基端側に向かい、基端側で中心路54′に入り
込み、先端55から抜けるようにしたものである。
Instead of the mixing accelerator 50 in the above embodiment, a mixing accelerator 50 'having a spiral mixing accelerator 51' as shown in FIG. 6 may be used. In this example, the head passes through every other spiral groove toward the distal end, goes from the reversing portion 53 ′ to the proximal end through the other every other spiral groove, enters the center path 54 ′ at the proximal end, and enters the distal end 55 ′. It is made to get out of.

一方、液化二酸化炭素と水Wとの合流点5の構造例と
しては、第7図のように、第1保圧弁4の押し付け力
を、その弁座4Aを操作ハンドル4Bによってスプリング4C
を介して調整することによって、液化二酸化炭素の圧力
を調整するものを好ましく用いることができる。
On the other hand, as a structural example of the junction 5 of the liquefied carbon dioxide and the water W, as shown in FIG.
By adjusting the pressure through the liquefied carbon dioxide, the one that adjusts the pressure of the liquefied carbon dioxide can be preferably used.

上記例において、水Wのポンプ圧力が液化二酸化炭素
の圧力と同程度に高くしておけば、第3保圧弁41を本発
明にいう「保圧弁」として利用でき、第1保圧弁4の設
置を省略することもできる。したがって、保圧弁4およ
び41は少なくとも一方が存在すればよい。保圧弁4また
は41はそれらが複数設けられていてもよい。
In the above example, if the pump pressure of the water W is set to be substantially the same as the pressure of the liquefied carbon dioxide, the third pressure holding valve 41 can be used as the “pressure holding valve” according to the present invention, and the first pressure holding valve 4 is installed. Can also be omitted. Therefore, at least one of the pressure holding valves 4 and 41 may be present. A plurality of pressure holding valves 4 or 41 may be provided.

他方、液化二酸化炭素とまず水ガラスと合流接触混合
させた後、これをそのまま、あるいは後に水と合流させ
て希釈して注入してもよい。
On the other hand, after the liquefied carbon dioxide and the water glass are first brought into contact and mixed, the mixture may be injected as it is or after being combined with water and diluted.

