JPH0649836A - Grouting system - Google Patents

Grouting system

Info

Publication number
JPH0649836A
JPH0649836A JP18033492A JP18033492A JPH0649836A JP H0649836 A JPH0649836 A JP H0649836A JP 18033492 A JP18033492 A JP 18033492A JP 18033492 A JP18033492 A JP 18033492A JP H0649836 A JPH0649836 A JP H0649836A
Authority
JP
Japan
Prior art keywords
injection
liquid
pipe
ground
ports
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18033492A
Other languages
Japanese (ja)
Other versions
JP3151637B2 (en
Inventor
Shunsuke Shimada
俊介 島田
Kenji Kashiwabara
健二 栢原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyokado Engineering Co Ltd
Original Assignee
Kyokado Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyokado Engineering Co Ltd filed Critical Kyokado Engineering Co Ltd
Priority to JP18033492A priority Critical patent/JP3151637B2/en
Priority to TW81106232A priority patent/TW226422B/en
Publication of JPH0649836A publication Critical patent/JPH0649836A/en
Application granted granted Critical
Publication of JP3151637B2 publication Critical patent/JP3151637B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

PURPOSE:To improve the workability by filling plural filling liquids, of which solidification time is different from each other, from plural fill-in ports of different positions in the axial direction of a filling pipe, simultaneously, and changing each flow quantity of the main agent and the reaction agent to change the mixture ratio. CONSTITUTION:Plural fill-in ports 3 are provided at different positions in the axial direction of a filling pipe X, which consists of an outer tube 1 and an inner tube 2, and the outer tube 1 and the inner tube 2 are communicated with each other through a discharge port. At least two of the fill-in ports 3 are formed so as to have different flow quantity ratio of discharge quantity of the main agent A liquid and the reaction agent B liquid to be discharged from pipelines A, B. Plural filling liquids, which are joined for mixture inside of the fill-in port 3 and of which solidification time is different from each other, are filled from the plural fill-in ports 3 to the ground. The main agent A liquid and the reaction agent B liquid are respectively fed by pumps PA, PB, and the flow quantity is controlled by pumps PA', PB' to change the liquid feeding ratio of the A, B liquids. Ground can be thereby solidified quickly and easily, and the gelation time of the filling liquids, of which gelation time is different from each other, can be changed without generating time lag.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は固結時間(ゲル化時間)
の異なる複数の注入材(グラウト)を、地盤中に設置さ
れた注入管の軸方向に異なる位置の注入口を通して同時
に注入する複合注入工法に適した地盤注入システムに係
り、特に前記注入材のゲル化時間をタイムラグを生じる
ことなく、直ちに変化し得、前記複合注入を正確に達成
し得る地盤注入システムに関する。
FIELD OF THE INVENTION The present invention has a setting time (gelation time).
The present invention relates to a ground pouring system suitable for a composite pouring method in which a plurality of pouring materials (grouts) of different porosity are simultaneously injected through pouring ports installed at different positions in the axial direction of a pouring pipe installed in the ground. The present invention relates to a ground injection system in which the liquefaction time can be changed immediately without causing a time lag and the composite injection can be accurately achieved.

【0002】[0002]

【従来の技術】複雑な地盤を改良する技術として一般
に、固結時間の短いグラウトならびに長いグラウトを地
盤中に注入する、いわゆる複合注入工法が用いられる。
この種の複合注入工法として、従来、二重管を用いてま
ず、固結時間の短いグラウトを地盤中に注入して粗い部
分、弱い部分あるいは注入管まわりの空隙を填充し、そ
の後固結時間の長いグラウトを土粒子間注入して地盤中
に浸透させる工法が知られている。
2. Description of the Related Art Generally, a so-called composite pouring method is used as a technique for improving a complicated ground, in which a grout having a short setting time and a grout having a long setting time are poured into the ground.
Conventionally, this type of composite pouring method uses a double pipe to inject grout with a short setting time into the ground to fill the rough parts, weak parts or voids around the injection pipe, and then set the setting time. It is known that a long grout is injected between soil particles to penetrate into the ground.

【0003】上述の複合注入工法において、固結時間の
短いグラウトを二重管の上部吐出口から、また、固結時
間の長いグラウトを二重管の下部吐出口から、それぞれ
同時に注入する注入工法もまた、知られている。
In the above-mentioned composite injection method, an injection method in which grout having a short setting time is injected from the upper discharge port of the double pipe and grout having a long setting time is injected from the lower discharge port of the double pipe at the same time. Is also known.

【0004】さらに、三重管を用いて二つの管路から別
々に送液された二液の合流液(固結時間の短い注入液)
を上部吐出口から注入し、同時に下部吐出口から固結時
間の長いグラウトを注入する複合注入工法が知られてい
る。
Furthermore, a confluent liquid of two liquids separately fed from two pipe lines using a triple pipe (injection liquid having a short setting time)
There is known a composite injection method in which grouting is injected from the upper discharge port and simultaneously grout having a long setting time is injected from the lower discharge port.

【0005】[0005]

【発明が解決しようとする問題点】しかし、二重管を用
いる前者の工法では、固結時間の異なるグラウトが別々
に注入されるため、注入の際にこれらグラウトの切り換
えが必要となり、このため操作が複雑化されて迅速かつ
簡単な注入が不可能である。さらに、この工法では送液
量を多くできず、施工能率が低い。
However, in the former construction method using a double pipe, grouts having different setting times are separately injected, and therefore it is necessary to switch these grouts during injection. The operation is complicated and quick and easy injection is not possible. Furthermore, this method cannot increase the amount of liquid to be sent, resulting in low construction efficiency.

【0006】また、上述において、グラウトのゲル化時
間を変換するためには、地上部において反応剤配合液の
回路を変換しなくてはならない。この際、変換された反
応剤が注入管の注入口に送液されるまでにタイムラグを
生じ、所定の注入ステージにおけるゲル化時間の変換
と、地上部におけるゲル化時間の変換の時点が一致しな
いことになる。このため、注入操作が不正確になり、複
合注入が正確に行なわれ難い。
Further, in the above description, in order to change the gelling time of grout, the circuit of the reagent-containing liquid must be changed in the above-ground portion. At this time, there is a time lag until the converted reactant is sent to the injection port of the injection pipe, and the conversion of the gelation time at a predetermined injection stage does not coincide with the conversion of the gelation time at the above-ground part. It will be. Therefore, the injection operation becomes inaccurate, and it is difficult to perform the composite injection accurately.

【0007】また、三重管を用いる後者の工法では、固
結時間の異なるグラウトの同時注入が可能となるが、三
重管であるため注入管孔径が大きくなり、削孔費が高
く、かつ施工能率が悪くなる。さらに、この工法では主
材、瞬結用反応剤配合液および緩結用反応剤配合液の配
合調整が必要で、複雑となる。
In the latter method using a triple pipe, it is possible to simultaneously inject grout with different setting times. However, since it is a triple pipe, the diameter of the injection pipe hole is large, the drilling cost is high, and the construction efficiency is high. Becomes worse. Furthermore, this method requires complex adjustments of the main material, the reaction mixture composition for flash setting, and the reaction composition preparation for slow setting, which is complicated.

【0008】通常、注入工法が対象とする地盤は軟弱地
盤であるが、この地盤では地盤生成過程において透水性
の異なる層が水平方向に帯積するのが通例である。透水
係数は垂直方向よりも水平方向が大きく、このため、注
入された注入液(グラウト)は注入管を通して透水係数
の大きな層に逸脱する。
Usually, the ground to which the pouring method is applied is soft ground, but in this ground, it is customary that layers having different water permeability are piled up in the horizontal direction during the ground formation process. The hydraulic conductivity is larger in the horizontal direction than in the vertical direction, so that the injected injection liquid (grout) deviates through the injection pipe into a layer having a high hydraulic conductivity.

