JPH0830332B2 - Ground injection method - Google Patents

Ground injection method

Info

Publication number
JPH0830332B2
JPH0830332B2 JP4161719A JP16171992A JPH0830332B2 JP H0830332 B2 JPH0830332 B2 JP H0830332B2 JP 4161719 A JP4161719 A JP 4161719A JP 16171992 A JP16171992 A JP 16171992A JP H0830332 B2 JPH0830332 B2 JP H0830332B2
Authority
JP
Japan
Prior art keywords
injection
liquid
pipe
ground
pipe line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4161719A
Other languages
Japanese (ja)
Other versions
JPH0633446A (en
Inventor
健二 栢原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyokado Engineering Co Ltd
Original Assignee
Kyokado Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyokado Engineering Co Ltd filed Critical Kyokado Engineering Co Ltd
Priority to JP4161719A priority Critical patent/JPH0830332B2/en
Publication of JPH0633446A publication Critical patent/JPH0633446A/en
Publication of JPH0830332B2 publication Critical patent/JPH0830332B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は固結時間の異なる複数
の注入液を地盤中に注入して該地盤を固結する複合注入
工法に係り、特に固結時間の異なる複数の注入液を複数
の注入口から同時に注入することにより極めて迅速かつ
簡単に地盤を固結し得る地盤注入工法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite injection method for injecting a plurality of injection liquids having different setting times into the ground to consolidate the ground, and particularly to a plurality of injection solutions having different setting times. The present invention relates to a ground injection method capable of solidifying the ground extremely quickly and easily by simultaneously injecting the water from the injection port.

【0002】[0002]

【従来の技術】複雑な地盤を改良する技術として一般
に、固結時間の短いグラウトならびに長いグラウトを地
盤中に注入する、いわゆる複合注入工法が用いられる。
この種の複合注入工法として、従来、二重管を用いてま
ず、固結時間の短いグラウトを地盤中に注入して粗い部
分、弱い部分あるいは注入管まわりの空隙を填充し、そ
の後固結時間の長いグラウトを土粒子間注入して地盤中
に浸透させる工法が知られている。
2. Description of the Related Art Generally, a so-called composite pouring method is used as a technique for improving a complicated ground, in which a grout having a short setting time and a grout having a long setting time are poured into the ground.
Conventionally, this type of composite pouring method uses a double pipe to inject grout with a short setting time into the ground to fill the rough parts, weak parts or voids around the injection pipe, and then set the setting time. It is known that a long grout is injected between soil particles to penetrate into the ground.

【0003】上述の複合注入工法において、固結時間の
短いグラウトを二重管の上部吐出口から、また、固結時
間の長いグラウトを二重管の下部吐出口から、それぞれ
同時に注入する注入工法もまた、知られている。
In the above-mentioned composite injection method, an injection method in which grout having a short setting time is injected from the upper discharge port of the double pipe and grout having a long setting time is injected from the lower discharge port of the double pipe at the same time. Is also known.

【0004】さらに、三重管を用いて二つの管路から別
々に送液された二液の合流液(固結時間の短い注入液)
を上部吐出口から注入し、同時に下部吐出口から固結時
間の長いグラウトを注入する複合注入工法が知られてい
る。
Furthermore, a confluent liquid of two liquids separately fed from two pipe lines using a triple pipe (injection liquid having a short setting time)
There is known a composite injection method in which grouting is injected from the upper discharge port and simultaneously grout having a long setting time is injected from the lower discharge port.

【0005】[0005]

【発明が解決しようとする問題点】しかし、二重管を用
いる前者の工法では、固結時間の異なるグラウトが別々
に注入されるため、注入の際にこれらグラウトの切り換
えが必要となり、このため操作が複雑化されて迅速かつ
簡単な注入が不可能である。さらに、この工法では送液
量を多くできず、施工能率が低い。
However, in the former construction method using a double pipe, grouts having different setting times are separately injected, and therefore it is necessary to switch these grouts during injection. The operation is complicated and quick and easy injection is not possible. Furthermore, this method cannot increase the amount of liquid to be sent, resulting in low construction efficiency.

【0006】また、三重管を用いる後者の工法では、固
結時間の異なるグラウトの同時注入が可能となるが、三
重管であるため注入管孔径が大きくなり、削孔費が高
く、かつ施工能率が悪くなる。さらに、この工法では主
材、瞬結用反応剤配合液および緩結用反応剤配合液の配
合調整が必要で、複雑となる。
In the latter method using a triple pipe, it is possible to inject grout with different setting times at the same time, but since it is a triple pipe, the diameter of the injection pipe hole is large, the drilling cost is high, and the construction efficiency is high. Becomes worse. Furthermore, this method requires complex adjustments of the main material, the reaction mixture composition for flash setting, and the reaction composition preparation for slow setting, which is complicated.

【0007】また、上述において、ゲル化時間の異なる
グラウトを別々の吐出口から注入しても、これが二重管
であっても、三重管であっても、注入されたゲル化時間
の異なるグラウトは注入管まわりの空隙を通して連通し
合い、混合されて同一のゲル化時間のグラウトとなって
しまい、複合注入が達成され得ない。
Further, in the above description, even if grouts having different gelling times are injected from different outlets, whether they are double tubes or triple tubes, the grouts having different gelling times are injected. Communicate with each other through the voids around the injection tube and are mixed into grout with the same gelling time, so that composite injection cannot be achieved.

【0008】通常、注入工法が対象とする地盤は軟弱地
盤であるが、この地盤では地盤生成過程において透水性
の異なる層が水平方向に帯積するのが通例である。透水
係数は垂直方向よりも水平方向が大きく、このため、注
入された注入液(グラウト)は注入管を通して透水係数
の大きな層に逸脱する。
Usually, the ground to which the pouring method is applied is soft ground, but in this ground, it is customary that layers having different water permeability are piled up in the horizontal direction during the ground formation process. The hydraulic conductivity is larger in the horizontal direction than in the vertical direction, so that the injected injection liquid (grout) deviates through the injection pipe into a layer having a high hydraulic conductivity.

【0009】そこで、本発明の目的は固結時間の異なる
複数の注入液を複数の注入口から同時に注入することに
より極めて迅速かつ簡単に地盤を固結し得ることはもち
ろん、注入管まわりで上下位置から注入された注入液を
互いに混合させないで、それぞれ独立して地盤中に噴出
して注入せしめ、上述の公知技術に存する欠点を改良し
た地盤注入工法を提供することにある。
Therefore, the object of the present invention is not only to extremely rapidly and easily consolidate the ground by simultaneously injecting a plurality of injecting liquids having different consolidating times from a plurality of injecting ports, but also to raise and lower the ground around the injecting pipe. It is an object of the present invention to provide a ground injection method in which the drawbacks of the above-mentioned known art are improved by allowing the injection liquids injected from the positions not to be mixed with each other and to be ejected and injected into the ground independently.

【0010】[0010]

【問題点を解決するための手段】上述の目的を達成する
ため、本発明によれば、少なくとも二つの管路を有し、
かつ軸方向の異なる位置に複数の注入口を有する注入管
を用いて地盤中に注入液を注入する地盤注入工法であっ
て、前記各注入口には一方の管路Aと通じる吐出口が設
けられ、かつ前記注入口の少なくとも一つには他方の管
路Bと通じる吐出口が設けられ、前記複数の注入口のう
ち、少なくとも二つは一方の管路Aからの吐出量と他方
の管路Bからの吐出量の流量比率が異なるように形成さ
れた注入管を用い、一方の管路Aから該注入液の主材配
合液を送り、他方の管路Bからの該注入液の反応剤配合
液を送液し、固結時間の異なる複数の注入液を前記複数
の注入口からそれぞれ同時に注入することを特徴とし、
前記注入液は該注入管の管路Aおよび管路Bにそれぞれ
送液される配合液をその流量比率で合流した場合、固結
時間が15分以内で、かつ短い方の固結時間が30秒以内で
あることを特徴とする。
In order to achieve the above object, according to the invention, there is at least two conduits,
A ground injection method for injecting an injection liquid into the ground by using an injection pipe having a plurality of injection ports at different axial positions, wherein each injection port is provided with a discharge port communicating with one pipeline A. And at least one of the injection ports is provided with a discharge port that communicates with the other pipe line B, and at least two of the plurality of injection ports are discharged from one pipe line A and the other pipe line. Using an injection pipe formed so that the flow rate ratio of the discharge amount from the passage B is different, the main material mixture liquid of the injection liquid is sent from one of the passages A, and the reaction of the injection liquid from the other passage B is performed. It is characterized in that the agent mixture liquid is sent, and a plurality of injection liquids having different setting times are simultaneously injected from the plurality of injection ports, respectively.
When the above-mentioned injecting solution is obtained by merging the mixed liquids to be fed to the conduit A and the conduit B of the injecting pipe at the flow rate ratio, the setting time is within 15 minutes, and the shorter setting time is 30 minutes. It is characterized by being within seconds.

【0011】[0011]

【発明の具体的説明】以下、本発明を添付図面を用いて
さらに詳細に説明する。図1は本発明に用いられる二重
管Xの一具体例の側面図であって、外管1と、その内部
に配置される内管2とから基本的に構成される。この二
重管Xは瞬結注入管体aおよび緩結注入管体bを含み、
瞬結注入管体aはゲル化時間の短い注入液を注入する注
入口3を有し、緩結注入管体bはゲル化時間の長い注入
液を注入する注入口3、3…3を有する。これら注入管
体a、bは図1では瞬結注入管体aを二重管Xの上部
に、緩結注入管体bを下部にそれぞれ配置したが、この
配置は二重管Xの任意の個所に係合設置される。cは二
重管Xの末端部、4はメタルクラウンである。
DETAILED DESCRIPTION OF THE INVENTION The present invention will now be described in more detail with reference to the accompanying drawings. FIG. 1 is a side view of a specific example of the double pipe X used in the present invention, which is basically composed of an outer pipe 1 and an inner pipe 2 arranged therein. The double pipe X includes a flash injection pipe a and a slow injection pipe b,
The instantaneous setting injection pipe a has an injection port 3 for injecting an injection liquid having a short gelation time, and the loosening injection pipe b has injection ports 3, 3, ... 3 for injecting an injection liquid having a long gelation time. . In these injection tubes a and b, the instantaneous injection tube a is arranged in the upper part of the double tube X and the loose injection tube b is arranged in the lower part in FIG. 1, but this arrangement is arbitrary. Engagement is installed at a point. c is the end of the double tube X, and 4 is a metal crown.

【0012】図2は図1における瞬結注入管体aの拡大
断面図であって、図2(a)は穿孔中、図2(b)は注
入中の状態をそれぞれ示し、図2(c)は瞬結注入管体
aの注入口3の断面図を示す。
FIG. 2 is an enlarged cross-sectional view of the instant injection pipe body a in FIG. 1, FIG. 2 (a) shows a state during perforation, FIG. 2 (b) shows a state during injection, and FIG. ) Shows a sectional view of the injection port 3 of the instantaneous injection pipe a.

【0013】図3は図1における緩結注入管体bの拡大
断面図であって、図3(a)は穿孔中、図3(b)は注
入中の状態をそれぞれ示し、図3(c)は緩結注入管体
bの注入口3、3…3の断面図を示す。
FIG. 3 is an enlarged sectional view of the loose injection tube body b in FIG. 1. FIG. 3 (a) shows a state during perforation, FIG. 3 (b) shows a state during injection, and FIG. 3) shows a cross-sectional view of the injection ports 3, 3 ... 3 of the loose injection tube b.

【0014】図4は図1における二重管Xの末端部cの
部分の拡大断面図であって、図4(a)は穿孔中、図4
(b)は注入中の状態をそれぞれ示す。
FIG. 4 is an enlarged sectional view of the end portion c of the double pipe X in FIG. 1, and FIG.
(B) shows the state during injection.

【0015】まず、図2(a)に示されるように、外管
1の管路6を通じて穿孔水を矢印方向に送液する。この
穿孔水は図4(a)に示されるように、末端部cに送液
され、弁7のバネ8を押し下げて管路6aを開通し、こ
の開通された管路6aを通って地盤中に吐出され、二重
管Xを所定の深度に設定する。このとき、図2(a)お
よび図3(a)の注入口3は金属製または合成樹脂製の
開閉チップ5で閉束されているので、ここから穿孔水が
もれることはない。
First, as shown in FIG. 2A, perforated water is fed in the direction of the arrow through the conduit 6 of the outer tube 1. As shown in FIG. 4 (a), this drilling water is sent to the end portion c, the spring 8 of the valve 7 is pushed down to open the pipe 6 a, and the pipe 6 a is opened to the ground. And the double pipe X is set to a predetermined depth. At this time, since the inlet 3 shown in FIGS. 2A and 3A is closed by the opening / closing tip 5 made of metal or synthetic resin, the perforated water does not leak from here.

【0016】次いで、図2(b)に示されるように、外
管管路6から主材配合液Aを、内管管路9から反応剤配
合液Bをそれぞれ矢印方向に送液すると、まず、反応剤
配合液Bは図4(b)に示されるように、末端部cでシ
リンダ10を落下せしめて外管管路6aを閉じるこの結
果、内管管路9内の反応剤配合液Bは加圧状態となり、
図2(a)および図3(a)の閉束チップ5を配合液B
の圧力によって外側に吹き飛ばし、注入口3を開孔す
る。
Next, as shown in FIG. 2 (b), when the main material mixture liquid A is fed from the outer pipe line 6 and the reactant mixture liquid B is fed from the inner pipe line 9 in the directions of the arrows, first, As shown in FIG. 4 (b), the reactant mixture liquid B is dropped at the terminal end c to close the outer pipe line 6 a. As a result, the reagent mixture liquid B in the inner pipe line 9 Is under pressure,
The closed bundle tip 5 shown in FIGS.
It is blown off to the outside by the pressure of, and the injection port 3 is opened.

【0017】注入口3は図2(b)、(c)および図3
(b)、(c)に示されるように、一方の管路A、例え
ば外管管路6と通じる吐出口11、11…11が設けられ、か
つ、この注入口3の少なくとも一つには、他方の管路
B、例えば内管管路9と通じる吐出口12が設けられる。
The inlet 3 is shown in FIGS. 2 (b), (c) and FIG.
As shown in (b) and (c), discharge ports 11, 11 ... 11 communicating with one pipeline A, for example, the outer pipeline 6, are provided, and at least one of the injection ports 3 is provided. A discharge port 12 communicating with the other pipeline B, for example, the inner pipeline 9 is provided.

【0018】さらに、これら複数の注入口3、3…3の
うち、少なくとも二つは一方の管路A(外管管路6)か
らの吐出量と他方の管路B(内管管路9)からの吐出量
の流量比率が異なるように形成される。具体的には、例
えば、一つの注入口3は図2(a)、(b)、(c)、
特に図2(c)に明示されるように、外管管路6に通じ
る吐出口11(口径Φ1.0mm)を1個設けるとともに、内管
管路9に通じる吐出口12(それぞれ口径Φ1.0mm)を2個
設け、また、他の一つの注入口3は図3(a)、
(b)、(c)、特に図3(c)に明示されるように、
外管管路6に通じる吐出口11(口径Φ1.0mm)および内管
管路9に通じる吐出口12(口径Φ1.0mm)をそれぞれ1個
づつ設ける。この結果、一方の管路Aに通じる吐出口11
と他方の管路Bに通じる吐出口12の数の比率を変化させ
た少なくとも二つの注入口3が形成されることになり、
これら少なくとも二つの注入口3は一方の管路Aからの
吐出量と他方の管路Bからの吐出量の流量比率が異なる
ように形成される。
Further, at least two of the plurality of inlets 3, 3, ... 3 are discharged from one conduit A (outer conduit 6) and the other B (inner conduit 9). 2) are formed so that the flow rate ratios of the discharge amounts from) are different. Specifically, for example, one injection port 3 is shown in FIGS. 2 (a), (b), (c),
In particular, as clearly shown in FIG. 2C, one discharge port 11 (diameter Φ1.0 mm) communicating with the outer pipe conduit 6 is provided, and a discharge port 12 (respectively diameter Φ1.mm) communicating with the inner pipe conduit 9 is provided. 2 (0 mm), and the other one injection port 3 is shown in FIG.
(B), (c), especially as clearly shown in FIG. 3 (c),
Discharge ports 11 (diameter Φ1.0 mm) communicating with the outer pipe line 6 and discharge ports 12 (diameter Φ1.0 mm) communicating with the inner pipe line 9 are provided one by one. As a result, the discharge port 11 leading to the one pipeline A
And at least two inlets 3 having different ratios of the number of outlets 12 communicating with the other conduit B are formed,
These at least two inlets 3 are formed so that the flow rate ratio of the discharge amount from one conduit A and the discharge amount from the other conduit B is different.

【0019】図2(a)および図3(a)の閉束チップ
5がはずされて注入口3が開孔されると、図2 (b)、
(c)および図3 (b)、(c)に示されるように、主
材配合液Aおよび反応剤配合液Bがそれぞれ吐出口11お
よび吐出口12から注出口3内に吐出され、混合されて固
結時間の異なる複数の注入液が形成される。
When the closed bundle tip 5 shown in FIGS. 2 (a) and 3 (a) is removed and the injection port 3 is opened, as shown in FIG. 2 (b),
As shown in (c) and FIGS. 3 (b) and 3 (c), the main material mixture liquid A and the reactant mixture liquid B are discharged from the discharge port 11 and the discharge port 12 into the spout 3, respectively, and mixed. As a result, a plurality of infusates having different setting times are formed.

【0020】これら複数の注入液は前述の各複数の注入
口3、3…3からそれぞれ同時に地盤中に注入される。
これら注入液は管路AおよびBから各注入口3、3…3
内に吐出される配合液の流量比率にしたがって、固結時
間が15分以内で、かつ短い方の固結時間が30秒以内とな
るように調整される。なお、本発明ではこれら注入液の
固結時間よりも長い注入液を併用することもできる。
The plurality of injection liquids are simultaneously injected into the ground through the plurality of injection ports 3, 3 ... 3 described above.
These injection liquids are supplied from the conduits A and B to the respective injection ports 3, 3, ... 3
The setting time is adjusted within 15 minutes and the shorter setting time is adjusted within 30 seconds according to the flow rate of the compounded liquid discharged into the inside. In addition, in the present invention, it is also possible to use an infusion solution longer than the setting time of these infusion solutions together.

【0021】上述の本発明において、主材配合液(A
液)は水ガラス配合液、またはそれ自体ゲル化し得るグ
ラウト(例えば、水ガラスと反応剤の混合液)であり、
また、反応剤配合液(B液)は前記主材配合液に適合す
る各種硬化剤、あるいはセメント懸濁液を含む配合液で
ある。
In the above-mentioned present invention, the main material mixture liquid (A
Liquid) is a water-glass compounded liquid, or a grout capable of gelling itself (for example, a liquid mixture of water glass and a reactant),
Further, the reactant mixture liquid (liquid B) is a mixture liquid containing various hardening agents or cement suspensions compatible with the main material mixture liquid.

【0022】これらA液、B液の注入口への流量比率は
1:1であってもよく、その他任意の流量比率に選定す
ることができる。また、この比率は注入途中で変化させ
てもよい。
The flow rate ratio of these liquids A and B to the inlet may be 1: 1 and can be selected to any other flow ratio. Further, this ratio may be changed during the injection.

【0023】図5、図6および図7(a)、(b)は他
の形式の注入管を用いた本発明工法を示す断面図であっ
て、図5は掘削水の送液状態を示し、図6は注入状態を
示し、図7(a)、(b)は注入口の例を示す。
FIGS. 5, 6 and 7 (a) and 7 (b) are sectional views showing the method of the present invention using another type of injection pipe, and FIG. 6 shows the injection state, and FIGS. 7 (a) and 7 (b) show examples of the injection port.

【0024】上述注入管は図1と同様、外管1および内
管2から構成される二重管Xであるが、内管2の末端に
は閉束体14が摺動自在に嵌合され、かつ軸方向の異なる
位置、すなわち、上下の異なる位置に三個の注入口3が
設けられる点、図1と異なる。しかも、これら注入口3
はそれぞれ、外管管路6に通じる吐出口11および内管管
路9に通じる吐出口12の数の比率が異なるものであり、
したがって、後述のように各注入口3で吐出混合される
AB合流液のゲル化時間が全て異なることになる。
The above-mentioned injection pipe is a double pipe X composed of an outer pipe 1 and an inner pipe 2 as in FIG. 1, but a closed bundle 14 is slidably fitted to the end of the inner pipe 2. 1, and three injection ports 3 are provided at different axial positions, that is, different vertical positions, which is different from FIG. Moreover, these inlets 3
Are different in the ratio of the numbers of the discharge ports 11 communicating with the outer pipe conduit 6 and the discharge ports 12 communicating with the inner pipe conduit 9, respectively.
Therefore, as will be described later, the gel times of the AB confluent liquids discharged and mixed at the respective inlets 3 are all different.

【0025】まず、図5に示されるように、各注入口3
に閉束チップ5を嵌めた状態で、外管管路6を通して掘
削水を送液しながらメタルクラウン4で掘削し、二重管
Xを地盤中の所定の深度に設定する。掘削水は各注入口
3に閉束チップ5が嵌められているから、ここからもれ
ることなく、外管管路6、および6aを通して地盤中に
吐出される。
First, as shown in FIG. 5, each inlet 3
With the closed bundle tip 5 fitted thereinto, the double pipe X is set at a predetermined depth in the ground by excavating the metal crown 4 while feeding the drilling water through the outer pipe line 6. Since the closed bundle tip 5 is fitted in each of the inlets 3, the drilling water is discharged into the ground through the outer pipe lines 6 and 6a without leaking.

【0026】掘削後、図6に示されるように、外管管路
6を通して主材配合液Aを、内管管路9を通して反応剤
配合液Bを、それぞれ矢印方向に送液すると、まず、反
応剤配合液Bは内管6の末端に嵌合された閉束体14を下
方に押し下げて外管管路6aを閉じる。この結果、外管
管路6は閉じられ、かつ内管管路9の反応剤配合液Bも
加圧状態となり、図6の閉束チップ5を吹きとばし、注
入口3を開く。
After excavation, as shown in FIG. 6, when the main material mixture liquid A is fed through the outer pipe line 6 and the reactant mixture liquid B is fed through the inner pipe line 9, respectively, first, The reactant mixture liquid B pushes down the closing bundle 14 fitted to the end of the inner pipe 6 to close the outer pipe line 6a. As a result, the outer pipe line 6 is closed, and the reagent mixture liquid B in the inner pipe line 9 is also in a pressurized state, and the closed bundle tip 5 in FIG. 6 is blown out and the injection port 3 is opened.

【0027】その後、この開孔された注入口3に外管管
路6のA液および内管管路9のB液がそれぞれ吐出口1
1、12を通じて吐出され、混合される。
Thereafter, the liquid A in the outer pipe line 6 and the liquid B in the inner pipe line 9 are respectively discharged into the discharge port 1 through the opened injection port 3.
It is discharged through 1 and 12 and mixed.

【0028】この注入口3は、例えば図7(a)に示さ
れるように、外管管路6に通じる二つの吐出口11、11
(各口径Φ1.0mm)および内管管路9に通じる一つの吐出
口12(口径Φ1.0mm)を有し、これらの吐出口11、12の数
の比率が2:1であり、また、図7(b)に示されるよ
うに、外管管路6に通じる一つの吐出口11(口径Φ1.0m
m)および内管管路9に通じる二つの吐出口12、12(それ
ぞれ口径Φ1.0mm)を有し、これらの吐出口11、12の数の
比率が1:2であり、さらに、図6に示されるように、
外管管路6および内管管路9に通じる吐出口11、12をそ
れぞれ1個を有し、これら吐出口11、12の数の比率が
1:1である。したがって、各注入口3におけるAB合
流液の流量比率が全て異なり、ゲル化時間の異なった注
入液が各注入口3から地盤中に注入される。
The injection port 3 is, for example, as shown in FIG. 7A, two discharge ports 11, 11 communicating with the outer pipe line 6.
(Each caliber Φ1.0 mm) and one discharge port 12 (caliber Φ1.0 mm) communicating with the inner pipe line 9 and the ratio of the numbers of these discharge ports 11 and 12 is 2: 1. As shown in FIG. 7 (b), one discharge port 11 (diameter Φ1.0 m that communicates with the outer pipe line 6
m) and the two outlets 12 and 12 (each having a diameter of Φ1.0 mm) communicating with the inner pipe line 9, and the ratio of the number of these outlets 11 and 12 is 1: 2. As shown in
Each of the outlets 11 and 12 communicating with the outer pipe line 6 and the inner pipe line 9 has one outlet, and the ratio of the number of these outlets 11 and 12 is 1: 1. Therefore, the flow rates of the AB confluents at the respective injection ports 3 are all different, and the injection liquids having different gel times are injected from the respective injection ports 3 into the ground.

【0029】一般に、地上部において、注入管内の流体
を吐出口から空気中に吐出する場合、注入管内圧力は吐
出口の大きさと流量に依存し、流量に対して吐出口径を
小さくしぼる程、また吐出口径に対して流量を大きくす
るほど、注入管内圧力、すなわち吐出圧力は大きくな
る。また、流量に対して吐出口径が大きいとき、あるい
は吐出口径に対して流量が小さいときには注入管内圧
力、すなわち吐出圧力は小さくなる。また、注入管管路
を通して圧送された流体は吐出口径の大きさに対応した
所定量が注入口から注入される。そして管内圧力が高い
ほど、注入口外部の抵抗圧が変化してもその注入量は変
動し難い。
Generally, in the above-ground portion, when the fluid in the injection pipe is discharged into the air from the discharge port, the pressure in the injection pipe depends on the size and flow rate of the discharge port, and the smaller the discharge port diameter with respect to the flow rate, The larger the flow rate with respect to the discharge port diameter, the higher the pressure in the injection pipe, that is, the discharge pressure. Further, when the discharge port diameter is large with respect to the flow rate, or when the flow rate is small with respect to the discharge port diameter, the injection pipe internal pressure, that is, the discharge pressure becomes small. Also, the fluid pumped through the injection pipe line is injected from the injection port in a predetermined amount corresponding to the size of the discharge port diameter. The higher the pressure inside the tube, the more difficult it is for the amount of injection to change even if the resistance pressure outside the injection port changes.

【0030】吐出口の口径は地上部において吐出口から
の注入材が注入管内流量に対して圧力を生じるように定
められ、この吐出圧力は好ましくは10kgf/cm2 、さらに
好ましくは15kgf/cm2 以上である。
The diameter of the discharge port is determined so that the injection material from the discharge port produces a pressure with respect to the flow rate in the injection pipe in the above-ground portion, and this discharge pressure is preferably 10 kgf / cm 2 , more preferably 15 kgf / cm 2. That is all.

【0031】本発明において、注入管の一方の管路に通
じる複数の吐出口から配合液を高圧(地上部で10kgf/cm
2 、好ましくは15kgf/cm2 )で吐出し、また他方の管路
に通じる吐出口からも配合液を高圧で吐出してもよく、
場合によっては管内圧力が殆どかからない程度に吐出し
てもよい。吐出口の孔径は0.2〜2.0mm程度が好まし
い。また、本発明において、管内圧力は数百kgf/cm2
あってもよい。さらに注入管には、気体や、注入液以外
の流体が地盤中に注入液とともに、あるいは注入液に先
行して圧入され、注入液が地盤中に浸透あるいは混合さ
れやすくすることもできる。
In the present invention, the compounded liquid is pressurized at a high pressure (10 kgf / cm above the ground) from a plurality of outlets communicating with one of the channels of the injection pipe.
2 , preferably 15 kgf / cm 2 ), and the compounded liquid may be discharged at high pressure from the discharge port leading to the other pipe line,
In some cases, the discharge may be performed so that the pressure in the pipe is hardly applied. The hole diameter of the discharge port is preferably about 0.2 to 2.0 mm. Further, in the present invention, the internal pressure of the tube may be several hundred kgf / cm 2 . Further, a gas or a fluid other than the injecting liquid may be pressed into the injection pipe together with the injecting liquid or in advance of the injecting liquid, so that the injecting liquid can be easily permeated or mixed into the ground.

【0032】さらに、本発明は異なるゲル化時間を正確
に設定しやすく、かつ注入中の抵抗圧力の変化にも注入
液の吐出口への吐出量が変化しにくいため、設定したゲ
ル化時間を正確に保持し得る。本発明において、A液お
よびB液の合流比率を変化させるには、吐出口の口径の
比率を変化させるか、吐出口の数の比率を変化させる。
Further, according to the present invention, different gelling times can be set accurately, and the amount of the injecting liquid discharged to the discharge port does not easily change even when the resistance pressure changes during injection. Can hold exactly. In the present invention, in order to change the merging ratio of the liquid A and the liquid B, the ratio of the diameters of the discharge ports is changed or the ratio of the number of discharge ports is changed.

【0033】さらに、本発明は注入管外壁部の空間でゲ
ル化時間の異なる注入液の混合を防止し、それぞれ、異
なるゲル化時間の注入液を独立して地盤中に注入し得
る。
Further, according to the present invention, it is possible to prevent the injection liquids having different gelling times from being mixed in the space of the outer wall of the injection pipe, and to inject the injection liquids having different gelling times into the ground independently.

【0034】一般に、パイプに同径の微細孔の吐出口を
n個設けたものに液体を高圧でポンピングすると、それ
ぞれの吐出口から1/nに均等分割された量の液体が噴
射される。流量を多くするほど管内圧力は高くなり、吐
出口外部の抵抗(地盤注入圧)に比較してはるかに高い
場合は、この外部の抵抗の影響を殆ど受けることなく均
等な量で吐出される。管内圧力が同じならば、吐出量は
吐出口径が大きい程多くなる。本発明に用いられる注入
管はこのようにして吐出されるA液とB液を注入口の混
合室で合流混合し、地盤中に注入するように構成され
る。
In general, when a liquid is pumped at a high pressure into a pipe provided with n discharge ports each having a fine hole of the same diameter, the liquid is sprayed from each discharge port in a uniformly divided amount of 1 / n. As the flow rate increases, the pipe pressure increases, and when the pressure is much higher than the resistance outside the discharge port (ground injection pressure), the discharge is performed in a uniform amount without being affected by the external resistance. If the pipe pressure is the same, the discharge amount increases as the discharge port diameter increases. The injection pipe used in the present invention is configured so that the liquid A and the liquid B thus discharged are combined and mixed in the mixing chamber of the injection port and injected into the ground.

【0035】[0035]

【作用】上述の本発明は軸方向の異なる位置に複数の注
入口を有する二重注入管であって、前記各注入口には一
方の管路Aと通じる吐出口が設けられ、かつ前記注入口
の少なくとも一つには他方の管路Bと通じる吐出口が設
けられ、前記複数の注入口のうち、少なくとも二つは一
方の管路Aからの吐出量と他方の管路Bからの吐出量の
流量比率が異なるように形成された注入管を用いるか
ら、固結時間の異なる複数の注入液を複数の注入口から
同時に注入し得、これにより極めて迅速かつ簡単に地盤
を固結し得るものである。
The present invention described above is a double injection pipe having a plurality of injection ports at different axial positions, each of the injection ports being provided with a discharge port communicating with one of the conduits A, and At least one of the inlets is provided with a discharge port that communicates with the other conduit B, and at least two of the plurality of inlets are discharged from one conduit A and discharged from the other conduit B. Since the injection pipes are formed so that the flow rate ratios of the amounts are different, it is possible to simultaneously inject a plurality of injecting liquids having different consolidating times from a plurality of injecting ports, which can consolidate the ground extremely quickly and easily. It is a thing.

【0036】さらに、本発明は主材配合液(A液)およ
び反応剤配合液(B液)の合流混合液のゲル化時間が15
分以内、好ましくは5分以内、さらに好ましくは1分以
内となるように配合し、かつ短い方のゲル化時間が30秒
以内、好ましくは15秒以内の瞬結性吐出液となるように
配合するから、注入管まわりで上下位置から注入された
注入液を互いに混合させないで、それぞれ独立して地盤
中に噴出し、注入せしめ得る。
Further, according to the present invention, the gelling time of the combined liquid mixture of the main material mixture liquid (A liquid) and the reactant mixture liquid (B liquid) is 15
Formulated to be within 5 minutes, preferably within 5 minutes, more preferably within 1 minute, and the shorter gelling time is within 30 seconds, preferably within 15 seconds. Therefore, the injection liquids injected from the upper and lower positions around the injection pipe can be ejected and injected independently into the ground without being mixed with each other.

【0037】すなわち、一方の注入口3から注入される
ゲル化時間の短い瞬結性注入液と、他方の注入口3から
注入されるゲル化時間がそれよりも長い注入液とは一部
が混じり合い、むらになった状態で注入管まわりの空隙
に注入され、填充されるが、このうち、瞬結性注入液は
浸透性が悪いから、図8(a)に示されるように、上下
注入口3、3まわりの空隙にまず填充され、しゃ閉層13
を形成し、一方、ゲル化時間の長い方の注入液は、図8
(b)に示されるように周辺の土粒子間に矢印方向に浸
透する。
That is, a portion of the instantaneous injection liquid having a short gel time injected from one injection port 3 and the injection liquid having a longer gelation time injected from the other injection port 3 are partially. The mixture is mixed and unevenly injected into the space around the injection pipe and filled, but of these, the instantaneous injection liquid has poor permeability, so as shown in FIG. The space around the inlets 3 and 3 is first filled, and the closing layer 13
On the other hand, on the other hand, the injection solution having a longer gelation time is shown in FIG.
As shown in (b), it penetrates in the arrow direction between the surrounding soil particles.

【0038】すなわち、図8(b)に示されるように、
注入管Xまわりの上下注入口3、3間の空隙を中心とし
てその周辺土も含めた円筒状の強固なしゃ閉層13が形成
され、この上で、ゲル化時間の長い方の注入液がしゃ閉
層13を破壊して土粒子間に矢印方向に浸透されるため、
上下注入液は混ざることがない。
That is, as shown in FIG.
A strong cylindrical closed layer 13 is formed around the space between the upper and lower inlets 3, 3 around the inlet pipe X, including the surrounding soil. Since the closed layer 13 is destroyed and penetrated in the direction of the arrow between the soil particles,
The top and bottom injections do not mix.

【0039】本発明に対して、土層が粗い場合は、一方
の注入液が10分以内、好ましくは1分以内、他方のゲル
化時間の短い方の注入液が15秒以内であってもよい。こ
の場合、注入対象領域全体を上記注入液で固結すること
になる。しかし、土層が細い層の場合は、注入管まわり
のみをA・B合流液で固結して一次注入とし、さらにゲ
ル化時間の長いA・B合流液を二次注入として地盤全体
を固結するのが望ましい。また、上記一次注入は各ステ
ージ毎に行なっても、最下部のみで行なっても、途中で
行なってもよい。
In contrast to the present invention, when the soil layer is rough, one injection solution is within 10 minutes, preferably one minute, and the other injection solution with a shorter gel time is within 15 seconds. Good. In this case, the entire injection target area is solidified with the injection liquid. However, when the soil layer is a thin layer, only the area around the injection pipe is solidified with the A / B confluent for primary injection, and the A / B confluent with a longer gelation time is secondary injected to solidify the entire ground. It is desirable to tie. Further, the primary injection may be carried out for each stage, only in the lowermost part, or in the middle.

【0040】以下、本発明における噴射による注入機能
について説明する。内径4cmの管にポンプで送水したと
ころ、ポンプ圧は殆ど生じない。この管の末端に噴射口
を設けた先端部を装着して噴射圧力(ポンプ圧)と吐出
量を測定した結果を図9および図10に示す。なお、比較
のために上記管に直径1cmの吐出口を3個有する先端部
を上記管の末端部に装着して1〜20l/mの送水を行なっ
たが、吐出圧力は殆ど認められなかった。
The injection function by injection in the present invention will be described below. When pumping water to a pipe with an inner diameter of 4 cm, almost no pump pressure is generated. 9 and 10 show the results of measuring the injection pressure (pump pressure) and the discharge amount by mounting the tip portion having the injection port at the end of this pipe. For comparison, a tip having three discharge ports each having a diameter of 1 cm was attached to the end of the pipe to feed water of 1 to 20 l / m, but almost no discharge pressure was observed. .

【0041】図9はノズル口径 1.0mm、図10は 1.5mmの
吐出口をそれぞれ有する先端部を管に装着し、ポンプ圧
を種々変え、ポンプ圧が所定圧を保つように水を送液
し、かつ噴射口の下流側も管路でつなげて管路内にバル
ブにより抵抗圧を作用せしめて地盤の抵抗圧力に相当す
る圧力を生ぜしめ、その場合の噴射口から吐出される流
量(l/分)と抵抗圧(kgf/cm2)を測定し、その結果を
表したグラフである。図9および図10から明らかなよう
に、例えばポンプ圧80kg/cm2を用いて説明すると、地盤
内における抵抗圧力(kg/cm2) が変化しても、抵抗圧力
50kg/cm2位まではノズルからの流量が一定である。すな
わち、地盤抵抗圧の変化にもかかわらず、一定の吐出量
が得られる領域が存在することが図9および図10からわ
かる。
FIG. 9 shows a nozzle having a nozzle diameter of 1.0 mm, and FIG. 10 has a tip portion having a discharge port of 1.5 mm, which is attached to a pipe, the pump pressure is changed variously, and water is fed so that the pump pressure maintains a predetermined pressure. Moreover, the downstream side of the injection port is also connected by a pipeline, and a resistance pressure is applied by a valve in the pipeline to generate a pressure corresponding to the resistance pressure of the ground, and the flow rate (l / Min) and resistance pressure (kgf / cm 2 ) were measured, and the results are shown in the graph. As can be seen from FIGS. 9 and 10, for example, using a pump pressure of 80 kg / cm 2 , the resistance pressure (kg / cm 2 ) changes even if the resistance pressure in the ground changes.
The flow rate from the nozzle is constant up to about 50 kg / cm 2 . That is, it can be seen from FIGS. 9 and 10 that there is a region where a constant discharge amount can be obtained despite the change in the ground resistance pressure.

【0042】[0042]

【発明の実施例】Examples of the invention

【実施例1】(1)図1に示す注入管(二重管)を用い
て実験を行なった。図1の注入管において、A液(外管
側)には6個、B液(内管側)には5個の吐出口を設け
た。したがって、A液は1/6、B液は1/5にそれぞ
れ均等分割されて吐出される。
Example 1 (1) An experiment was conducted using the injection tube (double tube) shown in FIG. In the injection pipe of FIG. 1, the liquid A (outer pipe side) was provided with six discharge ports, and the liquid B (inner pipe side) was provided with five discharge ports. Therefore, the A liquid is discharged equally divided into 1/6 and the B liquid into 1/5.

【0043】そこで、上段注入口にはA液側2個、B液
側1個の吐出口、下段注入口にはA液、B液共1個の吐
出口が配置され、上段注入口からはA液2/6、B液1
/5の混合液が、下段注入口からはA液1/6、B液1
/5の混合液がそれぞれ注入される。
Therefore, two A-side and one B-side outlets are arranged in the upper injection port, and one A- and B-liquid outlet is arranged in the lower injection port. A liquid 2/6, B liquid 1
/ 5 mixed solution is A solution 1/6, B solution 1 from the lower injection port
/ 5 mixed solution is injected respectively.

【0044】また、上段には1個の注入口が、下段には
4個の注入口が放射状に配置されており、上段からはA
液流量の2/6とB液流量の1/5が、下段全体として
はA液流量の(1/6)×4、B液流量の(1/5)×
4がそれぞれ注入されるように構成される。
Further, one inlet is arranged in the upper stage, and four inlets are radially arranged in the lower stage.
2/6 of the liquid flow rate and 1/5 of the B liquid flow rate are (1/6) × 4 of the A liquid flow rate and (1/5) × of the B liquid flow rate for the entire lower stage.
4 are each infused.

【0045】(2)注入条件 上述の注入管を用い、A液、B液の注入液をそれぞれ注
入液を10l/分で管内に送液すると、注入液は各注入口
に同一量づつ分配されて吐出する。したがって、A液側
管路に6ケの吐出口を、B液側管路5ケの吐出口を設け
た場合、それぞれ吐出量は、2l/分、1.67l/分とな
る。また、地上で管内圧力を測定すると、A液15kgf/cm
2 、B液20kgf/cm2 であった。
(2) Injecting conditions Using the above-mentioned injecting pipe, when injecting the injecting liquids of the liquid A and the liquid B into the pipes at 10 l / min, the injecting liquids are distributed to the respective inlets in the same amount. To discharge. Therefore, when 6 discharge ports are provided in the A liquid side conduit and 5 discharge ports are provided in the B liquid side conduit, the discharge amounts are 2 l / min and 1.67 l / min, respectively. Also, when the pressure inside the pipe is measured on the ground, A liquid is 15 kgf / cm.
2 , the solution B was 20 kgf / cm 2 .

【0046】瞬結グラウトの注入口におけるA液・B液
の吐出比率は1.67×2:2=1.67:1であり、瞬結グラ
ウト注入量は 5.3l/分である。緩結グラウトの注入口
におけるA液・B液の吐出比率は1.67:2=0.84:1で
あり、緩結グラウト注入量は14.7l分である。
The discharge ratio of the liquid A and the liquid B at the injection port of the instantaneous grouting was 1.67 × 2: 2 = 1.67: 1, and the injection amount of the instantaneous grouting was 5.3 l / min. The discharge ratio of the liquid A and the liquid B at the injection port of the slow-flowing grout was 1.67: 2 = 0.84: 1, and the injection amount of the slow-flowing grout was 14.7 liters.

【0047】(3)使用注入液とゲル化時間 三種類の注入液を形成する以下の配合を用いた。 注入液−1の配合 A液 50cc当り モル比 3.7の珪酸ソーダ (SiO2:25.6%) 25cc 水 25cc B液 50cc当り 75%リン酸 2.0cc 40%市販グリオキザール 3.0cc 水 残 り(3) Injection Solution Used and Gelation Time The following formulation was used to form three kinds of injection solutions. Sodium silicate formulation A liquid 50cc per molar ratio 3.7 of the infusate -1 (SiO 2: 25.6%) 25cc water 25 cc B liquid 75% phosphoric acid 2.0 cc 40% per 50cc commercial glyoxal 3.0cc water rest

【0048】注入液−2の配合 A液 注入液−1と同じ B液 50cc当り 75%リン酸 1.8cc 40%市販グリオキザール 5.0cc 水 残 りMixture of injection liquid-2 Liquid A Same as injection liquid-1 Liquid B 75% per 50 cc 75% phosphoric acid 1.8 cc 40% commercial glyoxal 5.0 cc Water remaining

【0049】注入液−3の配合 A液 注入液−1と同じ B液 50cc当り 75%リン酸 3.0cc 40%市販グリオキザール 0.5cc 水 残 りMixture of injection liquid-3 Solution A Same as injection solution-1 Solution B 50 cc 75% phosphoric acid 3.0 cc 40% commercial glyoxal 0.5 cc Water remaining

【0050】ゲル化時間は表1のとおりである。The gelation time is shown in Table 1.

【表1】 [Table 1]

【0051】(4)注入 基礎掘削工事に本発明の試験注入を行なった。当現場で
は、掘削工事において、地盤のゆるみにより近接建物へ
の影響を防止するために薬液注入が検討された。地盤条
件は地下水位が高く、くずれやすい砂礫混じり砂で、し
かも改良深度は−0.5 〜 4.5mと浅く、注入液が地表面
に逸出しやすく、また二重管瞬結工法を用いたのでは地
盤隆起を生ずるような地盤である。
(4) Injection The test injection of the present invention was carried out for foundation excavation work. At this site, during excavation work, chemical injection was considered in order to prevent the impact on neighboring buildings due to loosening of the ground. The ground conditions are high groundwater level, gravel-mixed sand that easily collapses, and the improvement depth is as shallow as -0.5 to 4.5 m, the injection liquid is easy to escape to the ground surface, and the double pipe instantaneous connection method may be the ground. It is a ground that causes uplift.

【0052】80cmの注入孔ピッチで、本発明方法を用
い、注入深長1m当り 400lを注入した。注入ステージ
は最下部から1mごとに上部に移動した。注入液−3の
みを用いて注入したところ、注入管まわりからA液・B
液の混合液がゲル化しないまま逸脱してきた。
Using the method of the present invention, an injection hole pitch of 80 cm was used to inject 400 liters per 1 m of injection depth. The injection stage moved from the bottom to the top every 1 m. When injection was performed using only injection liquid-3, liquid A and liquid B were injected from around the injection pipe.
The liquid mixture deviated without gelling.

【0053】同様にして注入液−1および2をそれぞれ
別の注入孔から注入したところ、地表面への逸脱はなか
った。また、地盤隆起も生じなかった。さらに、注入ス
テージの最下部でまず、注入液−1を80l注入しての
ち、1m当り 380lづつ地注入液−3を注入したとこ
ろ、地表面への逸脱はなかった。さらに、地盤隆起も生
じなかった。比較のために、二重管を用いて、注入液−
1、2および3を、A液・B液1:1の流量比率で合流
注入したところ、地表面に逸脱した。また、同じく、注
入液−1、2および3を、A液・B液1:1.67の流量比
率で合流注入したところ、著しい地盤隆起を起こした。
When the injection liquids 1 and 2 were similarly injected from different injection holes, there was no deviation to the ground surface. In addition, the ground uplift did not occur. Further, when 80 l of the injection liquid-1 was first injected at the bottom of the injection stage and then 380 l of the ground injection liquid-3 was injected per 1 m, there was no deviation to the ground surface. Furthermore, the ground uplift did not occur. For comparison, a double tube was used to
When 1, 2, and 3 were combined and injected at a flow rate ratio of liquid A and liquid B of 1: 1, they were deviated to the ground surface. Similarly, when the injection liquids-1, 2 and 3 were jointly injected at a flow rate ratio of liquid A / liquid B of 1: 1.67, remarkable ground uplift was caused.

【0054】注入後、掘削調査して固結の分布を調べた
ところ、注入液−3では固結0.3 〜1.5 mとばらつい
た。また、注入液−1では0.9 〜1.2 m、注入液−2で
は0.7〜1.2 mであり、良好な結果を得た。注入液−1
を最初に注入してのち、注入液−3を注入すると、注入
管囲りに円筒状(直径10〜20cm)に強固な固結体が形成
され、この固結体を中心にして直径1.0 〜1.1 mの均質
な固結範囲が形成されていた。
After the injection, a drilling survey was conducted to examine the distribution of the solidification. As a result, in the injection liquid-3, the solidification varied from 0.3 to 1.5 m. The injection liquid-1 was 0.9 to 1.2 m, and the injection liquid-2 was 0.7 to 1.2 m, which was a good result. Injection-1
When the injection liquid-3 is injected after first injecting, a solid solidified body is formed in a cylindrical shape (diameter 10 to 20 cm) around the injection pipe, and the solidified body is 1.0 to 1.0 cm in diameter with the solidified body as the center. A homogeneous consolidation area of 1.1 m was formed.

【0055】比較のために、Φ70mmのケーシングを用い
て、4.5mまで削孔後、この注入管を挿入し、ケーシン
グとの間に注入液−3配合のA・B合流液(1:1.67)
を注ぎ込みながら、ケーシングを引き上げて注入管まわ
りに一種類の瞬結グラウトのみで、ゲル化物を形成し、
ついで注入液−3を本注入管で上記と同様に注入した。
掘削調査では、0.4 〜1.5 mのばらつきが生じた。
For comparison, using a Φ70 mm casing, after drilling up to 4.5 m, this injection pipe was inserted, and between the casing and the injection liquid -3 blended AB mixture liquid (1: 1.67). )
While pouring in, pull up the casing to form a gelled product with only one type of instantaneous grout around the injection tube,
Then, the injection liquid-3 was injected through the main injection tube in the same manner as above.
The excavation survey revealed variations of 0.4 to 1.5 m.

【0056】以上から、ゲル化時間の異なる注入液を組
み合わせ、注入管まわりにゲル化時間の短い注入液によ
る固結体を形成した上で、ゲル化時間のより長い注入液
を注入すると、一層の本発明効果を奏し得ることがわか
る。
From the above, when injecting liquids having different gelling times are combined to form a solidified body around the injecting pipes with an injecting liquid having a short gelling time, an injecting liquid having a longer gelling time is further injected. It can be seen that the effect of the present invention can be obtained.

【0057】[0057]

【実施例2】実施例1の注入管を用い、さらに以下の条
件で実験を行なった。 (1)使用注入液 まず、次のA液およびB液を調製する。 A液:酸性珪酸水溶液。モル比 2.7、SiO2含有量26重量
%、比重1.32/20℃の水ガラスを硫酸と混合し、PH
2.0の酸性珪酸水溶液を作液する。この酸性珪酸水溶液
中の水ガラス含有量は25容量%である。 B液:上記水ガラスの25容量%液。
Example 2 Using the injection tube of Example 1, an experiment was further conducted under the following conditions. (1) Injection Solution Used First, the following solutions A and B are prepared. Solution A: Acidic silicic acid aqueous solution. A water glass with a molar ratio of 2.7, a SiO 2 content of 26% by weight, and a specific gravity of 1.32 / 20 ° C. was mixed with sulfuric acid to obtain PH.
Prepare 2.0 acidic silicic acid aqueous solution. The content of water glass in this acidic silicic acid aqueous solution is 25% by volume. Solution B: 25% by volume solution of the above water glass.

【0058】注入液−1の配合とゲル化時間 上述のA液とB液の合流比率を1: 1.5(流量比)とす
ると、A・B合流液(注入液)のゲル化時間は15秒とな
り、上段注入口における混合比A:B=1:2.5 とする
と、ゲル化時間は40秒、下段注入口における混合比A:
B=1:1.25とすると、ゲル化時間は3秒となる。
Mixing of injection liquid-1 and gelation time If the confluence ratio of liquid A and liquid B is 1: 1.5 (flow ratio), the gelation time of the confluence liquid A / B (injection liquid) is 15 seconds. Therefore, assuming that the mixing ratio A: B in the upper inlet is 1: 2.5, the gelation time is 40 seconds, and the mixing ratio A in the lower inlet A:
When B = 1: 1.25, the gelation time is 3 seconds.

【0059】注入液−2の配合とゲル化時間 上述のA液とB液の合流比率を1:1(流量比)とする
と、A・B合流液(注入液)のゲル化時間は20分とな
り、上段注入口における混合比A:B=1:1.67とする
と、図11のグラフに示されるように、ゲル化時間は5
秒、下段注入口における混合比A:B=1:0.83とする
と、ゲル化時間は4時間、注入地盤の土と混合したサン
ドゲルのゲル化時間は20分となる。
Mixing of injection liquid-2 and gelation time If the confluence ratio of liquid A and liquid B is set to 1: 1 (flow ratio), the gelation time of the confluence liquid A / B (injection liquid) is 20 minutes. Thus, assuming that the mixing ratio A: B = 1: 1.67 at the upper inlet, the gelation time is 5 as shown in the graph of FIG.
When the mixing ratio A: B = 1: 0.83 at the lower injection port, the gelation time is 4 hours, and the gelation time of the sand gel mixed with the soil of the injection ground is 20 minutes.

【0060】(2)注入条件 注入液−2の配合を用い、A液・B液を10l/分づつ注
入しながら最初の注入ステージで別のポンプによりB液
を5l/分の流量で添加してB液の流量を15l/分と
し、注入液−1の配合の注入液を注入した。その後のス
テージは注入液−2の配合の注入液を用い、実施例1と
同様に注入した。
(2) Injection conditions Using the formulation of injection liquid-2, while injecting liquid A and liquid B at 10 l / min each, liquid B was added at a flow rate of 5 l / min by another pump at the first injection stage. And the flow rate of the solution B was set to 15 l / min, and the injection solution having the composition of the injection solution-1 was injected. For the subsequent stage, an injection liquid having a composition of injection liquid-2 was used, and injection was performed in the same manner as in Example 1.

【0061】(3)注入 推進工法における発進部で本発明工法の試験を行なっ
た。現場は地下水の高い比較的軟弱な粘性土と砂質土の
複雑な互層を呈する沖積地盤である。
(3) Injection The test of the method of the present invention was conducted at the starting portion of the propulsion method. The site is an alluvial ground with complex alternating layers of relatively soft cohesive soil and sandy soil with high groundwater.

【0062】1mの注入孔ピッチで、GL−3.0 〜5.0
mの区間で注入深長1m当り 400lを注入した。注入ス
テージは最下部から1m毎に上方へ移動した。注入液は
注入液−1の配合を10%、注入液−2の配合を90%用い
た。最下部の注入ステージで、一本当りの注入液−1の
注入量を全量注入した上で、注入液−2を注入深度1m
当り 360lづつ注入し、注入ステージを移動した。
GL-3.0-5.0 with 1m injection hole pitch.
In the section of m, 400 l was injected per 1 m of injection depth. The injection stage moved upward every 1 m from the bottom. As the injection liquid, 10% of the injection liquid-1 and 90% of the injection liquid-2 were used. At the bottom injection stage, after injecting the entire amount of the injection liquid-1 per injection, inject the injection liquid-2 at an injection depth of 1 m.
Each injection was carried out in 360 l and the injection stage was moved.

【0063】注入後、発進部の切羽を観察したところ、
注入管まわりに直径15〜20cmの強固な固結体が形成さ
れ、その周辺に均質な固結体が形成され、かつ隣接する
注入管の固結体同志は完全に連続して固結していた。ま
た、地盤の隆起や注入液の地表面への逸脱は全く認めら
れなかった。
After injection, the face of the starting portion was observed,
A strong solidified body with a diameter of 15 to 20 cm is formed around the injection tube, a homogeneous solidified body is formed around it, and the solidified bodies of the adjacent injection tubes are completely continuous and solidified. It was In addition, neither uplift of the ground nor deviation of the injected liquid to the ground surface was observed.

【0064】図12は本発明注入管の注入口を上方まで連
続して設置したときの注入状態を表した模式図である。
この場合、注入ステージを上方に引き上げなくても、一
本の注入管で全ステージを一度に注入することができ
る。何となれば、吐出口を多くしても、各吐出口のゲル
化時間が異なっても、また周辺地盤の注入抵抗が異なっ
ても、所定の注入が確保でき、かつ、ゲル化時間の短い
注入液の注入口3aとゲル化時間の長い注入液の注入口
3bからの注入を同時に行なった場合、ゲル化時間の短
い注入液は脈状が主体となり、ゲル化時間の長い注入液
は土粒子間浸透が主体となり、このため前者の方が早く
周辺の粗い部分や弱い部分を填充し、後者はそのあとで
ゆるやかに細かい部分に浸透していくことになるから、
確実な複合注入が可能であるからである。なお、図12に
おいて、ゲル化時間の短い注入液の注入口と長い注入液
の注入口は上下方向に交互に設けてもよいのはもちろん
である。
FIG. 12 is a schematic view showing an injection state when the injection port of the injection pipe of the present invention is continuously installed up to the upper side.
In this case, it is possible to inject all the stages at once with one injection tube without pulling the injection stage upward. What is required is that even if the number of discharge ports is increased, the gelation time of each discharge port is different, and the injection resistance of the surrounding ground is different, the prescribed injection can be secured and the injection with a short gelation time is possible. When the injection port 3a for the liquid and the injection port 3b for the long gelation time are simultaneously injected, the injection liquid for the short gelation time is mainly composed of veins, and the injection liquid for the long gelation time is the soil particles. Since the penetration mainly takes place, the former will fill the rough and weak areas around the area earlier, and the latter will gradually penetrate into the smaller areas.
This is because reliable composite injection is possible. Note that, in FIG. 12, the injection port for the injection liquid having a short gel time and the injection port for the long injection liquid may be alternately provided in the vertical direction.

【0065】図13は本発明にかかる他の具体例の説明図
であって、注入管Xを所定の注入対象地盤Yに複数本設
置し、これら注入管Xに同時にA液・B液を、ポンプP
1、P2を介して送液し、地盤Yを注入固結する例であ
る。この場合、施工能率ははかり知れないほど向上され
る。
FIG. 13 is an explanatory view of another embodiment according to the present invention, in which a plurality of injection pipes X are installed on a predetermined ground Y to be injected, and liquids A and B are simultaneously supplied to these injection pipes X. Pump P
This is an example in which the liquid is sent via 1 and P2 to inject and solidify the ground Y. In this case, the construction efficiency is immeasurably improved.

【0066】[0066]

【発明の効果】以上のとおり、本発明によれば、固結時
間の異なる複数の注入液を複数の注入口から同時に注入
することにより極めて迅速かつ簡単に地盤を固結し得る
ことはもちろん、注入管まわりで上下位置から注入され
た注入液を互いに混合させないで、それぞれ独立して地
盤中に噴出して注入せしめ、さらに注入抵抗圧のちが
い、あるいは変動にもかかわらず、各注入口において所
定の吐出量、所定のゲル化時間を保持して注入され、こ
れにより地盤を確実に固結することが可能となる。
As described above, according to the present invention, it is of course possible to consolidate the ground extremely quickly and easily by simultaneously injecting a plurality of injecting liquids having different consolidating times from a plurality of inlets. Do not mix the injection liquids injected from the upper and lower positions around the injection pipe, inject them independently into the ground and inject them into the ground. It is injected while maintaining the discharge amount and the predetermined gelling time, which makes it possible to firmly solidify the ground.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に用いられる注入管の一具体例の側面図
である。
FIG. 1 is a side view of a specific example of an injection tube used in the present invention.

【図2】図1における瞬結注入管体の拡大断面図であっ
て、(a)は穿孔中、(b)は注入中の状態をそれぞれ
示し、(c)は注入口の断面図である。
2A and 2B are enlarged cross-sectional views of the instant injection pipe body in FIG. 1, in which FIG. 2A shows a state during perforation, FIG. 2B shows a state during injection, and FIG. 2C is a sectional view of an injection port. .

【図3】図1における緩結注入管体の拡大断面図であっ
て、(a)は穿孔中、(b)は注入中の状態をそれぞれ
示し、(c)は注入口の断面図である。
3 is an enlarged cross-sectional view of the loose injection tube body in FIG. 1, (a) showing a state during perforation, (b) showing a state during injection, and (c) a cross-sectional view of an injection port. .

【図4】図1における注入管末端部の拡大断面図であっ
て、(a)は穿孔中、(b)は注入中の状態をそれぞれ
示す。
4A and 4B are enlarged cross-sectional views of the distal end portion of the injection pipe in FIG. 1, where FIG. 4A shows a state during perforation and FIG. 4B shows a state during injection.

【図5】本発明にかかる他の形式の注入管の断面図であ
って、掘削水の送液状態を示す。
FIG. 5 is a cross-sectional view of another type of injection pipe according to the present invention, showing a state in which drilling water is being sent.

【図6】図5の形式の注入管の断面図であって、注入状
態を示す。
6 is a cross-sectional view of an injection tube of the type shown in FIG. 5, showing the injection state.

【図7】本発明にかかる注入口の具体例の断面図であっ
て、(a)は外管管路に通じる吐出口が二個、内管管路
に通じる吐出口が一個の例であり、(b)は外管管路に
通じる吐出口が一個、内管管路に通じる吐出口が一個の
例である。
FIG. 7 is a cross-sectional view of a specific example of the injection port according to the present invention, in which (a) is an example in which two discharge ports communicate with the outer pipe line and one discharge port communicates with the inner pipe line. , (B) is an example in which one discharge port communicates with the outer pipe line and one discharge port communicates with the inner pipe line.

【図8】本発明にかかる瞬結性注入液と浸透性注入液の
注入状態を表した断面図であって、(a)は瞬結性注入
液によって注入口まわりの空隙に形成されたしゃ閉層を
示し、(b)は浸透性注入液の土粒子間浸透状態を示
す。
FIG. 8 is a cross-sectional view showing an injection state of an instantaneous infusion liquid and a permeable infusion liquid according to the present invention, in which (a) is a shield formed in a space around an injection port by the instantaneous injection liquid. A closed layer is shown, and (b) shows the permeation state between the soil particles of the permeable injectable solution.

【図9】ノズル口径Φ1.0mm についてのポンプ圧変化に
よる抵抗圧力とノズルからの流量との関係を表したグラ
フである。
FIG. 9 is a graph showing a relationship between a resistance pressure and a flow rate from a nozzle due to a change in pump pressure for a nozzle diameter Φ1.0 mm.

【図10】ノズル口径Φ1.5mm についてのポンプ圧変化
による抵抗圧力とノズルからの流量との関係を表したグ
ラフである。
FIG. 10 is a graph showing a relationship between a resistance pressure and a flow rate from a nozzle due to a change in pump pressure for a nozzle diameter Φ1.5 mm.

【図11】B液/A液の比率とゲル化時間との関係を表
したグラフである。
FIG. 11 is a graph showing the relationship between the ratio of solution B / solution A and the gelation time.

【図12】本発明注入管の変形例の注入状態を表した模
式図である。
FIG. 12 is a schematic view showing an injection state of a modified example of the injection pipe of the present invention.

【図13】複数本の注入管を用いた本発明にかかる他の
具体例の説明図である。
FIG. 13 is an explanatory diagram of another specific example according to the present invention using a plurality of injection tubes.

【符号の説明】[Explanation of symbols]

1 外管 2 内管 3 注入口 6 外管管路 6a 外管管路 9 内管管路 11 吐出口 12 吐出口 13 しゃ閉層 14 閉束体 a 瞬結注入管体 b 緩結注入管体 X 二重管 1 Outer pipe 2 Inner pipe 3 Injection port 6 Outer pipe line 6a Outer pipe line 9 Inner pipe line 11 Discharge port 12 Discharge port 13 Closed layer 14 Closed bundle a Instantaneous injection pipe b Loose injection pipe X double tube

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも二つの管路を有し、かつ軸方
向の異なる位置に複数の注入口を有する注入管を用いて
地盤中に注入液を注入する地盤注入工法であって、前記
各注入口には一方の管路Aと通じる吐出口が設けられ、
かつ前記注入口の少なくとも一つには他方の管路Bと通
じる吐出口が設けられ、前記複数の注入口のうち、少な
くとも二つは一方の管路Aからの吐出量と他方の管路B
からの吐出量の流量比率が異なるように形成された注入
管を用い、一方の管路Aから該注入液の主材配合液を送
り、他方の管路Bから該注入液の反応剤配合液を送液
し、固結時間の異なる複数の注入液を前記複数の注入口
からそれぞれ同時に注入することを特徴とし、前記注入
液は該注入管の管路Aおよび管路Bにそれぞれ送液され
る配合液をその流量比率で合流した場合、固結時間が15
分以内で、かつ短い方の固結時間が30秒以内であること
を特徴とする地盤注入工法。
1. A ground injection method for injecting an injection liquid into the ground by using an injection pipe having at least two pipe lines and having a plurality of injection ports at different positions in the axial direction, wherein The inlet is provided with a discharge port that communicates with one pipeline A,
Further, at least one of the injection ports is provided with a discharge port communicating with the other pipe line B, and at least two of the plurality of injection ports are discharged from one pipe line A and the other pipe line B.
Using the injection pipes formed so that the flow rate ratios of the discharge amounts thereof are different, the main material mixture liquid of the injection liquid is sent from one pipe line A, and the reactant mixture liquid of the injection liquid from the other pipe line B. And a plurality of infusion solutions having different consolidation times are simultaneously infused from the plurality of infusion ports, respectively, and the infusion solution is delivered to each of the conduit A and the conduit B of the injection pipe. When the mixed liquids are mixed at the flow rate ratio, the setting time is 15
Ground injection method characterized in that the solidification time of the shorter one is less than 30 seconds within minutes.
【請求項2】 請求項1の注入液よりも固結時間の長い
注入液を併用することを特徴とする請求項1の地盤注入
工法。
2. The ground injection method according to claim 1, wherein an injection liquid having a longer setting time than that of the injection liquid according to claim 1 is used together.
JP4161719A 1992-05-29 1992-05-29 Ground injection method Expired - Fee Related JPH0830332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4161719A JPH0830332B2 (en) 1992-05-29 1992-05-29 Ground injection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4161719A JPH0830332B2 (en) 1992-05-29 1992-05-29 Ground injection method

Publications (2)

Publication Number Publication Date
JPH0633446A JPH0633446A (en) 1994-02-08
JPH0830332B2 true JPH0830332B2 (en) 1996-03-27

Family

ID=15740583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4161719A Expired - Fee Related JPH0830332B2 (en) 1992-05-29 1992-05-29 Ground injection method

Country Status (1)

Country Link
JP (1) JPH0830332B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6760803B2 (en) * 2016-09-01 2020-09-23 日特建設株式会社 Injection method and equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58189411A (en) * 1983-03-08 1983-11-05 Kyokado Eng Co Ltd Composite grout work
JPS61211418A (en) * 1985-03-15 1986-09-19 Shigeharu Arima Chemical solution pouring method
JPH0649974B2 (en) * 1987-08-21 1994-06-29 強化土エンジニヤリング株式会社 Ground injection method
JPH0285415A (en) * 1988-09-21 1990-03-26 Sanshin Kensetsu Kogyo Kk Chemical feeding method and pipe therefore

Also Published As

Publication number Publication date
JPH0633446A (en) 1994-02-08

Similar Documents

Publication Publication Date Title
CN105386435B (en) It is a kind of to be used for the double-liquid grouting system and its construction technology of cement and water glass solution
CN110185453A (en) A kind of construction method of shield section end horizontal reinforcing
CN107755421A (en) A kind of contaminated site original position is rapidly injected repair system
CN106592614A (en) Water leakage point blockage method in foundation pit water stop curtain
KR102234214B1 (en) Fast permeating method and system for grouting of weak ground
CN113047294B (en) Duplex-pipe type multifunctional grouting device and construction method thereof
CN108411885A (en) A kind of basement rock overlying sandy soil karst treatment construction method
JPS61211418A (en) Chemical solution pouring method
CN207619995U (en) A kind of material for diaphragm wall of Cofferdam construction high-pressure rotary jet grouting pile equipment
JPH0830332B2 (en) Ground injection method
JPH07324327A (en) Ground impregnation method
TWI260361B (en) Ground grouting device and ground grouting construction method
CN205314085U (en) A biliquid slip casting system that is used for cement and water glass solution
CN110278936B (en) Dam termite filling and permeating combined grouting treatment method
JPH0649974B2 (en) Ground injection method
KR100463104B1 (en) Pillar-shaped hardening structure formation equipment and the formation method of leading cement milk pressure injection
TWI262228B (en) Grouting equipment and grouting method
JPH06212620A (en) Method of ground impregnation construction
JP3151637B2 (en) Ground injection system
JPH0368169B2 (en)
CN217811045U (en) Double-barrelled slip casting device
JPH07252822A (en) Ground grouting method
JPS62185922A (en) Expanded mortar injection work in shield tunnel
JPH0250278B2 (en)
JPH0649835A (en) Filling pipe for grouting

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080327

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090327

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100327

Year of fee payment: 14

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100327

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100327

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110327

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110327

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 16

LAPS Cancellation because of no payment of annual fees