〔発明の効果〕〔The invention's effect〕

以上のとおり、本発明によれば、二酸化炭素と他のグ
ラウト成分との合流混合性に優れ、かつ難しい制御を必
要とすることなく安定して合流混合でき、装置のコンパ
クト化および装置コストの低減化等を図ることができ
る。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, excellent mixing and mixing properties of carbon dioxide and other grout components are achieved, and stable mixing and mixing can be performed without requiring difficult control. Can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明装置例の概要図、第2図は具体的装置の
概要図、第3図は注入管の構造例の半断面正面図、第4
図〜第6図は注入管内部に設置する混合促進体の説明
図、第7図は本発明に係る保圧弁の構造例の断面図であ
る。 1……液化二酸化炭素ボンベ、2……冷凍機(液状保持
手段)、3,7,10……ポンプ、4……(第1)保圧弁、5,
8……合流点、CW……炭酸水、W……水、NS……水ガラ
ス、11……注入管。
FIG. 1 is a schematic view of an example of the apparatus of the present invention, FIG. 2 is a schematic view of a specific apparatus, FIG.
6 are explanatory views of a mixing promoting body installed inside the injection pipe, and FIG. 7 is a cross-sectional view of a structural example of a pressure holding valve according to the present invention. 1 ... liquefied carbon dioxide cylinder, 2 ... refrigerator (liquid holding means), 3, 7, 10 ... pump, 4 ... (first) pressure holding valve, 5,
8 ... Confluence point, CW ... Carbonated water, W ... Water, NS ... Water glass, 11 ... Injection pipe.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鹿島 昭一 東京都渋谷区広尾1丁目10番3号 長谷 部第3ビル 日本ソイル工業株式会社内 (72)発明者 所 武彦 東京都渋谷区千駄ケ谷4丁目20番3号 日本綜合防水株式会社内 (72)発明者 村田 峰雄 東京都目黒区上目黒5丁目30番2号 山 口機械工業株式会社内 (72)発明者 田沢 俊介 神奈川県横浜市鶴見区大黒町10番1号 日東化学工業株式会社中央研究所内 (72)発明者 堀場 明良 東京都千代田区丸の内1丁目5番1号 日東化学工業株式会社内 (72)発明者 石田 光治 東京都千代田区丸の内1丁目5番1号 日東化学工業株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shoichi Kashima 1-10-3 Hiroo, Shibuya-ku, Tokyo Inside Hasebu No. 3 Building Nippon Soil Industry Co., Ltd. (72) Inventor Takehiko 4-chome Sendagaya, Shibuya-ku, Tokyo No. 20-3 Japan Integrated Waterproofing Co., Ltd. (72) Inventor Mineo Murata 5-30-2 Kamimeguro, Meguro-ku, Tokyo Yamaguchi Machinery Co., Ltd. (72) Inventor Shunsuke Tazawa Oguro, Tsurumi-ku, Yokohama, Kanagawa Prefecture 10-1 Machito, Nitto Chemical Industry Co., Ltd. Central Research Laboratory (72) Inventor Akira Horiba 1-5-1 Marunouchi, Chiyoda-ku, Tokyo Nitto Chemical Industry Co., Ltd. (72) Inventor Koji Ishida 1 Marunouchi, Chiyoda-ku, Tokyo Chome 5-1 Nitto Chemical Industry Co., Ltd.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】二酸化炭素を液状態で水と混合し、その後
前記二酸化炭素と反応する材料と合流接触させながら地
盤中に注入することを特徴とする地盤の改良工法。
1. A method for improving ground, comprising mixing carbon dioxide in a liquid state with water, and then injecting it into the ground while being brought into contact with the material reacting with the carbon dioxide.
【請求項2】液化二酸化炭素と水との第1合流点と、生
成した炭酸水とこれと反応する材料との第2合流点と、
前記液化二酸化炭素と第1合流点または第2合流点との
間に配設され、液化二酸化炭素を液状に保つために所定
圧力以上に保持する少なくとも1つの保圧弁とを備えた
ことを特徴とする地盤の改良装置。
2. A first junction between liquefied carbon dioxide and water, a second junction between the produced carbonated water and a material reacting therewith,
And at least one pressure-holding valve disposed between the liquefied carbon dioxide and the first junction or the second junction and holding the liquefied carbon dioxide at a predetermined pressure or higher to keep the liquefied carbon dioxide in a liquid state. Ground improvement equipment.
【請求項3】液化二酸化炭素と水との第1合流点と、生
成した炭酸水とこれと反応する材料との第2合流点と、
前記液化二酸化炭素と第1合流点または第2合流点との
間に配設され、液化二酸化炭素を液状に保つために所定
圧力以上に保持する少なくとも1つの保圧弁と、前記第
1合流点と液化二酸化炭素源との間に配され、液化二酸
化炭素の温度を調整してその液状態を少なくとも前記保
圧弁配設位置まで保持する液状保持手段とを備えたこと
を特徴とする地盤の改良装置。
3. A first junction between liquefied carbon dioxide and water, a second junction between the produced carbonated water and a material reacting therewith,
At least one pressure-holding valve disposed between the liquefied carbon dioxide and the first junction or the second junction and holding the liquefied carbon dioxide at a predetermined pressure or higher to keep the liquefied carbon dioxide in a liquid state; and A liquid holding means arranged between the liquefied carbon dioxide source and a liquid holding means for adjusting the temperature of the liquefied carbon dioxide and holding the liquid state at least up to the position where the pressure holding valve is provided. .
【請求項4】液化二酸化炭素とこれと反応する他のグラ
ウト成分の合流点と、この合流点と二酸化炭素源との間
に配され、液化二酸化炭素を液状に保つために所定圧力
以上に保持する保圧弁と、この保圧弁と液化二酸化炭素
源との間に配され、液化二酸化炭素の温度を調整してそ
の液状態を少なくとも前記保圧弁配設位置まで保持する
液状保持手段とを備えたことを特徴とする地盤の改良装
置。
4. A convergence point between liquefied carbon dioxide and another grout component reacting with the liquefied carbon dioxide, which is disposed between the convergence point and the carbon dioxide source, and maintained at a predetermined pressure or higher to keep the liquefied carbon dioxide in a liquid state. And a liquid holding means disposed between the pressure holding valve and the liquefied carbon dioxide source for adjusting the temperature of the liquefied carbon dioxide and holding the liquid state at least up to the pressure holding valve disposition position. A ground improvement device, characterized in that:
JP2180489A 1989-01-31 1989-01-31 Ground improvement method and equipment Expired - Lifetime JP2745224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2180489A JP2745224B2 (en) 1989-01-31 1989-01-31 Ground improvement method and equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2180489A JP2745224B2 (en) 1989-01-31 1989-01-31 Ground improvement method and equipment

Publications (2)

Publication Number Publication Date
JPH02204520A JPH02204520A (en) 1990-08-14
JP2745224B2 true JP2745224B2 (en) 1998-04-28

Family

ID=12065244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2180489A Expired - Lifetime JP2745224B2 (en) 1989-01-31 1989-01-31 Ground improvement method and equipment

Country Status (1)

Country Link
JP (1) JP2745224B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022103098A1 (en) * 2020-11-12 2022-05-19 한국과학기술원 Ground reinforcement material containing gas hydrate, method for reinforcing deep seabed ground using same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0721182B2 (en) * 1990-10-18 1995-03-08 健夫 鈴木 Injection method of cement-based liquid and carbon dioxide
JP3151637B2 (en) * 1992-06-15 2001-04-03 強化土エンジニヤリング株式会社 Ground injection system
KR100488593B1 (en) * 2002-10-17 2005-05-12 (주)진양비지엠텍 grouting apparatus
KR200339990Y1 (en) * 2003-10-07 2004-01-28 김영용 The multi pipe chemical injection equipment for grouting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022103098A1 (en) * 2020-11-12 2022-05-19 한국과학기술원 Ground reinforcement material containing gas hydrate, method for reinforcing deep seabed ground using same

Also Published As

Publication number Publication date
JPH02204520A (en) 1990-08-14

Similar Documents

Publication Publication Date Title
Clarke Kinetics of absorption of cardon dioxide in monoethanolamine solutions at short contact times
JP2745224B2 (en) Ground improvement method and equipment
Browning et al. Physical solubility of carbon dioxide in aqueous alkanolamines via nitrous oxide analogy
US4725169A (en) Grout impregnation method
US3642521A (en) Production of metal oxides
DE3683039D1 (en) METHOD FOR PRODUCING SILICON AND OXYGEN LAYERS.
Wang et al. Exploiting proton masking to protect amino achieve efficient capture CO2 by amino-acids deep eutectic solvents
JPH02204519A (en) Grout material supply device
JP3598148B2 (en) Ground improvement method
US11518696B2 (en) Ozonated water delivery system and method of use
Anton et al. Pressure-programming of a binary, on-line mixed mobile phase for capillary column SFC using a packed column SFC pumping system
Motomizu et al. Spectrophotometric determination of trace amounts of nitrite based on the nitrosation reaction with N, N-bis (2-hydroxypropyl) aniline and its application to flow injection analysis
JP3023445B2 (en) Composite grouting method
Herrera et al. CSF bicarbonate regulation in metabolic acidosis: role of HCO3-formation in CNS
US5229300A (en) Membrane method for the determination of an organic acid
Kajino et al. Formation of trihalomethanes during chlorination and determination of halogenated hydrocarbons in drinking water
SU386930A1 (en) METHOD OF SYNTHESIS AND DISTILLATION IN MANUFACTURE
US4917709A (en) Permeation pH control system
SU81882A1 (en) The method of using unreacted gases for the synthesis of urea and carbon dioxide expansion gas
JPS589372B2 (en) Nitric oxide quantitative generator
US20220281778A1 (en) Sulfur and Ammonia Irrigation
Shipley SODIUM PYROGALLATE AS A REAGENT FOR THE DETERMINATION OF OXYGEN.
JPH0931963A (en) Soil improvement method
JPS62294423A (en) Denitration apparatus for high-temperature exhaust gas
Bernardi et al. Potential energy surfaces of cycloaddition reactions

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090213

EXPY Cancellation because of completion of term