【0009】そこで、本発明の目的は固結時間(ゲル化
時間)の異なる複数の注入液を注入管の軸方向の異なる
複数の注入口から同時に注入することにより極めて迅速
かつ簡単に地盤を固結し得ることはもちろん、これら注
入口から注入されるゲル化時間の異なる注入液のゲル化
時間をタイムラグを生じることなく変化し得、上述の公
知技術に存する欠点を改良した地盤注入工法に適した地
盤注入システムを提供することにある。
Therefore, the object of the present invention is to rapidly and easily solidify the ground by simultaneously injecting a plurality of injecting liquids having different setting times (gelling times) from a plurality of injection ports having different axial directions of the injection pipe. Needless to say, it is possible to change the gelling time of the injecting liquid with different gelling times injected from these inlets without causing a time lag, and it is suitable for the ground injection method in which the drawbacks in the above-mentioned known technology are improved. To provide a ground injection system.

【0010】[0010]

【問題点を解決するための手段】上述の目的を達成する
ため、本発明によれば、主材配合液および反応剤配合液
を貯溜する貯溜系統と、地盤中に設置され、前記貯溜系
統に接続された注入系統と、前記貯溜系統と前記注入系
統の間に配置され、前記貯溜系統の配合液を前記注入系
統に供給する供給系統とから構成され、前記貯溜系統は
一つまたは複数の主材配合液槽および一つまたは複数の
反応剤配合液槽を含み、前記注入系統は少なくとも二つ
の管路A、Bを有するとともに、軸方向の異なる位置に
複数の注入口を有する注入管からなり、前記注入口には
一方の管路Aと通じる吐出口が設けられ、かつ前記注入
口の少なくとも一つには他方の管路Bと通じる吐出口が
設けられ、前記供給系統は前記主材配合液槽および管路
Aを接続するポンプPAと、前記反応剤配合液槽および
管路Bを接続するポンプPBと、前記主材配合液槽と管
路A、または前記反応剤配合液槽と管路Bを接続する他
の少なくとも一つのポンプを備えてなることを特徴とす
る。
In order to achieve the above-mentioned object, according to the present invention, a storage system for storing a main material mixed solution and a reactant mixed solution, and a storage system installed in the ground, are provided in the storage system. The storage system includes a connected injection system and a supply system that is disposed between the storage system and the injection system and that supplies the mixed solution of the storage system to the injection system. Material injection tank and one or more reaction agent injection tanks, and the injection system has at least two conduits A and B, and an injection pipe having a plurality of injection ports at different axial positions. The injection port is provided with a discharge port that communicates with one of the pipe lines A, and at least one of the injection ports is provided with a discharge port that communicates with the other pipe line B, and the supply system includes the main material mixture. A pump that connects the liquid tank and the pipeline A PA, a pump PB that connects the reactant mixture liquid tank and the conduit B, and at least one other that connects the main material mixture liquid tank and the conduit A or the reactant mixture liquid tank and the conduit B. It is characterized by comprising a pump.

【0011】[0011]

【発明の具体的説明】以下、本発明を添付図面を用いて
詳述する。図1は本発明にかかる地盤注入システムの一
具体例のフローシートであって、貯溜系統I、注入系統
II、および供給系統IIIから構成される。
DETAILED DESCRIPTION OF THE INVENTION The present invention will be described in detail below with reference to the accompanying drawings. FIG. 1 is a flow sheet of a specific example of the ground injection system according to the present invention, which comprises a storage system I, an injection system II, and a supply system III.

【0012】貯溜系統Iは主材配合液(A液)および反
応剤配合液(B液)を貯溜するものであって、一つまた
は複数の主材配合液槽C、および一つまたは複数の反応
剤配合液槽Dから構成される。主材配合液(A液)は例
えば水ガラス水溶液、水ガラスと反応剤の混合液、酸性
珪酸水溶液あるいは水ガラスグラウト以外の注入液の主
材であり、反応剤配合液(B液)は水ガラスのゲル化
剤、セメント懸濁液、あるいはA液が酸性珪酸水溶液の
場合、水ガラスやアルカリ等である。
The storage system I stores the main material mixed liquid (A liquid) and the reactant mixed liquid (B liquid), and contains one or a plurality of main material mixed liquid tanks C and one or a plurality of liquids. It is composed of a reagent mixture tank D. The main material mixture liquid (liquid A) is, for example, a water glass aqueous solution, a mixture liquid of water glass and a reaction agent, an acidic silicic acid aqueous solution, or a main material of an injection liquid other than water glass grout, and the reactant mixture liquid (liquid B) is When the gelling agent for glass, the cement suspension, or the solution A is an acidic silicic acid aqueous solution, it is water glass or alkali.

【0013】注入系統IIは注入管Xからなり、地盤Y
中の所定の深度に設置されるとともに、貯溜系統IIに
後述の供給系統IIIを介して接続される。この注入管
Xは少なくとも二つの管路A、Bを有するとともに、図
2以下で詳述するように軸方向の異なる位置に複数の注
入口3を有している。さらにこの注入口3には図3以下
で詳述するように、一方の管路Aと通じる吐出口11が設
けられ、かつ前記注入口3の少なくとも一つには他方の
管路Bと通じる吐出口12が設けられる。これら吐出口の
うち、少なくとも管路Aと通じる吐出口11は噴射口で構
成されてもよく、また、管路Bと通じる吐出口12も、必
要に応じて噴射口で構成されてもよい。
The injection system II comprises an injection pipe X and a ground Y.
It is installed at a predetermined depth inside and is connected to a storage system II via a supply system III described later. The injection pipe X has at least two conduits A and B, and also has a plurality of injection ports 3 at different axial positions as described in detail with reference to FIG. Further, as will be described in detail with reference to FIG. 3 and subsequent figures, the injection port 3 is provided with a discharge port 11 which communicates with one of the conduits A, and at least one of the injection ports 3 has a discharge port which communicates with the other conduit B. An outlet 12 is provided. Of these outlets, at least the outlet 11 that communicates with the conduit A may be an ejector, and the outlet 12 that communicates with the conduit B may also be an ejector if necessary.

【0014】供給系統IIIは貯溜系統Iと注入系統I
Iの間に配置され、貯溜系統Iの配合液を前記注入系統
IIに供給するものである。この供給系統IIIは主材
配合液槽Cおよび注入管Xの管路AをバルブVAを介し
て接続するポンプPAと、反応剤配合液槽Dおよび注入
管Xの管路BをバルブVBを介して接続するポンプPB
と、主材配合液槽Cと管路A、または反応剤配合液槽D
と管路BをそれぞれバルブVA、VBを介して接続する
他の少なくとも一つのポンプ、例えば、図1のポンプP
A′、ポンプPB′とから構成される。ポンプPA′、
PB′はそれぞれ、バルブVA、VBを介してポンプP
A、PBの系路に連絡されるが、これらのポンプP
A′、PB′はポンプPA、PBからのA液またはB液
の流量を増やしたり、減らしたり等、注入管Xに送液さ
れるA液、B液の比率を変化せしめるものである。
The supply system III is a storage system I and an injection system I.
It is arranged between the injection systems I and I and supplies the mixed solution of the storage system I to the injection system II. In this supply system III, a pump PA that connects the main material mixing liquid tank C and the conduit A of the injection pipe X via a valve VA, and the reactant mixing liquid tank D and the conduit B of the injection pipe X via a valve VB. Connected pump PB
And the main material mixture liquid tank C and the pipeline A, or the reactant mixture liquid tank D
And at least one other pump connecting the line B via valves VA, VB, eg pump P in FIG.
A'and a pump PB '. Pump PA ',
PB 'is a pump P via valves VA and VB, respectively.
Connected to the A and PB lines, these pumps P
A ′ and PB ′ are for changing the ratio of the A liquid and the B liquid sent to the injection pipe X by increasing or decreasing the flow rate of the A liquid or the B liquid from the pumps PA and PB.

【0015】図2は本発明に用いられる二重管Xの一具
体例の側面図であって、外管1と、その内部に配置され
る内管2とから基本的に構成される。この二重管Xは瞬
結注入管体aおよび緩結注入管体bを含み、瞬結注入管
体aはゲル化時間の短い注入液を注入する注入口3を有
し、緩結注入管体bはゲル化時間の長い注入液を注入す
る注入口3、3…3を有する。これら注入管体a、bは
図2では瞬結注入管体aを二重管Xの上部に、緩結注入
管体bを下部にそれぞれ配置したが、この配置は二重管
Xの任意の個所に係合設置される。cは二重管Xの末端
部、4はメタルクラウンである。
FIG. 2 is a side view of a specific example of the double pipe X used in the present invention, which basically comprises an outer pipe 1 and an inner pipe 2 arranged therein. This double pipe X includes a quick-injection injection pipe body a and a slow-injection injection pipe body b, and the quick-injection injection pipe body a has an injection port 3 for injecting an infusion liquid having a short gelation time, The body b has injection ports 3, 3, ... 3 for injecting an injection liquid having a long gelation time. In these injection tubes a and b, the instantaneous injection tube a is arranged in the upper part of the double tube X and the loose injection tube b is arranged in the lower part in FIG. 2, but this arrangement is arbitrary. Engagement is installed at a point. c is the end of the double tube X, and 4 is a metal crown.

【0016】図3は図2における瞬結注入管体aの拡大
断面図であって、図3(a)は穿孔中、図3(b)は注
入中の状態をそれぞれ示し、図3(c)は瞬結注入管体
aの注入口3の断面図を示す。
FIG. 3 is an enlarged cross-sectional view of the instantaneous injection pipe body a in FIG. 2, FIG. 3 (a) shows a state during perforation, FIG. 3 (b) shows a state during injection, and FIG. ) Shows a sectional view of the injection port 3 of the instantaneous injection pipe a.

【0017】図4は図2における緩結注入管体bの拡大
断面図であって、図4(a)は穿孔中、図4(b)は注
入中の状態をそれぞれ示し、図4(c)は緩結注入管体
bの注入口3、3…3の断面図を示す。
FIG. 4 is an enlarged cross-sectional view of the loose injection tube body b in FIG. 2. FIG. 4 (a) shows a state during perforation, FIG. 4 (b) shows a state during injection, and FIG. 3) shows a cross-sectional view of the injection ports 3, 3 ... 3 of the loose injection tube b.

【0018】図5は図1における二重管Xの末端部cの
部分の拡大断面図であって、図5(a)は穿孔中、図5
(b)は注入中の状態をそれぞれ示す。
FIG. 5 is an enlarged sectional view of the end portion c of the double pipe X in FIG. 1, and FIG.
(B) shows the state during injection.

【0019】まず、図3(a)に示されるように、外管
1の管路6を通じて穿孔水を矢印方向に送液する。この
穿孔水は図5(a)に示されるように、末端部cに送液
され、弁7のバネ8を押し下げて管路6aを開通し、こ
の開通された管路6aを通って地盤中に吐出され、二重
管Xを所定の深度に設定する。このとき、図3(a)お
よび図4(a)の注入口3は金属製または合成樹脂製の
開閉チップ5で閉束されているので、ここから穿孔水が
もれることはない。
First, as shown in FIG. 3 (a), perforating water is fed in the direction of the arrow through the conduit 6 of the outer tube 1. As shown in FIG. 5 (a), this drilling water is sent to the end portion c and pushes down the spring 8 of the valve 7 to open the pipeline 6 a, and through the opened pipeline 6 a in the ground. And the double pipe X is set to a predetermined depth. At this time, since the inlet 3 in FIGS. 3A and 4A is closed by the opening / closing tip 5 made of metal or synthetic resin, the perforation water does not leak from here.

【0020】次いで、図3(b)に示されるように、外
管管路6から主材配合液Aを、内管管路9から反応剤配
合液Bをそれぞれ矢印方向に送液すると、まず、反応剤
配合液Bは図5(b)に示されるように、末端部cでシ
リンダ10を落下せしめて外管管路6aを閉じるこの結
果、内管管路9内の反応剤配合液Bは加圧状態となり、
図3(a)および図4(a)の閉束チップ5を配合液B
の圧力によって外側に吹き飛ばし、注入口3を開孔す
る。
Next, as shown in FIG. 3 (b), when the main material mixture liquid A is fed from the outer pipe line 6 and the reactant mixture liquid B is fed from the inner pipe line 9 in the directions of the arrows, first, As shown in FIG. 5 (b), the reactant mixture liquid B drops the cylinder 10 at the terminal end c to close the outer pipe line 6 a. As a result, the reagent mixture liquid B in the inner pipe line 9 Is under pressure,
The closed bundle tip 5 of FIG.
It is blown off to the outside by the pressure of, and the injection port 3 is opened.

【0021】注入口3は図3(b)、(c)および図4
(b)、(c)に示されるように、一方の管路A、例え
ば外管管路6と通じる吐出口11、11…11が設けられ、か
つ、この注入口3の少なくとも一つには、他方の管路
B、例えば内管管路9と通じる吐出口12が設けられる。
The inlet 3 is shown in FIGS. 3 (b), (c) and FIG.
As shown in (b) and (c), discharge ports 11, 11 ... 11 communicating with one pipeline A, for example, the outer pipeline 6, are provided, and at least one of the injection ports 3 is provided. A discharge port 12 communicating with the other pipeline B, for example, the inner pipeline 9 is provided.

【0022】さらに、これら複数の注入口3、3…3の
うち、少なくとも二つは一方の管路A(外管管路6)か
らの吐出量と他方の管路B(内管管路9)からの吐出量
の流量比率が異なるように形成される。具体的には、例
えば、一つの注入口3は図2(a)、(b)、(c)、
特に図3(c)に明示されるように、外管管路6に通じ
る吐出口11(口径Φ1.0mm)を1個設けるとともに、内管
管路9に通じる吐出口12(それぞれ口径Φ1.0mm)を2個
設け、また、他の一つの注入口3は図4(a)、
(b)、(c)、特に図4(c)に明示されるように、
外管管路6に通じる吐出口11(口径Φ1.0mm)および内管
管路9に通じる吐出口12(口径Φ1.0mm)をそれぞれ1個
づつ設ける。この結果、一方の管路Aに通じる吐出口11
と他方の管路Bに通じる吐出口12の数の比率を変化させ
た少なくとも二つの注入口3が形成されることになり、
これら少なくとも二つの注入口3は一方の管路Aからの
吐出量と他方の管路Bからの吐出量の流量比率が異なる
ように形成される。なお、吐出量の流量比率は図示しな
いが、吐出口の口径を変化させて行なうこともできる。
Further, at least two of the plurality of inlets 3, 3, ... 3 are discharged from one pipeline A (outer pipeline 6) and the other pipeline B (inner pipeline 9). 2) are formed so that the flow rate ratios of the discharge amounts from) are different. Specifically, for example, one injection port 3 is shown in FIGS. 2 (a), (b), (c),
In particular, as clearly shown in FIG. 3C, one discharge port 11 (diameter Φ1.0 mm) communicating with the outer pipe conduit 6 is provided, and a discharge port 12 (respectively diameter Φ1.mm) communicating with the inner pipe conduit 9 is provided. 2 (0 mm), and the other one injection port 3 is shown in FIG.
(B), (c), especially as clearly shown in FIG. 4 (c),
Discharge ports 11 (diameter Φ1.0 mm) communicating with the outer pipe line 6 and discharge ports 12 (diameter Φ1.0 mm) communicating with the inner pipe line 9 are provided one by one. As a result, the discharge port 11 leading to the one pipeline A
And at least two inlets 3 having different ratios of the number of outlets 12 communicating with the other conduit B are formed,
These at least two inlets 3 are formed so that the flow rate ratio of the discharge amount from one conduit A and the discharge amount from the other conduit B is different. Although the flow rate ratio of the discharge amount is not shown, the discharge port diameter may be changed.

【0023】図3(a)および図4(a)の閉束チップ
5がはずされて注入口3が開孔されると、図3 (b)、
(c)および図4 (b)、(c)に示されるように、主
材配合液Aおよび反応剤配合液Bがそれぞれ吐出口11お
よび吐出口12から注出口3内に吐出され、混合されて固
結時間の異なる複数の注入液が形成される。
When the closed bundle tip 5 of FIGS. 3 (a) and 4 (a) is removed and the injection port 3 is opened, FIG. 3 (b),
As shown in (c) and FIGS. 4 (b) and (c), the main material mixed liquid A and the reactive agent mixed liquid B are discharged from the discharge port 11 and the discharge port 12 into the spout 3, respectively, and mixed. As a result, a plurality of infusates having different setting times are formed.

【0024】これら複数の注入液は前述の各複数の注入
口3、3…3からそれぞれ同時に地盤中に注入される。
これら注入液は管路AおよびBから各注入口3、3…3
内に吐出される配合液の流量比率にしたがって、固結時
間が15分以内で、かつ短い方の固結時間が30秒以内とな
るように調整される。なお、本発明ではこれら注入液の
固結時間よりも長い注入液を併用することもできる。
These plural injection liquids are simultaneously injected into the ground through the aforementioned plural injection ports 3, 3 ,.
These injection liquids are supplied from the conduits A and B to the respective injection ports 3, 3, ... 3
The setting time is adjusted within 15 minutes and the shorter setting time is adjusted within 30 seconds according to the flow rate of the compounded liquid discharged into the inside. In addition, in the present invention, it is also possible to use an infusion solution longer than the setting time of these infusion solutions together.

【0025】これらA液、B液の注入口への流量比率は
1:1であってもよく、その他任意の流量比率に選定す
ることができる。また、この比率は注入途中で変化させ
てもよい。
The flow rate ratio of these liquids A and B to the inlet may be 1: 1 and other flow ratios can be selected. Further, this ratio may be changed during the injection.

【0026】図6、図7および図8(a)、(b)は他
の形式の注入管を用いた本発明工法を示す断面図であっ
て、図5は掘削水の送液状態を示し、図6は注入状態を
示し、図7(a)、(b)は注入口の例を示す。
FIGS. 6, 7 and 8 (a) and 8 (b) are sectional views showing the method of the present invention using another type of injection pipe, and FIG. 6 shows the injection state, and FIGS. 7 (a) and 7 (b) show examples of the injection port.

【0027】上述注入管は図2と同様、外管1および内
管2から構成される二重管Xであるが、内管2の末端に
は閉束体14が摺動自在に嵌合され、かつ軸方向の異なる
位置、すなわち、上下の異なる位置に三個の注入口3が
設けられる点、図2と異なる。しかも、これら注入口3
はそれぞれ、外管管路6に通じる吐出口11および内管管
路9に通じる吐出口12の数の比率が異なるものであり、
したがって、後述のように各注入口3で吐出混合される
AB合流液のゲル化時間が全て異なることになる。
The above-mentioned injection pipe is a double pipe X composed of an outer pipe 1 and an inner pipe 2 as in FIG. 2, but a closed bundle 14 is slidably fitted to the end of the inner pipe 2. 2 and that three injection ports 3 are provided at different axial positions, that is, different vertical positions. Moreover, these inlets 3
Are different in the ratio of the numbers of the discharge ports 11 communicating with the outer pipe conduit 6 and the discharge ports 12 communicating with the inner pipe conduit 9, respectively.
Therefore, as will be described later, the gel times of the AB confluent liquids discharged and mixed at the respective inlets 3 are all different.

【0028】まず、図6に示されるように、各注入口3
に閉束チップ5を嵌めた状態で、外管管路6を通して掘
削水を送液しながらメタルクラウン4で掘削し、二重管
Xを地盤中の所定の深度に設定する。掘削水は各注入口
3に閉束チップ5が嵌められているから、ここからもれ
ることなく、外管管路6、および6aを通して地盤中に
吐出される。
First, as shown in FIG. 6, each injection port 3
With the closed bundle tip 5 fitted thereinto, the double pipe X is set at a predetermined depth in the ground by excavating the metal crown 4 while feeding the drilling water through the outer pipe line 6. Since the closed bundle tip 5 is fitted in each of the inlets 3, the drilling water is discharged into the ground through the outer pipe lines 6 and 6a without leaking.

【0029】掘削後、図7に示されるように、外管管路
6を通して主材配合液Aを、内管管路9を通して反応剤
配合液Bを、それぞれ矢印方向に送液すると、まず、反
応剤配合液Bは内管6の末端に嵌合された閉束体14を下
方に押し下げて外管管路6aを閉じる。この結果、外管
管路6は閉じられ、かつ内管管路9の反応剤配合液Bも
加圧状態となり、図7の閉束チップ5を吹きとばし、注
入口3を開く。
After the excavation, as shown in FIG. 7, when the main material mixed solution A is fed through the outer pipe line 6 and the reactant mixed liquid B is fed through the inner pipe line 9, respectively, first, The reactant mixture liquid B pushes down the closing bundle 14 fitted to the end of the inner pipe 6 to close the outer pipe line 6a. As a result, the outer pipe line 6 is closed, and the reactant mixture liquid B in the inner pipe line 9 is also in a pressurized state, and the closed bundle tip 5 in FIG. 7 is blown out and the injection port 3 is opened.

【0030】その後、この開孔された注入口3に外管管
路6のA液および内管管路9のB液がそれぞれ吐出口1
1、12を通じて吐出され、混合される。
Thereafter, the liquid A in the outer pipe line 6 and the liquid B in the inner pipe line 9 are respectively discharged into the discharge port 1 through the opened injection port 3.
It is discharged through 1 and 12 and mixed.

【0031】この注入口3は、例えば図8(a)に示さ
れるように、外管管路6に通じる二つの吐出口11、11
(各口径Φ1.0mm)および内管管路9に通じる一つの吐出
口12(口径Φ1.0mm)を有し、これらの吐出口11、12の数
の比率が2:1であり、また、図8(b)に示されるよ
うに、外管管路6に通じる一つの吐出口11(口径Φ1.0m
m)および内管管路9に通じる二つの吐出口12、12(それ
ぞれ口径Φ1.0mm)を有し、これらの吐出口11、12の数の
比率が1:2であり、さらに、図7に示されるように、
外管管路6および内管管路9に通じる吐出口11、12をそ
れぞれ1個を有し、これら吐出口11、12の数の比率が
1:1である。したがって、各注入口3におけるAB合
流液の流量比率が全て異なり、ゲル化時間の異なった注
入液が各注入口3から地盤中に注入される。
The injection port 3 is, for example, as shown in FIG. 8 (a), two discharge ports 11, 11 communicating with the outer pipe line 6.
(Each caliber Φ1.0 mm) and one discharge port 12 (caliber Φ1.0 mm) communicating with the inner pipe line 9 and the ratio of the numbers of these discharge ports 11 and 12 is 2: 1. As shown in FIG. 8 (b), one discharge port 11 (diameter Φ1.0 m) communicating with the outer pipe line 6 is formed.
m) and two outlets 12 and 12 (diameter Φ1.0 mm each) communicating with the inner pipe line 9, and the ratio of the numbers of these outlets 11 and 12 is 1: 2. As shown in
Each of the outlets 11 and 12 communicating with the outer pipe line 6 and the inner pipe line 9 has one outlet, and the ratio of the number of these outlets 11 and 12 is 1: 1. Therefore, the flow rates of the AB confluents at the respective injection ports 3 are all different, and the injection liquids having different gel times are injected from the respective injection ports 3 into the ground.

【0032】吐出口の口径は地上部において吐出口から
の注入材が注入管内流量に対して圧力を生じるように定
められ、この吐出圧力は好ましくは10kgf/cm2 、さらに
好ましくは15kgf/cm2 以上である。
The diameter of the discharge port is determined so that the injection material from the discharge port produces a pressure with respect to the flow rate in the injection pipe in the above-ground portion, and this discharge pressure is preferably 10 kgf / cm 2 , more preferably 15 kgf / cm 2. That is all.

【0033】本発明において、注入管の一方の管路に通
じる複数の吐出口から配合液を噴射口により高圧(地上
部で10kgf/cm2 、好ましくは15kgf/cm2 )で吐出し、ま
た他方の管路に通じる吐出口からも配合液を噴射口によ
り高圧で吐出してもよく、場合によっては管内圧力が殆
どかからない程度に吐出してもよい。吐出口の孔径は0.
2〜2.0mm程度が好ましい。また、本発明において、管
内圧力は数百kgf/cm2であってもよい。さらに注入管に
は、気体や、注入液以外の流体が地盤中に注入液ととも
に、あるいは注入液に先行して圧入され、注入液が地盤
中に浸透あるいは混合されやすくすることもできる。
In the present invention, the compounded liquid is discharged from a plurality of outlets communicating with one of the channels of the injection pipe at a high pressure (10 kgf / cm 2 at the aerial part, preferably 15 kgf / cm 2 ) by the injection port, and the other. The compounded liquid may be discharged from the discharge port communicating with the pipe line at a high pressure by the injection port, or may be discharged to the extent that the internal pressure of the pipe is hardly applied in some cases. The diameter of the discharge port is 0.
It is preferably about 2 to 2.0 mm. Further, in the present invention, the internal pressure of the tube may be several hundred kgf / cm 2 . Further, a gas or a fluid other than the injecting liquid may be pressed into the injection pipe together with the injecting liquid or in advance of the injecting liquid, so that the injecting liquid can be easily permeated or mixed into the ground.

【0034】一般に、パイプに同径の微細孔の吐出口を
n個設けたものに液体を高圧でポンピングすると、それ
ぞれの吐出口から1/nに均等分割された量の液体が噴
射される。流量を多くするほど管内圧力は高くなり、吐
出口外部の抵抗(地盤注入圧)に比較してはるかに高い
場合は、この外部の抵抗の影響を殆ど受けることなく均
等な量で吐出される。管内圧力が同じならば、吐出量は
吐出口径が大きい程多くなる。本発明に用いられる注入
管はこのようにして吐出されるA液とB液を注入口の混
合室で合流混合し、地盤中に注入するように構成され
る。
In general, when a liquid is pumped at a high pressure into a pipe provided with n discharge ports each having a fine hole of the same diameter, the liquid is sprayed from each discharge port in a uniformly divided amount of 1 / n. As the flow rate increases, the pipe pressure increases, and when the pressure is much higher than the resistance (ground injection pressure) outside the discharge port, the discharge is performed in a uniform amount without being substantially affected by the outside resistance. If the pipe pressure is the same, the discharge amount increases as the discharge port diameter increases. The injection pipe used in the present invention is configured so that the liquid A and the liquid B thus discharged are combined and mixed in the mixing chamber of the injection port and injected into the ground.

【0035】[0035]

【作用】上述の本発明は軸方向の異なる位置に複数の注
入口を有する二重注入管であって、前記各注入口には一
方の管路Aと通じる吐出口が設けられ、かつ前記注入口
の少なくとも一つには他方の管路Bと通じる吐出口が設
けられ、前記複数の注入口のうち、少なくとも二つは一
方の管路Aからの吐出量と他方の管路Bからの吐出量の
流量比率が異なるように形成された注入管を用いるか
ら、固結時間の異なる複数の注入液を複数の注入口から
同時に注入し得、これにより極めて迅速かつ簡単に地盤
を固結し得るものである。
The present invention described above is a double injection pipe having a plurality of injection ports at different axial positions, each of the injection ports being provided with a discharge port communicating with one of the conduits A, and At least one of the inlets is provided with a discharge port that communicates with the other conduit B, and at least two of the plurality of inlets are discharged from one conduit A and discharged from the other conduit B. Since the injection pipes are formed so that the flow rate ratios of the amounts are different, it is possible to simultaneously inject a plurality of injecting liquids having different consolidating times from a plurality of injecting ports, which can consolidate the ground extremely quickly and easily. It is a thing.

【0036】さらに、本発明は供給系統IIIとして、
前記主材配合液槽および管路Aを接続するポンプPA
と、前記反応剤配合液槽および管路Bを接続するポンプ
PBと、前記主材配合液槽と管路A、または前記反応剤
配合液槽と管路Bを接続する他の少なくとも一つのポン
プ、例えば、ポンプPA′またはPB′を備えるから、
これらポンプPA′、PB′はそれぞれポンプPA、P
BからのA液またはB液の流量を増やしたり、減らした
り等、注入管Xに送液されるA液、B液の比率を変化せ
しめ、この結果、注入液のゲル化時間のタイムラグを生
じることなく、ゲル化時間を変化せしめ、地盤情況、注
入情況の変化に容易に対応し得る。
Further, the present invention provides a supply system III,
Pump PA for connecting the main material mixed liquid tank and the pipeline A
And a pump PB connecting the reagent mixture tank and the conduit B, and at least one other pump connecting the main material mixture tank and the conduit A or the reagent mixture tank and the conduit B. , For example because it comprises a pump PA ′ or PB ′,
These pumps PA 'and PB' are pumps PA and P, respectively.
By increasing or decreasing the flow rate of the A liquid or the B liquid from the B, the ratio of the A liquid and the B liquid sent to the injection pipe X is changed, and as a result, a time lag of the gelation time of the injection liquid occurs. Without changing the gelation time, it is possible to easily respond to changes in the ground condition and the injection condition.

【0037】また、一般に、地上部において、注入管内
の流体を吐出口から空気中に吐出する場合、注入管内圧
力は吐出口の大きさと流量に依存し、流量に対して吐出
口径を小さくしぼる程、また吐出口径に対して流量を大
きくする程、注入管内圧力、すなわち吐出圧力は大きく
なる。また、流量に対して吐出口径が大きいとき、ある
いは吐出口径に対して流量が小さいときには注入管内圧
力、すなわち吐出圧力は小さくなる。また、注入管管路
を通して圧送された流体は吐出口径の大きさに対応した
所定量が注入口から注入される。そして管内圧力が高い
程、注入口外部の抵抗圧が変化してもその注入量は変動
し難い。
In general, in the above-ground portion, when the fluid in the injection pipe is discharged from the discharge port into the air, the pressure in the injection pipe depends on the size and flow rate of the discharge port. Further, as the flow rate is increased with respect to the diameter of the discharge port, the pressure in the injection pipe, that is, the discharge pressure increases. Further, when the discharge port diameter is large with respect to the flow rate, or when the flow rate is small with respect to the discharge port diameter, the injection pipe internal pressure, that is, the discharge pressure becomes small. Also, the fluid pumped through the injection pipe line is injected from the injection port in a predetermined amount corresponding to the size of the discharge port diameter. The higher the pressure inside the pipe, the more difficult it is for the amount of injection to change even if the resistance pressure outside the injection port changes.

【0038】ここで、本発明における噴射による注入機
能について説明する。内径4cmの管にポンプで送水した
ところ、ポンプ圧は殆ど生じない。この管の末端に噴射
口を設けた先端部を装着して噴射圧力(ポンプ圧)と吐
出量を測定した結果を図9および図10に示す。なお、比
較のために上記管に直径1cmの吐出口を3個有する先端
部を上記管の末端部に装着して1〜20l/mの送水を行な
ったが、吐出圧力は殆ど認められなかった。
Here, the injection function by injection in the present invention will be described. When pumping water to a pipe with an inner diameter of 4 cm, almost no pump pressure is generated. 9 and 10 show the results of measuring the injection pressure (pump pressure) and the discharge amount by mounting the tip portion having the injection port at the end of this pipe. For comparison, a tip having three discharge ports each having a diameter of 1 cm was attached to the end of the pipe to feed water of 1 to 20 l / m, but almost no discharge pressure was observed. .

【0039】図9はノズル口径1.0mm、図10は1.5mmの
吐出口をそれぞれ有する先端部を管に装着し、ポンプ圧
を種々変え、ポンプ圧が所定圧を保つように水を送液
し、かつ噴射口の下流側も管路でつなげて管路内にバル
ブにより抵抗圧を作用せしめて地盤の抵抗圧力に相当す
る圧力を生ぜしめ、その場合の噴射口から吐出される流
量(l/分)と抵抗圧(kgf/cm2)を測定し、その結果を
表したグラフである。図9および図10から明らかなよう
に、例えばポンプ圧80kg/cm2を用いて説明すると、地盤
内における抵抗圧力(kg/cm2) が変化しても、抵抗圧力
50kg/cm2位まではノズルからの流量が一定である。すな
わち、地盤抵抗圧の変化にもかかわらず、一定の吐出量
が得られる領域が存在することが図9および図10からわ
かる。
FIG. 9 shows a nozzle having a nozzle diameter of 1.0 mm, and FIG. 10 has a tip having a discharge port of 1.5 mm, which is attached to a pipe, and various pump pressures are changed to send water so that the pump pressure maintains a predetermined pressure. Liquid is also connected to the downstream side of the injection port by a pipe line, and a resistance pressure is applied by a valve in the pipe line to generate a pressure equivalent to the resistance pressure of the ground, and the flow rate discharged from the injection port in that case ( 1 / min) and resistance pressure (kgf / cm 2 ) were measured, and the results are shown in the graph. As can be seen from FIGS. 9 and 10, for example, using a pump pressure of 80 kg / cm 2 , the resistance pressure (kg / cm 2 ) changes even if the resistance pressure in the ground changes.
The flow rate from the nozzle is constant up to about 50 kg / cm 2 . That is, it can be seen from FIGS. 9 and 10 that there is a region where a constant discharge amount can be obtained despite the change in the ground resistance pressure.

【0040】[0040]

【発明の実施例】図11の注入システムを用いて本発明実
施例を説明する。注入管側壁に直径1.0mmの微細な噴射
口を有する注入口を備えた注入管を用い、A液、B液を
それぞれ10l/分で注入管内に送液すると、注入液は各
注入口に同一量づつ分配される。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described using the injection system of FIG. Using an injection pipe equipped with an injection port having a fine injection port with a diameter of 1.0 mm on the side wall of the injection pipe, and when the liquid A and the liquid B are respectively fed into the injection pipe at 10 l / min, the injection liquid is injected into each injection port. The same amount is distributed.
1

【0041】したがって、A液側管路に5個の噴射口
を、B液側管路に6個の噴射口を設けると、それぞれの
噴射量は2l/分、1.67/分となる。また、地上で管
内圧力を測定すると、A液側20kgf/cm2 、B液側15kgf/
cm2 となる。
Therefore, if five injection ports are provided in the A liquid side conduit and six injection ports are provided in the B liquid side conduit, the respective injection amounts are 2 l / min and 1.67 / min. Also, when the pipe pressure is measured on the ground, A liquid side is 20 kgf / cm 2 , B liquid side is 15 kgf / cm 2 .
It becomes cm 2 .

【0042】図11のPA、PBの供給系路の場合は次の
ようになる。 瞬結グラウトの注入口におけるAB液の噴射比率(ゲル
化時間5秒)=1:1.67 瞬結グラウトの注入量:5.3l/分 緩結グラウトの注入におけるAB液の噴射比率(ゲル化
時間20分)=1:0.84 緩結グラウトの注入量:14.7l/分
In the case of the PA and PB supply system paths shown in FIG. 11, the process is as follows. Injection ratio of AB liquid at the injection port of instantaneous setting grout (gelation time 5 seconds) = 1: 1.67 Injection amount of instantaneous setting grout: 5.3 l / min Injection ratio of AB liquid during injection of slow setting grout (gel Infusion time 20 minutes) = 1: 0.84 loose grout injection rate: 14.7 l / min

【0043】A液の流量を10l/分とし、ゲル化時間を
短縮するために、さらにポンプPB′ラインを開き、B
液流量を15l/分にすると、次のようになる。A液側の
噴射口の噴射量は2l/分、B液側の噴射口の噴射量は
15÷6=2.5l/分。したがって、前記瞬結グラウトの
注入口におけるAB液の噴射比率は2:2.5×2=2:
5=1:2.5に変わり、ゲル化時間は15秒(図12) とな
り、前記緩結グラウトの注入口におけるAB液の噴射比
率は2:2.5=1:1.25に変わり、ゲル化時間は5秒に
なる。(図12)
The flow rate of the liquid A was 10 l / min, and in order to shorten the gelation time, the pump PB 'line was opened and
When the liquid flow rate is 15 l / min, the result is as follows. The injection amount of the A liquid side injection port is 2 l / min, and the injection amount of the B liquid side injection port is
15 ÷ 6 = 2.5 l / min. Therefore, the injection ratio of the AB liquid at the inlet of the instantaneous setting grout is 2: 2.5 × 2 = 2:
5 = 1: 2.5, the gelation time became 15 seconds (Fig. 12), and the injection ratio of AB liquid at the inlet of the slow-flowing grout changed to 2: 2.5 = 1: 1.25, resulting in gelation. The time will be 5 seconds. (Fig. 12)

【0044】このように、AB液の送液比を変えれば、
それに応じて上部注入口、下部注入口における噴射比率
も変化し、それに対応した複数のゲル化時間を得ること
ができる。
Thus, if the liquid feed ratio of AB liquid is changed,
In response to this, the injection ratios at the upper injection port and the lower injection port also change, and it is possible to obtain a plurality of gelation times corresponding thereto.

【0045】使用注入液 A液:酸性珪酸水溶液 モル比2.7、比重1.32/20℃の水ガラスを用いて硫酸と
混合して、pH2.0の酸性珪酸水溶液を作液した。水ガ
ラス濃度は25容量%である。 B液:上記水ガラス25容量パーセント液 A液とB液の合流比率に対応したゲル化時間を図12に示
す。
Injection liquid used: Solution A: acidic silicic acid aqueous solution Water glass having a molar ratio of 2.7 and a specific gravity of 1.32 / 20 ° C. was mixed with sulfuric acid to prepare an acidic silicic acid aqueous solution having a pH of 2.0. The water glass concentration is 25% by volume. Solution B: 25% by volume solution of water glass The gelation time corresponding to the confluence ratio of solution A and solution B is shown in FIG.

【0046】注入液の送液 基本注入は図11のように、A液およびB液を10l/分注
入するものとし、瞬結注入として瞬結グラウトのみの注
入を行なうときは別のポンプを用いて図11の点線のよう
に5l/分加えてB液を15l/分注入した。
As shown in FIG. 11, the liquid A and the liquid B are injected at a rate of 10 l / min, and a separate pump is used to inject only the instantaneous grout as the instantaneous injection. Then, 5 l / min was added as shown by the dotted line in FIG. 11, and the solution B was injected at 15 l / min.

【0047】注入 推進工法における発進部で本発明を試験した。当現場は
地下水の高い比較的軟弱な粘性土と砂質土の複雑な互層
を呈する沖積地盤である。1mの注入口ピッチで本発明
を用い、GL−2.0〜5.0mの区間、注入深長1m当り
400lを注入した。注入ステージでは最下部から1m毎
に上部に移向した。
The invention was tested in the starting part of the injection propulsion method. The site is an alluvial soil with a complex alternation of relatively soft cohesive soil and sandy soil with high groundwater. Using the present invention with an inlet pitch of 1 m, a section of GL-2.0 to 5.0 m, per injection depth of 1 m
400 l was injected. In the injection stage, it moved from the bottom to the top every 1 m.

【0048】注入液の使用比率は瞬結注入10%、基本注
入90%である。最下部の注入ステージで一本当りの瞬結
注入を全量注入した上で、基本注入を注入深長1m当り
360lづつ注入しては注入ステージを移向した。
The use ratio of the injection liquid is 10% for instantaneous injection and 90% for basic injection. At the bottom of the injection stage, the total amount of instantaneous injection per injection is injected, and then the basic injection is performed per injection depth of 1 m.
After injecting 360 l each, the injection stage was moved.

【0049】注入後、発進部の切羽を観察したところ、
注入管まわりに直径15〜20cmの強固な固結体が形成さ
れ、その周辺に均質な固結体が形成され、かつ隣接する
注入管の固結体同志は完全に連続して固結していた。ま
た、地盤の隆起や注入液の地表面への逸脱は全く認めら
れなかった。
After injection, the face of the starting part was observed,
A strong solidified body with a diameter of 15 to 20 cm is formed around the injection tube, a homogeneous solidified body is formed around it, and the solidified bodies of the adjacent injection tubes are completely continuous and solidified. It was In addition, neither uplift of the ground nor deviation of the injected liquid to the ground surface was observed.

【0050】図13は本発明注入管の注入口を上方まで連
続して設置したときの注入状態を表した模式図である。
この場合、注入ステージを上方に引き上げなくても、一
本の注入管で全ステージを一度に注入することができ
る。何となれば、吐出口を多くしても、各吐出口のゲル
化時間が異なっても、また周辺地盤の注入抵抗が異なっ
ても、所定の注入が確保でき、かつ、ゲル化時間の短い
注入液の注入口3aとゲル化時間の長い注入液の注入口
3bからの注入を同時に行なった場合、ゲル化時間の短
い注入液は脈状が主体となり、ゲル化時間の長い注入液
は土粒子間浸透が主体となり、このため前者の方が早く
周辺の粗い部分や弱い部分を填充し、後者はそのあとで
ゆるやかに細かい部分に浸透していくことになるから、
確実な複合注入が可能であるからである。なお、図13に
おいて、ゲル化時間の短い注入液の注入口と長い注入液
の注入口は上下方向に交互に設けてもよいのはもちろん
である。
FIG. 13 is a schematic view showing the injection state when the injection port of the injection pipe of the present invention is continuously installed up to the upper side.
In this case, it is possible to inject all the stages at once with one injection tube without pulling the injection stage upward. What is required is that even if the number of discharge ports is increased, the gelation time of each discharge port is different, and the injection resistance of the surrounding ground is different, the prescribed injection can be secured and the injection with a short gelation time is possible. When the injection port 3a for the liquid and the injection port 3b for the long gelation time are simultaneously injected, the injection liquid for the short gelation time is mainly composed of veins, and the injection liquid for the long gelation time is the soil particles. Since the penetration mainly takes place, the former will fill the rough and weak areas around the area earlier, and the latter will gradually penetrate into the smaller areas.
This is because reliable composite injection is possible. Note that, in FIG. 13, the injection port for the injection liquid having a short gel time and the injection port for the long injection liquid may be alternately provided in the vertical direction.

【0051】図14および図15は本発明にかかる他の具体
例の説明図であって、注入管Xを所定の注入対象地盤Y
に複数本設置し、これら注入管Xに同時にA液・B液
を、ポンプPA、PB、PA′、PB′を介して送液
し、地盤Yを注入固結する例である。この場合、施工能
率ははかり知れないほど向上される。
FIGS. 14 and 15 are explanatory views of another specific example according to the present invention, in which the injection pipe X is replaced with a predetermined ground Y to be injected.
In this example, a plurality of liquids A and B are simultaneously supplied to these injection pipes X via pumps PA, PB, PA ', PB' to inject and solidify the ground Y. In this case, the construction efficiency is immeasurably improved.

【0052】[0052]

【発明の効果】以上のとおり、本発明は固結時間(ゲル
化時間)の異なる複数の注入液を注入管の軸方向の異な
る複数の注入口から同時に注入することにより極めて迅
速かつ簡単に地盤を固結し得ることはもちろん、これら
注入口から注入されるゲル化時間の異なる注入液のゲル
化時間をタイムラグを生じることなく変化し得、実用上
有用な発明である。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, a plurality of injection liquids having different setting times (gelation times) are simultaneously injected from a plurality of injection ports in different axial directions of the injection pipe, which makes the ground extremely quick and easy. Of course, it is possible to change the gelation time of the injection liquids having different gelation times injected from these injection ports without causing a time lag, which is a practically useful invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる地盤注入システムの一具体例の
フローシートである。
FIG. 1 is a flow sheet of a specific example of a ground injection system according to the present invention.

【図2】本発明に用いられる注入管の一具体例の側面図
である。
FIG. 2 is a side view of a specific example of an injection tube used in the present invention.

【図3】図2における瞬結注入管体の拡大断面図であっ
て、(a)は穿孔中、(b)は注入中の状態をそれぞれ
示し、(c)は注入口の断面図である。
3A and 3B are enlarged cross-sectional views of the instantaneous injection tube body in FIG. 2, where FIG. 3A is a state during perforation, FIG. 3B is a state during injection, and FIG. 3C is a cross-sectional view of an injection port. .

【図4】図2における緩結注入管体の拡大断面図であっ
て、(a)は穿孔中、(b)は注入中の状態をそれぞれ
示し、(c)は注入口の断面図である。
4A and 4B are enlarged cross-sectional views of the loose injection tube body in FIG. 2, in which FIG. 4A shows a state during perforation, FIG. 4B shows a state during injection, and FIG. 4C is a sectional view of an injection port. .

【図5】図2における注入管末端部の拡大断面図であっ
て、(a)は穿孔中、(b)は注入中の状態をそれぞれ
示す。
5 is an enlarged cross-sectional view of the distal end portion of the injection tube in FIG. 2, (a) showing a state during perforation and (b) showing a state during injection.

【図6】本発明にかかる他の形式の注入管の断面図であ
って、掘削水の送液状態を示す。
FIG. 6 is a cross-sectional view of another type of injection pipe according to the present invention, showing a state in which drilling water is being sent.

【図7】図6の形式の注入管の断面図であって、注入状
態を示す。
FIG. 7 is a cross-sectional view of an injection tube of the type shown in FIG. 6, showing the injection state.

【図8】本発明にかかる注入口の具体例の断面図であっ
て、(a)は外管管路に通じる吐出口が二個、内管管路
に通じる吐出口が一個の例であり、(b)は外管管路に
通じる吐出口が一個、内管管路に通じる吐出口が一個の
例である。
FIG. 8 is a cross-sectional view of a specific example of the injection port according to the present invention, in which (a) is an example in which two discharge ports communicate with the outer pipe line and one discharge port communicates with the inner pipe line. , (B) is an example in which one discharge port communicates with the outer pipe line and one discharge port communicates with the inner pipe line.

【図9】ノズル口径Φ1.0mm についてのポンプ圧変化に
よる抵抗圧力とノズルからの流量との関係を表したグラ
フである。
FIG. 9 is a graph showing a relationship between a resistance pressure and a flow rate from a nozzle due to a change in pump pressure for a nozzle diameter Φ1.0 mm.

【図10】ノズル口径Φ1.5mm についてのポンプ圧変化
による抵抗圧力とノズルからの流量との関係を表したグ
ラフである。
FIG. 10 is a graph showing a relationship between a resistance pressure and a flow rate from a nozzle due to a change in pump pressure for a nozzle diameter Φ1.5 mm.

【図11】本発明システムの具体例のフローシートであ
る。
FIG. 11 is a flow sheet of a specific example of the system of the present invention.

【図12】B液/A液の比率とゲル化時間との関係を表
したグラフである。
FIG. 12 is a graph showing the relationship between the ratio of solution B / solution A and the gelation time.

【図13】本発明の変形例の注入状態を表した模式図で
ある。
FIG. 13 is a schematic diagram showing an injection state of a modified example of the present invention.

【図14】複数本の注入管を用いた本発明にかかる他の
具体例の説明図である。
FIG. 14 is an explanatory diagram of another specific example according to the present invention using a plurality of injection tubes.

【図15】複数本の注入管を用いた本発明にかかるさら
に他の具体例の説明図である。
FIG. 15 is an explanatory diagram of still another specific example according to the present invention using a plurality of injection tubes.

【符号の説明】[Explanation of symbols]

1 外管 2 内管 3 注入口 6 外管管路 6a 外管管路 9 内管管路 11 吐出口 12 吐出口 13 しゃ閉層 14 閉束体 a 瞬結注入管体 b 緩結注入管体 X 二重管 I 貯溜系統 II 注入系統 III 供給系統 1 Outer pipe 2 Inner pipe 3 Injection port 6 Outer pipe line 6a Outer pipe line 9 Inner pipe line 11 Discharge port 12 Discharge port 13 Closed layer 14 Closed bundle a Instant blink injection pipe b Loose injection pipe X Double pipe I Storage system II Injection system III Supply system

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 主材配合液および反応剤配合液を貯溜す
る貯溜系統と、地盤中に設置され、前記貯溜系統に接続
された注入系統と、前記貯溜系統と前記注入系統の間に
配置され、前記貯溜系統の配合液を前記注入系統に供給
する供給系統とから構成され、前記貯溜系統は一つまた
は複数の主材配合液槽および一つまたは複数の反応剤配
合液槽を含み、前記注入系統は少なくとも二つの管路
A、Bを有するとともに、軸方向の異なる位置に複数の
注入口を有する注入管からなり、前記注入口には一方の
管路Aと通じる吐出口が設けられ、かつ前記注入口の少
なくとも一つには他方の管路Bと通じる吐出口が設けら
れ、前記供給系統は前記主材配合液槽および管路Aを接
続するポンプPAと、前記反応剤配合液槽および管路B
を接続するポンプPBと、前記主材配合液槽と管路A、
または前記反応剤配合液槽と管路Bを接続する他の少な
くとも一つのポンプを備えてなる地盤注入システム。
1. A storage system for storing a main material mixed solution and a reactant mixed solution, an injection system installed in the ground and connected to the storage system, and arranged between the storage system and the injection system. A supply system for supplying the liquid mixture of the storage system to the injection system, the storage system including one or more main material mixture liquid tanks and one or more reactant mixture liquid tanks, The injection system has at least two conduits A and B, and is composed of an injection pipe having a plurality of injection ports at different axial positions, and the injection port is provided with a discharge port communicating with one of the conduits A, Further, at least one of the injection ports is provided with a discharge port that communicates with the other pipe line B, and the supply system is a pump PA that connects the main material mixture liquid tank and the pipe line A, and the reactant mixture liquid tank. And pipeline B
A pump PB for connecting the above, the main material mixture liquid tank and the pipeline A,
Alternatively, a ground injection system including at least one other pump that connects the reactant mixture tank and the pipeline B.
【請求項2】 前記複数の注入口のうち、少なくとも二
つは一方の管路Aからの吐出量と他方の管路Bからの吐
出量の流量比率が異なるように、吐出口の数または口径
を変化させてなる請求項1の地盤注入システム。
2. The number or diameter of the outlets is set so that at least two of the plurality of inlets have different flow rate ratios of the discharge amount from one pipeline A and the discharge amount from the other pipeline B. The ground injection system according to claim 1, wherein
【請求項3】 少なくとも管路Aと通じる吐出口は噴射
口である請求項1の地盤注入システム。
3. The ground injection system according to claim 1, wherein at least the discharge port communicating with the conduit A is an injection port.
JP18033492A 1992-06-15 1992-06-15 Ground injection system Expired - Fee Related JP3151637B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP18033492A JP3151637B2 (en) 1992-06-15 1992-06-15 Ground injection system
TW81106232A TW226422B (en) 1992-06-15 1992-08-06 Ground injection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18033492A JP3151637B2 (en) 1992-06-15 1992-06-15 Ground injection system

Publications (2)

Publication Number Publication Date
JPH0649836A true JPH0649836A (en) 1994-02-22
JP3151637B2 JP3151637B2 (en) 2001-04-03

Family

ID=16081409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18033492A Expired - Fee Related JP3151637B2 (en) 1992-06-15 1992-06-15 Ground injection system

Country Status (2)

Country Link
JP (1) JP3151637B2 (en)
TW (1) TW226422B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58218511A (en) * 1982-02-06 1983-12-19 Nippon Sogo Bosui Kk Control method and apparatus for grout injection pipe
JPS60252685A (en) * 1984-05-29 1985-12-13 Kouen Shoji Kk Composite impregnation method
JPS6483719A (en) * 1987-09-28 1989-03-29 Kyokado Eng Co Grout injection tube for ground
JPH01163310A (en) * 1987-12-18 1989-06-27 Chikoushiya:Kk Ground grouting work
JPH02204520A (en) * 1989-01-31 1990-08-14 Nippon Soiru Kogyo Kk Ground improving construction and device therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58218511A (en) * 1982-02-06 1983-12-19 Nippon Sogo Bosui Kk Control method and apparatus for grout injection pipe
JPS60252685A (en) * 1984-05-29 1985-12-13 Kouen Shoji Kk Composite impregnation method
JPS6483719A (en) * 1987-09-28 1989-03-29 Kyokado Eng Co Grout injection tube for ground
JPH01163310A (en) * 1987-12-18 1989-06-27 Chikoushiya:Kk Ground grouting work
JPH02204520A (en) * 1989-01-31 1990-08-14 Nippon Soiru Kogyo Kk Ground improving construction and device therefor

Also Published As

Publication number Publication date
TW226422B (en) 1994-07-11
JP3151637B2 (en) 2001-04-03

Similar Documents

Publication Publication Date Title
CN107755421A (en) A kind of contaminated site original position is rapidly injected repair system
CN207463808U (en) A kind of contaminated site is rapidly injected repair system in situ
CN105386435B (en) It is a kind of to be used for the double-liquid grouting system and its construction technology of cement and water glass solution
KR102234214B1 (en) Fast permeating method and system for grouting of weak ground
JP5824588B1 (en) Vacuum grout injection method
JPH0649836A (en) Grouting system
JP2014129675A (en) Ground reinforcement method and injection system
CN207619995U (en) A kind of material for diaphragm wall of Cofferdam construction high-pressure rotary jet grouting pile equipment
CN212129147U (en) Multi-section sleeve valve pipe layered grouting device
CN205314085U (en) A biliquid slip casting system that is used for cement and water glass solution
KR910009253B1 (en) Production device for impregnating material for ground
JPH0649974B2 (en) Ground injection method
JP3919739B2 (en) Ground injection device and ground injection method
TWI260361B (en) Ground grouting device and ground grouting construction method
JPH07324327A (en) Ground impregnation method
JPH0830332B2 (en) Ground injection method
JPS62185922A (en) Expanded mortar injection work in shield tunnel
CN217811045U (en) Double-barrelled slip casting device
JPH0565649B2 (en)
JPH06212620A (en) Method of ground impregnation construction
JPH0250278B2 (en)
CN200964633Y (en) Hybrid grouting device for plugging high pressure underground water
JPH05195525A (en) Ground grouting work
KR101588707B1 (en) Special terminal apparatus for chemical grouting using air
JP2014105522A (en) Grout injection method and device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees