JP3151637B2 - Ground injection system - Google Patents

Ground injection system

Info

Publication number
JP3151637B2
JP3151637B2 JP18033492A JP18033492A JP3151637B2 JP 3151637 B2 JP3151637 B2 JP 3151637B2 JP 18033492 A JP18033492 A JP 18033492A JP 18033492 A JP18033492 A JP 18033492A JP 3151637 B2 JP3151637 B2 JP 3151637B2
Authority
JP
Japan
Prior art keywords
injection
pipe
liquid
reactant
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18033492A
Other languages
Japanese (ja)
Other versions
JPH0649836A (en
Inventor
俊介 島田
健二 栢原
Original Assignee
強化土エンジニヤリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 強化土エンジニヤリング株式会社 filed Critical 強化土エンジニヤリング株式会社
Priority to JP18033492A priority Critical patent/JP3151637B2/en
Priority to TW81106232A priority patent/TW226422B/en
Publication of JPH0649836A publication Critical patent/JPH0649836A/en
Application granted granted Critical
Publication of JP3151637B2 publication Critical patent/JP3151637B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は固結時間(ゲル化時間)
の異なる複数の注入材(グラウト)を、地盤中に設置さ
れた注入管の軸方向に異なる位置の注入口を通して同時
に注入する複合注入工法に適した地盤注入システムに係
り、特に前記注入材のゲル化時間を時間的間隔をあけず
に瞬時に変化し得、前記複合注入を正確に達成し得る地
盤注入システムに関する。
The present invention relates to a consolidation time (gel time).
The present invention relates to a ground injection system suitable for a compound injection method for simultaneously injecting a plurality of injection materials (grout) having different diameters through injection ports at different positions in an axial direction of an injection pipe installed in the ground, and particularly to a gel of the injection material. Time without leaving time intervals
And a ground injection system capable of accurately achieving the composite injection.

【0002】[0002]

【従来の技術】複雑な地盤を改良する技術として一般
に、固結時間の短いグラウトならびに長いグラウトを地
盤中に注入する、いわゆる複合注入工法が用いられる。
この種の複合注入工法として、従来、二重管を用いてま
ず、固結時間の短いグラウトを地盤中に注入して粗い部
分、弱い部分あるいは注入管まわりの空隙を填充し、そ
の後固結時間の長いグラウトを土粒子間注入して地盤中
に浸透させる工法が知られている。
2. Description of the Related Art As a technique for improving a complicated ground, a so-called composite pouring method is generally used in which grout having a short setting time and long grout are poured into the ground.
Conventionally, as a composite injection method of this type, a grout with a short consolidation time is first injected into the ground using a double pipe to fill a rough part, a weak part, or a void around the injection pipe, and then a consolidation time There is known a method of injecting a grout having a long length between soil particles and infiltrating the ground.

【0003】上述の複合注入工法において、固結時間の
短いグラウトを二重管の上部吐出口から、また、固結時
間の長いグラウトを二重管の下部吐出口から、それぞれ
同時に注入する注入工法もまた、知られている。
In the composite injection method described above, grouting with a short consolidation time is simultaneously injected from the upper discharge port of the double pipe, and grout with a long consolidation time is simultaneously injected from the lower discharge port of the double pipe. Are also known.

【0004】さらに、三重管を用いて二つの管路から別
々に送液された二液の合流液(固結時間の短い注入液)
を上部吐出口から注入し、同時に下部吐出口から固結時
間の長いグラウトを注入する複合注入工法が知られてい
る。
Further, a combined liquid of two liquids separately sent from two pipes using a triple pipe (an injection liquid having a short consolidation time)
Is known from the upper discharge port, and at the same time, grout having a long consolidation time is injected from the lower discharge port.

【0005】[0005]

【発明が解決しようとする問題点】しかし、二重管を用
いる前者の工法では、固結時間の異なるグラウトが別々
に注入されるため、注入の際にこれらグラウトの切り換
えが必要となり、このため操作が複雑化されて迅速かつ
簡単な注入が不可能である。さらに、この工法では送液
量を多くできず、施工能率が低い。
However, in the former method using a double pipe, grouts having different consolidation times are separately injected, so that it is necessary to switch these grouts at the time of injection. The operation is complicated and quick and simple injection is not possible. Furthermore, this method cannot increase the amount of liquid to be sent, resulting in low construction efficiency.

【0006】また、上述において、グラウトのゲル化時
間を変換するためには、地上部において反応剤配合液の
回路を変換しなくてはならない。この際、変換された反
応剤が注入管の注入口に送液されるまでに時間がかか
、所定の注入ステージにおけるゲル化時間の変換と、
地上部におけるゲル化時間の変換の時点が一致しないこ
とになる。このため、注入操作が不正確になり、複合注
入が正確に行なわれ難い。
Further, in the above, in order to change the gelling time of the grout, it is necessary to change the circuit of the reactant compound liquid in the above-ground part. At this time, it takes time before the converted reactant is sent to the inlet of the injection tube.
Ri, a conversion of the gel time at a given injection stage,
The point of conversion of the gel time in the aerial part will not coincide. For this reason, the injection operation becomes inaccurate, and it is difficult to perform the composite injection accurately.

【0007】また、三重管を用いる後者の工法では、固
結時間の異なるグラウトの同時注入が可能となるが、三
重管であるため注入管孔径が大きくなり、削孔費が高
く、かつ施工能率が悪くなる。さらに、この工法では主
材、瞬結用反応剤配合液および緩結用反応剤配合液の配
合調整が必要で、複雑となる。
In the latter method using a triple pipe, grout having different consolidation times can be simultaneously injected. However, since the pipe is a triple pipe, the diameter of the injection pipe becomes large, drilling cost is high, and construction efficiency is high. Gets worse. Furthermore, in this method, it is necessary to adjust the mixing of the main material, the reactant compounding solution for instantaneous setting, and the reactant compounding solution for loosening, which is complicated.

【0008】通常、注入工法が対象とする地盤は軟弱地
盤であるが、この地盤では地盤生成過程において透水性
の異なる層が水平方向に帯積するのが通例である。透水
係数は垂直方向よりも水平方向が大きく、このため、注
入された注入液(グラウト)は注入管を通して透水係数
の大きな層に逸脱する。
[0008] Usually, the ground to be subjected to the injection method is soft ground. In this ground, layers having different water permeability are usually stacked horizontally in the ground formation process. The hydraulic conductivity is greater in the horizontal direction than in the vertical direction, so that the injected injection liquid (grout) deviates to a layer with a higher hydraulic conductivity through the injection pipe.

【0009】そこで、本発明の目的は固結時間(ゲル化
時間)の異なる複数の注入液を注入管の軸方向の異なる
複数の注入口から同時に注入することにより極めて迅速
かつ簡単に地盤を固結し得ることはもちろん、これら注
入口から注入されるゲル化時間の異なる注入液のゲル化
時間を時間的間隔をあけることなく瞬時に変化し得、す
なわちタイムラグを生じることなく変化し得、上述の公
知技術に存する欠点を改良した地盤注入工法に適した地
の複合注入システムを提供することにある。
Accordingly, an object of the present invention is to rapidly and easily consolidate the ground by simultaneously injecting a plurality of injection solutions having different consolidation times (gelling times) from a plurality of injection ports having different injection pipes in the axial direction. Of course, it is possible to instantaneously change the gelation time of the injection solutions having different gelation times injected from these injection ports without time intervals.
Varied and without causing ie time lag is to provide a composite injection system of ground suitable for ground implantation method with an improved drawbacks existing in the known art described above.

【0010】[0010]

【問題点を解決するための手段】上述の目的を達成する
ため、本発明によれば、主材配合液および反応剤配合液
を貯溜する貯溜系統と、地盤中に配置され、前記貯溜系
統に接続された注入系統と、前記貯溜系統と前記注入系
統の間に配置され、前記貯溜系統の配合液を前記注入系
統に供給する供給系統とから構成され、前記貯溜系統は
一つまたは複数の主材配合液槽および一つまたは複数の
反応剤配合液槽を含み、前記注入系統は少なくとも二つ
の管路A、Bを有するとともに、軸方向の異なる位置に
複数の注入口を有する注入管からなり、前記注入口には
一方の管路Aと通じる吐出口が設けられ、かつ前記注入
口の少なくとも一つには他方の管路Bと通じる吐出口が
設けられ、前記供給系統は前記主材配合液槽と前記注入
管の管路Aとを接続する、それぞれポンプPAおよびバ
ルブVAの配置された導管aを備え、かつ、前記反応剤
配合液槽と前記注入管の管路Bとを接続する、それぞれ
ポンプPBおよびバルブVBの配置された導管bを備
え、さらに、前記供給系統は前記主材配合液槽と前記バ
ルブVAとを接続する、ポンプPA′の配置された導管
a′、または前記反応剤配合液槽と前記バルブVBとを
接続する、ポンプPB′の配置された導管b′の少なく
とも一つを備えてなり、前記ポンプPA′またはPB′
を作動させて主材配合液または反応剤配合液をバルブV
AまたはVBに導入し、ここでポンプPAまたはPBか
らの主材配合液または反応剤配合液と合流させてこれら
の流量を変化させ、これにより前記注入管に送液される
主材配合液と反応剤配合液の配合比率を自由に変化させ
ながら貯溜系統の配合液を前記注入系統に供給すること
を特徴とする。
According to the present invention, there is provided a storage system for storing a base material compounding liquid and a reactant compounding liquid, and a storage system arranged in the ground and provided in the storage system. A connected injection system, and a supply system arranged between the storage system and the injection system for supplying a blended liquid of the storage system to the injection system, wherein the storage system is one or more main systems. A material mixing liquid tank and one or more reactant compounding liquid tanks, wherein the injection system has an injection pipe having at least two pipes A and B and having a plurality of injection ports at different positions in the axial direction. The inlet is provided with a discharge port communicating with one of the pipes A, and at least one of the inlets is provided with a discharge port communicating with the other pipe B, and the supply system is provided with the main material mixture. Liquid tank and the injection
The pump PA and the bus connecting the pipe A to the pipe, respectively.
A conduit a in which a lube VA is arranged, and said reactant
Connect the compounding liquid tank and the pipe B of the injection pipe, respectively
A conduit b in which a pump PB and a valve VB are arranged;
Further, the supply system further includes the main material mixing liquid tank and the bath.
A conduit for connecting the pump VA 'to the lube VA
a ', or the reactant-containing liquid tank and the valve VB
Fewer connecting conduits b 'in which the pump PB' is arranged
And the pump PA 'or PB'
Activate the main material compounding solution or the reactant compounding solution with the valve V
A or VB, where the pump PA or PB
Of the main material or the reagent mixture.
And the liquid is sent to the injection tube.
Freely change the mixing ratio between the main material compounding solution and the reactant compounding solution
It is characterized in that the liquid mixture in the storage system is supplied to the injection system .

【0011】[0011]

【発明の具体的説明】以下、本発明を添付図面を用いて
詳述する。図1は本発明にかかる地盤注入システムの一
具体例のフローシートであって、貯溜系統I、注入系統
II、および供給系統IIIから構成される。
DETAILED DESCRIPTION OF THE INVENTION Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a flow sheet of a specific example of the ground injection system according to the present invention, which includes a storage system I, an injection system II, and a supply system III.

【0012】貯溜系統Iは主材配合液(A液)および反
応剤配合液(B液)を貯溜するものであって、一つまた
は複数の主材配合液槽C、および一つまたは複数の反応
剤配合液槽Dから構成される。主材配合液(A液)は例
えば水ガラス水溶液、水ガラスと反応剤の混合液、酸性
珪酸水溶液あるいは水ガラスグラウト以外の注入液の主
材であり、反応剤配合液(B液)は水ガラスのゲル化
剤、セメント懸濁液、あるいはA液が酸性珪酸水溶液の
場合、水ガラスやアルカリ等である。
The storage system I is for storing a main material compounding liquid (Solution A) and a reactant compounding liquid (Solution B), and includes one or more main material compounding liquid tanks C and one or more liquid tanks. It is composed of a reactant compound liquid tank D. The main material compounding liquid (Solution A) is, for example, the main material of a water glass aqueous solution, a liquid mixture of water glass and a reactant, an acidic silicate aqueous solution or an injection liquid other than water glass grout, and the reactant compounding liquid (Solution B) is water. When the glass gelling agent, the cement suspension, or the solution A is an acidic silicic acid aqueous solution, it is water glass or alkali.

【0013】注入系統IIは注入管Xからなり、地盤Y
中の所定の深度に設置されるとともに、貯溜系統IIに
後述の供給系統IIIを介して接続される。この注入管
Xは少なくとも二つの管路A、Bを有するとともに、図
2以下で詳述するように軸方向の異なる位置に複数の注
入口3を有している。さらにこの注入口3には図3以下
で詳述するように、一方の管路Aと通じる吐出口11が設
けられ、かつ前記注入口3の少なくとも一つには他方の
管路Bと通じる吐出口12が設けられる。
The injection system II comprises an injection pipe X and a ground Y
It is installed at a predetermined depth inside and is connected to a storage system II via a supply system III described later. The injection pipe X has at least two pipes A and B, and has a plurality of injection ports 3 at different positions in the axial direction as described in detail in FIG. Further, the inlet 3 is provided with a discharge port 11 communicating with one conduit A, and at least one of the inlets 3 is provided with a discharge communicating with the other conduit B, as will be described in detail in FIG. An outlet 12 is provided.

【0014】供給系統IIIは貯溜系統Iと注入系統I
Iの間に配置され、貯溜系統Iの配合液を前記注入系統
IIに供給するものである。この供給系統IIIは主材
配合液槽Cおよび注入管Xの管路Aを接続する、それぞ
れポンプPAおよびバルブVAの配置された導管aを備
え、かつ反応剤配合液槽Dおよび注入管Xの管路Bを
続する、それぞれポンプPBおよびバルブVBの配置さ
れた導管bを備えるさらに、供給系統IIIは主材配
合液槽CとバルブVAとを接続する、ポンプPA′の配
置された導管a′または反応剤配合液槽DとバルブVB
とを接続する、ポンプPB′の配置された導管b′の少
なくとも一つを備える。ポンプPA′、PB′はそれぞ
れ、バルブVA、VBを介してポンプPA、PBの系路
に連絡されるが、これらのポンプPA′、PB′はポン
プPA、PBからのA液またはB液の流量を増やした
り、減らしたり等、注入管Xに送液されるA液、B液の
比率を変化せしめるものである。
The supply system III comprises a storage system I and an injection system I.
I, and is for supplying the mixture of the storage system I to the injection system II. The supply system III connects a conduit A of main material blending tank C and injection tubes X, it
And a conduit a in which a pump PA and a valve VA are arranged.
For example, and contact the pipe B of the reaction blending liquid tank D and infusion tube X
The arrangement of the pump PB and the valve VB respectively
Provided conduit b . Further, the supply system III is provided with a pump PA ′ for connecting the main material mixing liquid tank C and the valve VA.
Conduit a 'or reactant-mixed liquid tank D and valve VB
And a small number of conduits b 'in which the pump PB' is arranged.
At least one. The pumps PA 'and PB' are connected to the systems of the pumps PA and PB via valves VA and VB, respectively. These pumps PA 'and PB' are used to supply the liquid A or the liquid B from the pumps PA and PB. The ratio of the solution A and the solution B sent to the injection pipe X is changed by increasing or decreasing the flow rate.

【0015】図2は本発明に用いられる二重管Xの一具
体例の側面図であって、外管1と、その内部に配置され
る内管2とから基本的に構成される。この二重管Xは瞬
結注入管体aおよび緩結注入管体bを含み、瞬結注入管
体aはゲル化時間の短い注入液を注入する注入口3を有
し、緩結注入管体bはゲル化時間の長い注入液を注入す
る注入口3、3…3を有する。これら注入管体a、bは
図2では瞬結注入管体aを二重管Xの上部に、緩結注入
管体bを下部にそれぞれ配置したが、この配置は二重管
Xの任意の個所に係合設置される。cは二重管Xの末端
部、4はメタルクラウンである。
FIG. 2 is a side view of a specific example of the double tube X used in the present invention, and is basically composed of an outer tube 1 and an inner tube 2 disposed therein. The double tube X includes a flash injection tube a and a slow injection tube b. The flash injection tube a has an inlet 3 for injecting an injection solution having a short gelation time. The body b has injection ports 3, 3,... 3 for injecting an injection liquid having a long gelation time. In FIGS. 2A and 2B, the injection pipes a and b are arranged such that the instantaneous connection injection pipe a is disposed above the double pipe X and the loose connection injection pipe b is disposed below the double pipe X. It is engaged and installed at a location. c is the end of the double tube X, and 4 is a metal crown.

【0016】図3は図2における瞬結注入管体aの拡大
断面図であって、図3(a)は穿孔中、図3(b)は注
入中の状態をそれぞれ示し、図3(c)は瞬結注入管体
aの注入口3の断面図を示す。
FIG. 3 is an enlarged cross-sectional view of the instantaneous injection tube body a in FIG. 2. FIG. 3 (a) shows a state during perforation, FIG. 3 (b) shows a state during injection, and FIG. () Shows a cross-sectional view of the injection port 3 of the flash injection tube body a.

【0017】図4は図2における緩結注入管体bの拡大
断面図であって、図4(a)は穿孔中、図4(b)は注
入中の状態をそれぞれ示し、図4(c)は緩結注入管体
bの注入口3、3…3の断面図を示す。
FIG. 4 is an enlarged sectional view of the loosely-fused injection tube b in FIG. 2, wherein FIG. 4 (a) shows a state during perforation, FIG. 4 (b) shows a state during injection, and FIG. 3) shows a sectional view of the injection ports 3, 3,...

【0018】図5は図1における二重管Xの末端部cの
部分の拡大断面図であって、図5(a)は穿孔中、図5
(b)は注入中の状態をそれぞれ示す。
FIG. 5 is an enlarged sectional view of the end portion c of the double tube X in FIG. 1, and FIG.
(B) shows the state during the injection.

【0019】まず、図3(a)に示されるように、外管
1の管路6を通じて穿孔水を矢印方向に送液する。この
穿孔水は図5(a)に示されるように、末端部cに送液
され、弁7のバネ8を押し下げて管路6aを開通し、こ
の開通された管路6aを通って地盤中に吐出され、二重
管Xを所定の深度に設定する。このとき、図3(a)お
よび図4(a)の注入口3は金属製または合成樹脂製の
開閉チップ5で閉束されているので、ここから穿孔水が
もれることはない。
First, as shown in FIG. 3A, drilling water is supplied in the direction of the arrow through the conduit 6 of the outer pipe 1. As shown in FIG. 5 (a), the perforated water is sent to the end c, and the spring 8 of the valve 7 is depressed to open the conduit 6a, and through the opened conduit 6a, the ground is pierced. To set the double pipe X to a predetermined depth. At this time, since the injection port 3 shown in FIGS. 3A and 4A is closed with the opening / closing tip 5 made of metal or synthetic resin, no water leaks from the opening.

【0020】次いで、図3(b)に示されるように、外
管管路6から主材配合液Aを、内管管路9から反応剤配
合液Bをそれぞれ矢印方向に送液すると、まず、反応剤
配合液Bは図5(b)に示されるように、末端部cでシ
リンダ10を落下せしめて外管管路6aを閉じるこの結
果、内管管路9内の反応剤配合液Bは加圧状態となり、
図3(a)および図4(a)の閉束チップ5を配合液B
の圧力によって外側に吹き飛ばし、注入口3を開孔す
る。
Next, as shown in FIG. 3 (b), when the main material mixed liquid A is sent from the outer pipe 6 and the reactant mixed liquid B is sent from the inner pipe 9 in the directions of the arrows, first, As shown in FIG. 5B, the reactant compound liquid B in the inner pipe line 9 is closed by dropping the cylinder 10 at the end c and closing the outer pipe 6a. Is pressurized,
The closed chip 5 shown in FIG. 3A and FIG.
And blows out outwardly to open the inlet 3.

【0021】注入口3は図3(b)、(c)および図4
(b)、(c)に示されるように、一方の管路A、例え
ば外管管路6と通じる吐出口11、11…11が設けられ、か
つ、この注入口3の少なくとも一つには、他方の管路
B、例えば内管管路9と通じる吐出口12が設けられる。
The injection port 3 is shown in FIGS. 3B and 3C and FIG.
As shown in (b) and (c), one pipeline A, for example, outlets 11, 11,... 11 communicating with the outer pipeline 6 is provided, and at least one of the inlets 3 is provided. A discharge port 12 communicating with the other pipeline B, for example, the inner pipeline 9 is provided.

【0022】さらに、これら複数の注入口3、3…3の
うち、少なくとも二つは一方の管路A(外管管路6)か
らの吐出量と他方の管路B(内管管路9)からの吐出量
の流量比率が異なるように形成される。具体的には、例
えば、一つの注入口3は図2(a)、(b)、(c)、
特に図3(c)に明示されるように、外管管路6に通じ
る吐出口11(口径Φ1.0mm)を1個設けるとともに、内管
管路9に通じる吐出口12(それぞれ口径Φ1.0mm)を2個
設け、また、他の一つの注入口3は図4(a)、
(b)、(c)、特に図4(c)に明示されるように、
外管管路6に通じる吐出口11(口径Φ1.0mm)および内管
管路9に通じる吐出口12(口径Φ1.0mm)をそれぞれ1個
づつ設ける。この結果、一方の管路Aに通じる吐出口11
と他方の管路Bに通じる吐出口12の数の比率を変化させ
た少なくとも二つの注入口3が形成されることになり、
これら少なくとも二つの注入口3は一方の管路Aからの
吐出量と他方の管路Bからの吐出量の流量比率が異なる
ように形成される。なお、吐出量の流量比率は図示しな
いが、吐出口の口径を変化させて行なうこともできる。
Further, at least two of the plurality of injection ports 3, 3... 3 are provided with a discharge amount from one pipe A (outer pipe 6) and another pipe B (inner pipe 9). ) Is formed so that the flow rate ratio of the discharge amount from (1) is different. Specifically, for example, one injection port 3 is shown in FIGS. 2 (a), (b), (c),
In particular, as clearly shown in FIG. 3 (c), one discharge port 11 (diameter φ1.0 mm) communicating with the outer pipe 6 is provided, and a discharge port 12 (diameter φ1. 0 mm), and the other injection port 3 is shown in FIG.
(B), (c), and especially as shown in FIG. 4 (c),
A discharge port 11 (diameter φ1.0 mm) communicating with the outer pipe 6 and a discharge port 12 (diameter φ1.0 mm) communicating with the inner pipe 9 are provided one by one. As a result, the discharge port 11 communicating with one pipe A
And at least two inlets 3 in which the ratio of the number of outlets 12 communicating with the other pipeline B is changed,
These at least two inlets 3 are formed such that the flow rate ratio between the discharge amount from one conduit A and the discharge amount from the other conduit B is different. Although the flow rate ratio of the discharge amount is not shown, the discharge amount can be changed by changing the diameter of the discharge port.

【0023】図3(a)および図4(a)の閉束チップ
5がはずされて注入口3が開孔されると、図3 (b)、
(c)および図4 (b)、(c)に示されるように、主
材配合液Aおよび反応剤配合液Bがそれぞれ吐出口11お
よび吐出口12から注出口3内に吐出され、混合されて固
結時間の異なる複数の注入液が形成される。
When the closed tip 5 shown in FIGS. 3A and 4A is removed and the injection port 3 is opened, FIG.
4 (c) and FIGS. 4 (b) and 4 (c), the main material compounding liquid A and the reactant compounding liquid B are respectively discharged from the discharge port 11 and the discharge port 12 into the spout 3 and mixed. Thus, a plurality of injection solutions having different consolidation times are formed.

【0024】これら複数の注入液は前述の各複数の注入
口3、3…3からそれぞれ同時に地盤中に注入される。
これら注入液は管路AおよびBから各注入口3、3…3
内に吐出される配合液の流量比率にしたがって、固結時
間が15分以内で、かつ短い方の固結時間が30秒以内とな
るように調整される。なお、本発明ではこれら注入液の
固結時間よりも長い注入液を併用することもできる。
The plurality of injection liquids are simultaneously injected into the ground from the plurality of injection ports 3, 3.
These injection liquids are supplied from the pipes A and B to the respective injection ports 3, 3,.
The consolidation time is adjusted to be within 15 minutes and the shorter consolidation time is to be within 30 seconds according to the flow rate ratio of the compounding liquid discharged into the inside. In the present invention, an infusion liquid longer than the consolidation time of these infusion liquids can be used in combination.

【0025】これらA液、B液の注入口への流量比率は
1:1であってもよく、その他任意の流量比率に選定す
ることができる。また、この比率は注入途中で変化させ
てもよい。
The ratio of the flow rates of the solution A and the solution B to the inlet may be 1: 1 or any other flow ratio. This ratio may be changed during the injection.

【0026】図6、図7および図8(a)、(b)は他
の形式の注入管を用いた本発明工法を示す断面図であっ
て、図6は掘削水の送液状態を示し、図7は注入状態を
示し、図8(a)、(b)は注入口の例を示す。
FIGS. 6, 7 and 8 (a) and 8 (b) are cross-sectional views showing the method of the present invention using another type of injection pipe, and FIG. 6 shows a state of feeding drilling water. 7 shows an injection state, and FIGS. 8A and 8B show examples of an injection port.

【0027】上述注入管は図2と同様、外管1および内
管2から構成される二重管Xであるが、内管2の末端に
は閉束体14が摺動自在に嵌合され、かつ軸方向の異なる
位置、すなわち、上下の異なる位置に三個の注入口3が
設けられる点、図2と異なる。しかも、これら注入口3
はそれぞれ、外管管路6に通じる吐出口11および内管管
路9に通じる吐出口12の数の比率が異なるものであり、
したがって、後述のように各注入口3で吐出混合される
AB合流液のゲル化時間が全て異なることになる。
The above-mentioned injection tube is a double tube X composed of an outer tube 1 and an inner tube 2 as in FIG. 2, but a closed body 14 is slidably fitted to the end of the inner tube 2. 2 in that three injection ports 3 are provided at different positions in the axial direction, that is, at different positions in the upper and lower directions. Moreover, these injection ports 3
Are different from each other in the ratio of the number of the discharge ports 11 communicating with the outer pipe line 6 and the number of the discharge ports 12 communicating with the inner pipe line 9,
Therefore, as will be described later, the gel time of the AB combined liquid discharged and mixed at each injection port 3 is all different.

【0028】まず、図6に示されるように、各注入口3
に閉束チップ5を嵌めた状態で、外管管路6を通して掘
削水を送液しながらメタルクラウン4で掘削し、二重管
Xを地盤中の所定の深度に設定する。掘削水は各注入口
3に閉束チップ5が嵌められているから、ここからもれ
ることなく、外管管路6、および6aを通して地盤中に
吐出される。
First, as shown in FIG.
Is drilled with the metal crown 4 while feeding drilling water through the outer pipeline 6 with the closing tip 5 fitted therein, and the double pipe X is set to a predetermined depth in the ground. The drilling water is discharged into the ground through the outer pipelines 6 and 6a without leaking from the closed tip 5 fitted in each injection port 3.

【0029】掘削後、図7に示されるように、外管管路
6を通して主材配合液Aを、内管管路9を通して反応剤
配合液Bを、それぞれ矢印方向に送液すると、まず、反
応剤配合液Bは内管6の末端に嵌合された閉束体14を下
方に押し下げて外管管路6aを閉じる。この結果、外管
管路6は閉じられ、かつ内管管路9の反応剤配合液Bも
加圧状態となり、図7の閉束チップ5を吹きとばし、注
入口3を開く。
After the excavation, as shown in FIG. 7, when the main material compounding liquid A is sent through the outer pipe line 6 and the reactant compounding liquid B is sent through the inner pipe line 9 in the directions of the arrows, first, The reactant mixture B pushes down the closed bundle 14 fitted to the end of the inner pipe 6 to close the outer pipe line 6a. As a result, the outer pipe line 6 is closed, and the reactant compound liquid B in the inner pipe line 9 is also in a pressurized state, so that the closing tip 5 in FIG.

【0030】その後、この開孔された注入口3に外管管
路6のA液および内管管路9のB液がそれぞれ吐出口1
1、12を通じて吐出され、混合される。
Thereafter, the liquid A in the outer pipe 6 and the liquid B in the inner pipe 9 are supplied to the opened injection port 3 respectively.
Discharged through 1 and 12 and mixed.

【0031】この注入口3は、例えば図8(a)に示さ
れるように、外管管路6に通じる二つの吐出口11、11
(各口径Φ1.0mm)および内管管路9に通じる一つの吐出
口12(口径Φ1.0mm)を有し、これらの吐出口11、12の数
の比率が2:1であり、また、図8(b)に示されるよ
うに、外管管路6に通じる一つの吐出口11(口径Φ1.0m
m)および内管管路9に通じる二つの吐出口12、12(それ
ぞれ口径Φ1.0mm)を有し、これらの吐出口11、12の数の
比率が1:2であり、さらに、図7に示されるように、
外管管路6および内管管路9に通じる吐出口11、12をそ
れぞれ1個を有し、これら吐出口11、12の数の比率が
1:1である。したがって、各注入口3におけるAB合
流液の流量比率が全て異なり、ゲル化時間の異なった注
入液が各注入口3から地盤中に注入される。
As shown in FIG. 8A, for example, the injection port 3 has two discharge ports 11 and 11 communicating with the outer pipe 6.
(Each diameter φ1.0 mm) and one discharge port 12 (diameter φ1.0 mm) communicating with the inner pipe 9, and the ratio of the number of these discharge ports 11 and 12 is 2: 1; As shown in FIG. 8 (b), one discharge port 11 (diameter Φ1.0 m) communicating with the outer pipe line 6 is formed.
m) and two discharge ports 12 and 12 (each having a diameter of Φ1.0 mm) communicating with the inner pipe line 9, and the ratio of the numbers of these discharge ports 11 and 12 is 1: 2. As shown in
Each of the outlets 11 and 12 communicates with the outer pipe 6 and the inner pipe 9, and the ratio of the number of the outlets 11 and 12 is 1: 1. Therefore, the flow rates of the AB merged liquids at the respective injection ports 3 are all different, and injection liquids having different gel times are injected into the ground from the respective injection ports 3.

【0032】吐出口の口径は地上部において吐出口から
の注入材が注入管内流量に対して圧力を生じるように定
められ、この吐出圧力は好ましくは10kgf/cm2 、さらに
好ましくは15kgf/cm2 以上である。
The diameter of the discharge port is determined so that the injection material from the discharge port generates a pressure with respect to the flow rate in the injection pipe at the above-ground portion, and the discharge pressure is preferably 10 kgf / cm 2 , more preferably 15 kgf / cm 2. That is all.

【0033】本発明において、注入管の一方の管路に通
じる複数の吐出口から配合液を噴射口により高圧(地上
部で10kgf/cm2 、好ましくは15kgf/cm2 )で吐出し、ま
た他方の管路に通じる吐出口からも配合液を噴射口によ
り高圧で吐出してもよく、場合によっては管内圧力が殆
どかからない程度に吐出してもよい。吐出口の孔径は0.
2〜2.0mm程度が好ましい。また、本発明において、管
内圧力は数百kgf/cm2であってもよい。さらに注入管に
は、気体や、注入液以外の流体が地盤中に注入液ととも
に、あるいは注入液に先行して圧入され、注入液が地盤
中に浸透あるいは混合されやすくすることもできる。
[0033] In the present invention, a high pressure by the injection port of the liquid combination from a plurality of discharge ports leading to one of the conduit of the injection tube (10 kgf / cm 2 on the ground portion, preferably 15 kgf / cm 2) discharge at, and the other The mixed liquid may be discharged from the discharge port communicating with the pipe at a high pressure by the injection port, or may be discharged to such an extent that the pressure in the pipe is hardly applied in some cases. The hole diameter of the discharge port is 0.
It is preferably about 2 to 2.0 mm. In the present invention, the pressure in the pipe may be several hundred kgf / cm 2 . Further, a gas or a fluid other than the injection liquid is injected into the ground together with or prior to the injection liquid into the injection pipe, so that the injection liquid can easily permeate or mix into the ground.

【0034】一般に、パイプに同径の微細孔の吐出口を
n個設けたものに液体を高圧でポンピングすると、それ
ぞれの吐出口から1/nに均等分割された量の液体が噴
射される。流量を多くするほど管内圧力は高くなり、吐
出口外部の抵抗(地盤注入圧)に比較してはるかに高い
場合は、この外部の抵抗の影響を殆ど受けることなく均
等な量で吐出される。管内圧力が同じならば、吐出量は
吐出口径が大きい程多くなる。本発明に用いられる注入
管はこのようにして吐出されるA液とB液を注入口の混
合室で合流混合し、地盤中に注入するように構成され
る。
In general, when a liquid is pumped at a high pressure into a pipe having n discharge ports of the same diameter and provided in a pipe, an amount of the liquid equally divided into 1 / n is ejected from each discharge port. The pipe pressure increases as the flow rate increases, and when the pipe pressure is much higher than the resistance outside the discharge port (ground injection pressure), the pipe is discharged in a uniform amount almost without being affected by the external resistance. If the pipe pressure is the same, the discharge amount increases as the discharge port diameter increases. The injection pipe used in the present invention is configured so that the liquid A and the liquid B discharged in this manner are mixed and mixed in the mixing chamber at the injection port and injected into the ground.

【0035】[0035]

【作用】上述の本発明は軸方向の異なる位置に複数の注
入口を有する二重注入管であって、前記各注入口には一
方の管路Aと通じる吐出口が設けられ、かつ前記注入口
の少なくとも一つには他方の管路Bと通じる吐出口が設
けられ、前記複数の注入口のうち、少なくとも二つは一
方の管路Aからの吐出量と他方の管路Bからの吐出量の
流量比率が異なるように形成された注入管を用いるか
ら、固結時間の異なる複数の注入液を複数の注入口から
同時に注入し得、これにより極めて迅速かつ簡単に地盤
を固結し得るものである。
According to the present invention, there is provided a double injection pipe having a plurality of injection ports at different positions in the axial direction, wherein each of the injection ports is provided with a discharge port communicating with one conduit A, and At least one of the inlets is provided with a discharge port communicating with the other pipeline B, and at least two of the plurality of injection ports have a discharge amount from one pipeline A and a discharge amount from the other pipeline B. Since the injection pipes formed to have different flow rate ratios are used, a plurality of injection liquids having different consolidation times can be simultaneously injected from a plurality of injection ports, thereby consolidating the ground very quickly and easily. Things.

【0036】さらに、本発明は供給系統IIIとして、
主材配合液槽と注入管の管路Aを接続する、それぞれ
ポンプPAおよびバルブVAの配置された導管aを備
え、かつ、反応剤配合液槽と前記注入管の管路Bを接
続する、それぞれポンプPBおよびバルブVBの配置さ
れた導管bを備え、さらに、主材配合液槽とバルブVA
とを接続する、ポンプPA′の配置された導管a′、ま
たは反応剤配合液槽とバルブVBとを接続する、ポンプ
PB′の配置された導管b′の少なくとも一つを備え、
ポンプPA′またはPB′を作動させて主材配合液また
は反応剤配合液をバルブVAまたはVBに導入し、ここ
でポンプPAまたはPBからの主材配合液または反応剤
配合液と合流させてこれらの流量を変化させるようにし
たから、これらポンプPA′、PB′はそれぞれポンプ
PA、PBからのA液またはB液の流量を増やしたり、
減らしたり等、注入管Xに送液されるA液、B液の比率
を変化せしめ、この結果、注入液のゲル化時間を時間的
間隔をあけずに、瞬時に変化せしめ、地盤情況、注入情
況の変化に容易に対応し得る。
Further, the present invention provides a supply system III comprising:
A conduit a, in which a pump PA and a valve VA are respectively connected , is provided for connecting the main material compounding liquid tank and the pipe A of the injection pipe.
And a pump PB and a valve VB , respectively , for connecting the reactant-containing liquid tank and the pipe B of the injection pipe.
Conduit b, and a main material mixture tank and a valve VA.
And a conduit a 'in which the pump PA' is arranged,
Other connects and the valve VB reaction blending tank, pump
At least one of the conduits b 'in which the PB's are arranged,
Activate pump PA 'or PB' to mix
Introduces the reagent mixture into valve VA or VB, where
Liquid or reactant from pump PA or PB
Combine with the formulation to change these flow rates
Therefore, these pumps PA 'and PB' increase the flow rate of the liquid A or liquid B from the pumps PA and PB, respectively.
The ratio of the solution A and the solution B sent to the injection tube X is changed, for example, by reducing the amount, and as a result, the gelation time of the injection solution is temporally reduced.
It can be changed instantly without leaving an interval, and it can easily respond to changes in ground conditions and injection conditions.

【0037】また、一般に、地上部において、注入管内
の流体を吐出口から空気中に吐出する場合、注入管内圧
力は吐出口の大きさと流量に依存し、流量に対して吐出
口径を小さくしぼる程、また吐出口径に対して流量を大
きくする程、注入管内圧力、すなわち吐出圧力は大きく
なる。また、流量に対して吐出口径が大きいとき、ある
いは吐出口径に対して流量が小さいときには注入管内圧
力、すなわち吐出圧力は小さくなる。また、注入管管路
を通して圧送された流体は吐出口径の大きさに対応した
所定量が注入口から注入される。そして管内圧力が高い
程、注入口外部の抵抗圧が変化してもその注入量は変動
し難い。
In general, when the fluid in the injection pipe is discharged into the air from the discharge port in the above-ground portion, the pressure in the injection pipe depends on the size and flow rate of the discharge port. Also, as the flow rate increases with respect to the discharge port diameter, the pressure in the injection pipe, that is, the discharge pressure, increases. Further, when the discharge port diameter is large with respect to the flow rate or when the flow rate is small with respect to the discharge port diameter, the pressure in the injection pipe, that is, the discharge pressure becomes small. Further, a predetermined amount of the fluid pumped through the injection pipe line corresponding to the size of the discharge port diameter is injected from the injection port. And, as the pressure in the pipe is higher, the injection amount is less likely to change even if the resistance pressure outside the injection port changes.

【0038】ここで、本発明における噴射による注入機
能について説明する。内径4cmの管にポンプで送水した
ところ、ポンプ圧は殆ど生じない。この管の末端に噴射
口を設けた先端部を装着して噴射圧力(ポンプ圧)と吐
出量を測定した結果を図9および図10に示す。なお、比
較のために上記管に直径1cmの吐出口を3個有する先端
部を上記管の末端部に装着して1〜20l/mの送水を行な
ったが、吐出圧力は殆ど認められなかった。
Here, the injection function by injection in the present invention will be described. When water is pumped into a pipe having an inner diameter of 4 cm, almost no pump pressure is generated. FIGS. 9 and 10 show the results of measuring the injection pressure (pump pressure) and the discharge amount by attaching a tip having an injection port at the end of the pipe. For comparison, a tip having three discharge ports with a diameter of 1 cm was attached to the end of the pipe and water was supplied at a rate of 1 to 20 l / m. However, almost no discharge pressure was observed. .

【0039】[0039]

【発明の実施例】図9の注入システムを用いて本発明実
施例を説明する。注入管側壁に直径1.0mmの微細な噴射
口を有する注入口を備えた注入管を用い、A液、B液を
それぞれ10l/分で注入管内に送液すると、注入液は各
注入口に同一量づつ分配される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the injection system shown in FIG. When the solution A and the solution B are respectively fed into the injection tube at a rate of 10 l / min using an injection tube provided with an injection port having a fine injection port having a diameter of 1.0 mm on the side of the injection tube, the injection solution is supplied to each injection port. Dispensed in equal amounts.

【0040】したがって、A液側管路に5個の噴射口
を、B液側管路に6個の噴射口を設けると、それぞれの
噴射量は2l/分、1.67l/分となる。また、地上で
管内圧力を測定すると、A液側20kgf/cm2 、B液側15kg
f/cm2 となる。
Therefore, if five injection ports are provided in the liquid A side pipe and six injection ports are provided in the liquid B side pipe, the respective injection amounts are 2 l / min and 1.67 l / min. When the pressure in the pipe was measured on the ground, the liquid A side was 20 kgf / cm 2 and the liquid B side was 15 kgf / cm 2 .
f / cm 2 .

【0041】図9のPA、PBの供給系路の場合は次の
ようになる。 瞬結グラウトの注入口におけるAB液の噴射比率(ゲル化時間5秒) =1:1.67 瞬結グラウトの注入量:5.3l/分 緩結グラウトの注入におけるAB液の噴射比率(ゲル化時間20分) =1:0.84 緩結グラウトの注入量:14.7l/分
The case of the supply system of PA and PB in FIG. 9 is as follows. Injection ratio of AB liquid at the injection port of flash grout (gel time: 5 seconds) = 1: 1.67 Injection amount of flash grout: 5.3 l / min Injection ratio of AB liquid during injection of loose grout (gel = 1: 0.84 Injection rate of loose grout: 14.7 l / min

【0042】A液の流量を10l/分とし、ゲル化時間を
短縮するために、さらにポンプPB′ラインを開き、B
液流量を15l/分にすると、次のようになる。A液側の
噴射口の噴射量は2l/分、B液側の噴射口の噴射量は
15÷6=2.5l/分。したがって、前記瞬結グラウトの
注入口におけるAB液の噴射比率は2:2.5×2=2:
5=1:2.5に変わり、ゲル化時間は15秒(図10) とな
り、前記緩結グラウトの注入口におけるAB液の噴射比
率は2:2.5=1:1.25に変わり、ゲル化時間は5秒に
なる。(図10)
In order to reduce the gelation time by setting the flow rate of the solution A to 10 l / min, further open the pump PB 'line,
When the liquid flow rate is 15 l / min, the following is obtained. The injection amount of the injection port on the liquid A side is 2 l / min, and the injection amount of the injection port on the liquid B side is
15 ÷ 6 = 2.5 l / min. Accordingly, the injection ratio of the AB liquid at the injection port of the instantaneously set grout is 2: 2.5 × 2 = 2:
5 = 1: 2.5, the gel time was 15 seconds (FIG. 10), the injection ratio of AB solution at the inlet of the above-mentioned loose grout was changed to 2: 2.5 = 1: 1.25, and the gel was formed. The time will be 5 seconds. (Figure 10)

【0043】このように、AB液の送液比を変えれば、
それに応じて上部注入口、下部注入口における噴射比率
も変化し、それに対応した複数のゲル化時間を得ること
ができる。
As described above, if the feeding ratio of the AB solution is changed,
Accordingly, the injection ratio at the upper injection port and the lower injection port also changes, and a plurality of gel times corresponding to the injection rates can be obtained.

【0044】使用注入液 A液:酸性珪酸水溶液 モル比2.7、比重1.32/20℃の水ガラスを用いて硫酸と
混合して、pH2.0の酸性珪酸水溶液を作液した。水ガ
ラス濃度は25容量%である。 B液:上記水ガラス25容量パーセント液 A液とB液の合流比率に対応したゲル化時間を図12に示
す。
Injection liquid used: Solution A: aqueous solution of acidic silicic acid A water solution having a molar ratio of 2.7 and a specific gravity of 1.32 / 20 ° C. was mixed with sulfuric acid to prepare an aqueous solution of acidic silicic acid having a pH of 2.0. The water glass concentration is 25% by volume. Solution B: 25% by volume of water glass described above The gelation time corresponding to the confluence ratio of Solution A and Solution B is shown in FIG.

【0045】注入液の送液 基本注入は図9のように、A液およびB液を10l/分注
入するものとし、瞬結注入として瞬結グラウトのみの注
入を行なうときは別のポンプを用いて図9の点線のよう
に5l/分加えてB液を15l/分注入した。
As shown in FIG. 9, the basic injection is to inject the liquid A and the liquid B at a rate of 10 l / min. When the injection of only the instantaneous grout is performed as the instantaneous injection, another pump is used. As indicated by the dotted line in FIG. 9, the solution B was added at a rate of 5 l / min and the solution B was injected at a rate of 15 l / min.

【0046】注入 推進工法における発進部で本発明を試験した。当現場は
地下水の高い比較的軟弱な粘性土と砂質土の複雑な互層
を呈する沖積地盤である。1mの注入口ピッチで本発明
を用い、GL−2.0〜5.0mの区間、注入深長1m当り
400lを注入した。注入ステージでは最下部から1m毎
に上部に移向した。
The present invention was tested at the launch site in the injection propulsion method. The site is an alluvial ground with a complex alternation of relatively soft cohesive and sandy soils with high groundwater. Using the present invention at an inlet pitch of 1 m, a section of GL-2.0 to 5.0 m, per 1 m of injection depth
400 l were injected. In the injection stage, the sample was shifted from the bottom to the top every 1 m.

【0047】注入液の使用比率は瞬結注入10%、基本注
入90%である。最下部の注入ステージで一本当りの瞬結
注入を全量注入した上で、基本注入を注入深長1m当り
360lづつ注入しては注入ステージを移向した。
The use ratio of the injection solution is 10% for instantaneous injection and 90% for basic injection. At the bottom of the injection stage, the entire amount of flash injection per one is injected, and then the basic injection is performed at an injection depth of 1 m.
The injection stage was shifted by injecting 360 l each.

【0048】注入後、発進部の切羽を観察したところ、
注入管まわりに直径15〜20cmの強固な固結体が形成さ
れ、その周辺に均質な固結体が形成され、かつ隣接する
注入管の固結体同志は完全に連続して固結していた。ま
た、地盤の隆起や注入液の地表面への逸脱は全く認めら
れなかった。
After injection, the face of the starting part was observed.
A solid compact with a diameter of 15 to 20 cm is formed around the injection pipe, a uniform compact is formed around it, and the compacts of adjacent pipes are completely continuous. Was. In addition, no uplift of the ground or deviation of the injected liquid to the ground surface was observed.

【0049】図11は本発明注入管の注入口を上方まで連
続して設置したときの注入状態を表した模式図である。
この場合、注入ステージを上方に引き上げなくても、一
本の注入管で全ステージを一度に注入することができ
る。何となれば、吐出口を多くしても、各吐出口のゲル
化時間が異なっても、また周辺地盤の注入抵抗が異なっ
ても、所定の注入が確保でき、かつ、ゲル化時間の短い
注入液の注入口3aとゲル化時間の長い注入液の注入口
3bからの注入を同時に行なった場合、ゲル化時間の短
い注入液は脈状が主体となり、ゲル化時間の長い注入液
は土粒子間浸透が主体となり、このため前者の方が早く
周辺の粗い部分や弱い部分を填充し、後者はそのあとで
ゆるやかに細かい部分に浸透していくことになるから、
確実な複合注入が可能であるからである。なお、図11に
おいて、ゲル化時間の短い注入液の注入口と長い注入液
の注入口は上下方向に交互に設けてもよいのはもちろん
である。
FIG. 11 is a schematic view showing an injection state when the injection port of the injection tube of the present invention is continuously installed up to the upper side.
In this case, all stages can be injected at once with one injection tube without raising the injection stage upward. Even if the number of outlets is large, the gelation time of each outlet is different, and even if the injection resistance of the surrounding ground is different, a predetermined injection can be ensured and the injection with a short gelation time can be ensured. When the liquid injection port 3a and the injection liquid with a long gelling time are simultaneously injected from the injection port 3b, the injection liquid with a short gelation time is mainly pulsating, and the injection liquid with a long gelation time is soil particles. Since the former mainly fills the gap, the former fills the rough and weak parts around the former earlier, and the latter gradually penetrates into the finer parts.
This is because reliable composite injection is possible. In FIG. 11, the injection port for the injection liquid having a short gelation time and the injection port for the injection liquid having a long gelation time may be provided alternately in the vertical direction.

【0050】図12および図13は本発明にかかる他の具体
例の説明図であって、注入管Xを所定の注入対象地盤Y
に複数本設置し、これら注入管Xに同時にA液・B液
を、ポンプPA、PB、PA′、PB′を介して送液
し、地盤Yを注入固結する例である。この場合、施工能
率ははかり知れないほど向上される。
FIGS. 12 and 13 are explanatory views of another embodiment according to the present invention, wherein an injection pipe X is connected to a predetermined ground Y to be injected.
In this example, liquid A and liquid B are simultaneously supplied to these injection pipes X via pumps PA, PB, PA ', and PB', and the ground Y is injected and solidified. In this case, the construction efficiency is immeasurably improved.

【0051】[0051]

【発明の効果】以上のとおり、本発明は固結時間(ゲル
化時間)の異なる複数の注入液を注入管の軸方向の異な
る複数の注入口から同時に注入することにより極めて迅
速かつ簡単に地盤を固結し得ることはもちろん、これら
注入口から注入されるゲル化時間の異なる注入液のゲル
化時間をタイムラグを生じることなく変化し得、実用上
有用な発明である。
As described above, according to the present invention, the ground can be extremely quickly and easily formed by simultaneously injecting a plurality of injection solutions having different consolidation times (gelling times) from a plurality of injection ports different in the axial direction of the injection pipe. Can be consolidated, and the gelation time of the injection solutions having different gelation times injected from these injection ports can be changed without causing a time lag, which is a practically useful invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明にかかる地盤注入システムの一具体例
のフローシートである。
FIG. 1 is a flow sheet of a specific example of a ground injection system according to the present invention.

【図2】 本発明に用いられる注入管の一具体例の側面
図である。
FIG. 2 is a side view of a specific example of an injection tube used in the present invention.

【図3】 図2における瞬結注入管体の拡大断面図であ
って、(a)は穿孔中、(b)は注入中の状態をそれぞ
れ示し、(c)は注入口の断面図である。
3 is an enlarged cross-sectional view of the flash injection tube shown in FIG. 2, (a) shows a state during perforation, (b) shows a state during injection, and (c) is a cross-sectional view of an injection port. .

【図4】 図2における緩結注入管体の拡大断面図であ
って、(a)は穿孔中、(b)は注入中の状態をそれぞ
れ示し、(c)は注入口の断面図である。
4 is an enlarged cross-sectional view of the loosely-fused injection pipe body in FIG. 2, wherein (a) shows a state during perforation, (b) shows a state during injection, and (c) is a cross-sectional view of an injection port. .

【図5】 図2における注入管末端部の拡大断面図であ
って、(a)は穿孔中、(b)は注入中の状態をそれぞ
れ示す。
5 is an enlarged cross-sectional view of an end portion of the injection tube in FIG. 2, (a) showing a state during perforation, and (b) showing a state during injection.

【図6】 本発明にかかる他の形式の注入管の断面図で
あって、掘削水の送液状態を示す。
FIG. 6 is a cross-sectional view of another type of injection pipe according to the present invention, showing a state in which drilling water is supplied.

【図7】 図6の形式の注入管の断面図であって、注入
状態を示す。
7 is a cross-sectional view of an injection tube of the type shown in FIG. 6, showing an injection state.

【図8】 本発明にかかる注入口の具体例の断面図であ
って、(a)は外管管路に通じる吐出口が二個、内管管
路に通じる吐出口が一個の例であり、(b)は外管管路
に通じる吐出口が一個、内管管路に通じる吐出口が一個
の例である。
FIG. 8 is a cross-sectional view of a specific example of an injection port according to the present invention, in which (a) is an example in which two discharge ports communicate with an outer pipeline and one discharge port communicates with an inner pipeline. (B) is an example in which there is one discharge port leading to the outer pipeline and one discharge port leading to the inner pipeline.

【図9】 本発明システムの具体例のフローシートであ
る。
FIG. 9 is a flow sheet of a specific example of the system of the present invention.

【図10】 B液/A液の比率とゲル化時間との関係を
表したグラフである。
FIG. 10 is a graph showing the relationship between the ratio of solution B / solution A and the gelation time.

【図11】 本発明の変形例の注入状態を表した模式図
である。
FIG. 11 is a schematic diagram showing an injection state according to a modified example of the present invention.

【図12】 複数本の注入管を用いた本発明にかかる他
の具体例の説明図である。
FIG. 12 is an explanatory view of another specific example according to the present invention using a plurality of injection tubes.

【図13】 複数本の注入管を用いた本発明にかかるさ
らに他の具体例の説明図である。
FIG. 13 is an explanatory view of still another specific example according to the present invention using a plurality of injection tubes.

【符号の説明】[Explanation of symbols]

1 外管 2 内管 3 注入口 6 外管管路 6a 外管管路 9 内管管路 11 吐出口 12 吐出口 13 しゃ閉層 14 閉束体 a 瞬結注入管体 b 緩結注入管体 X 二重管 I 貯溜系統 II 注入系統 III 供給系統 DESCRIPTION OF SYMBOLS 1 Outer pipe 2 Inner pipe 3 Inlet 6 Outer pipe 6a Outer pipe 9 Inner pipe 11 Discharge port 12 Discharge port 13 Blocking layer 14 Closed body a Flash-injected pipe b Loose-injected pipe X Double tube I Storage system II Injection system III Supply system

フロントページの続き (56)参考文献 特開 平1−163310(JP,A) 特開 昭64−83719(JP,A) 特開 昭50−9914(JP,A) 特開 平2−204520(JP,A) 特開 昭60−252685(JP,A)Continuation of the front page (56) References JP-A-1-163310 (JP, A) JP-A-64-83719 (JP, A) JP-A-50-9914 (JP, A) JP-A-2-204520 (JP, A) , A) JP-A-60-252685 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 主材配合液および反応剤配合液を貯溜す
る貯溜系統と、地盤中に配置され、前記貯溜系統に接続
された注入系統と、前記貯溜系統と前記注入系統の間に
配置され、前記貯溜系統の配合液を前記注入系統に供給
する供給系統とから構成され、前記貯溜系統は一つまた
は複数の主材配合液槽および一つまたは複数の反応剤配
合液槽を含み、前記注入系統は少なくとも二つの管路
A、Bを有するとともに、軸方向の異なる位置に複数の
注入口を有する注入管からなり、前記注入口には一方の
管路Aと通じる吐出口が設けられ、かつ前記注入口の少
なくとも一つには他方の管路Bと通じる吐出口が設けら
れ、前記供給系統は前記主材配合液槽と前記注入管の管
路Aとを接続する、それぞれポンプPAおよびバルブV
Aの配置された導管aを備え、かつ、前記反応剤配合液
槽と前記注入管の管路Bとを接続する、それぞれポンプ
PBおよびバルブVBの配置された導管bを備え、さら
に、前記供給系統は前記主材配合液槽と前記バルブVA
とを接続する、ポンプPA′の配置された導管a′、ま
たは前記反応剤配合液槽と前記バルブVBとを接続す
る、ポンプPB′の配置された導管b′の少なくとも一
つを備えてなり、前記ポンプPA′またはPB′を作動
させて主材配合液または反応剤配合液をバルブVAまた
はVBに導入し、ここでポンプPAまたはPBからの主
材配合液または反応剤配合液と合流させてこれらの流量
を変化させ、これにより前記注入管に送液される主材配
合液と反応剤配合液の配合比率を自由に変化させながら
貯溜系統の配合液を前記注入系統に供給することを特徴
とする地盤の複合注入システム。
1. A storage system for storing a main material mixed liquid and a reactant mixed liquid, an injection system arranged in the ground and connected to the storage system, and an injection system arranged between the storage system and the injection system. A supply system that supplies the liquid mixture of the storage system to the injection system, wherein the storage system includes one or more main material compound liquid tanks and one or more reactant compound liquid tanks, The injection system has at least two pipelines A and B, and includes an injection pipe having a plurality of injection ports at different positions in the axial direction, and the injection port is provided with a discharge port communicating with one of the pipelines A. In addition, at least one of the injection ports is provided with a discharge port communicating with the other pipe line B, and the supply system includes a pipe of the main material mixing liquid tank and the injection pipe.
Pump PA and valve V, respectively, connecting to
A comprising a conduit a disposed therein, and the reactant-containing liquid
Pumps for connecting the tank and the pipe B of the injection pipe, respectively
A conduit b in which the PB and the valve VB are arranged;
The supply system includes the main material mixture tank and the valve VA.
And a conduit a 'in which the pump PA' is arranged,
Or connecting the reactant-containing liquid tank to the valve VB.
At least one of the conduits b 'in which the pump PB' is located.
To operate the pump PA 'or PB'
Then, the main material compounding solution or the reactant compounding solution is supplied to the valve VA or
Is introduced into VB, where the mains from pump PA or PB
And the flow rate of these
Of the main material supplied to the injection pipe.
While freely changing the mixture ratio of the mixture and the reactant mixture
Supplying the liquid mixture of the storage system to the injection system.
And the composite injection system of the ground.
【請求項2】 前記複数の注入口のうち、少なくとも二
つは一方の管路Aからの吐出量と他方の管路Bからの吐
出量の流量比率が異なるように、吐出口の数または口径
を変化させてなる請求項1の地盤の複合注入システム。
2. The number or diameter of the outlets of at least two of the plurality of inlets is such that the flow ratio of the amount of discharge from one of the pipes A to the amount of discharge from the other of the pipes B is different. 2. The composite ground injection system according to claim 1, wherein
JP18033492A 1992-06-15 1992-06-15 Ground injection system Expired - Fee Related JP3151637B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP18033492A JP3151637B2 (en) 1992-06-15 1992-06-15 Ground injection system
TW81106232A TW226422B (en) 1992-06-15 1992-08-06 Ground injection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18033492A JP3151637B2 (en) 1992-06-15 1992-06-15 Ground injection system

Publications (2)

Publication Number Publication Date
JPH0649836A JPH0649836A (en) 1994-02-22
JP3151637B2 true JP3151637B2 (en) 2001-04-03

Family

ID=16081409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18033492A Expired - Fee Related JP3151637B2 (en) 1992-06-15 1992-06-15 Ground injection system

Country Status (2)

Country Link
JP (1) JP3151637B2 (en)
TW (1) TW226422B (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58218511A (en) * 1982-02-06 1983-12-19 Nippon Sogo Bosui Kk Control method and apparatus for grout injection pipe
JPS60252685A (en) * 1984-05-29 1985-12-13 Kouen Shoji Kk Composite impregnation method
JPS6483719A (en) * 1987-09-28 1989-03-29 Kyokado Eng Co Grout injection tube for ground
JPH01163310A (en) * 1987-12-18 1989-06-27 Chikoushiya:Kk Ground grouting work
JP2745224B2 (en) * 1989-01-31 1998-04-28 日本ソイル工業株式会社 Ground improvement method and equipment

Also Published As

Publication number Publication date
TW226422B (en) 1994-07-11
JPH0649836A (en) 1994-02-22

Similar Documents

Publication Publication Date Title
CN107755421A (en) A kind of contaminated site original position is rapidly injected repair system
CN101230573B (en) Construction equipment for four-layer pipe ground layer depression type double-liquid horizontal jet grouting
CN207463808U (en) A kind of contaminated site is rapidly injected repair system in situ
CN104711987A (en) Controllable grouting method for valve pipe sleeving method of deep and thick cover layer
KR102234214B1 (en) Fast permeating method and system for grouting of weak ground
JP3151637B2 (en) Ground injection system
JPS61211418A (en) Chemical solution pouring method
CN111140252A (en) Circulating layering slip casting device
CN212129147U (en) Multi-section sleeve valve pipe layered grouting device
JPS6358972B2 (en)
JPH0649974B2 (en) Ground injection method
CN210829386U (en) Double-liquid grouting pipe for goaf treatment
JPH0830332B2 (en) Ground injection method
JPH0565649B2 (en)
JPH07324327A (en) Ground impregnation method
CN217811045U (en) Double-barrelled slip casting device
CN200964633Y (en) Hybrid grouting device for plugging high pressure underground water
KR101588707B1 (en) Special terminal apparatus for chemical grouting using air
KR20180013052A (en) Chemical injection, grouting, jetting method
CN217872796U (en) Rock stratum shield slip casting system
JP2878892B2 (en) Grout three-phase injection method
CN219261018U (en) Grouting pipe for foundation reinforcement
CN108301839A (en) A kind of pumping decompression orientation grouting equipment and method
JP2586984B2 (en) Ground injection method and injection pipe
JP2005113444A (en) Ground grouting device and ground grouting construction method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees