JPS6358972B2 - - Google Patents

Info

Publication number
JPS6358972B2
JPS6358972B2 JP57055455A JP5545582A JPS6358972B2 JP S6358972 B2 JPS6358972 B2 JP S6358972B2 JP 57055455 A JP57055455 A JP 57055455A JP 5545582 A JP5545582 A JP 5545582A JP S6358972 B2 JPS6358972 B2 JP S6358972B2
Authority
JP
Japan
Prior art keywords
pressure
grout
low
discharge
pressure grout
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57055455A
Other languages
Japanese (ja)
Other versions
JPS5862212A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5545582A priority Critical patent/JPS5862212A/en
Publication of JPS5862212A publication Critical patent/JPS5862212A/en
Publication of JPS6358972B2 publication Critical patent/JPS6358972B2/ja
Granted legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/12Consolidating by placing solidifying or pore-filling substances in the soil

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • Agronomy & Crop Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Soil Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Description

【発明の詳細な説明】 この発明はグラウト注入工法に関し、その目的
は高圧グラウトおよび低圧グラウトの組合せにお
ける利点を最大限に発揮し、均質に注入が可能な
方法を提供することにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a grout injection method, and its purpose is to provide a method that maximizes the advantages of a combination of high-pressure grout and low-pressure grout and enables uniform injection.

近年のグラウト工法の開発は、一方材料的な面
から、他方は注入装置の面から著しいものがあ
る。とりわけ、高圧グラウトと低圧グラウトとを
組合せて高圧グラウトによつて地盤を予め切削
し、それによつてゆるんだ地盤中に低圧でグラウ
トを注入する工法は、在来工法を一変するものと
して関心が寄せられている。
Recent developments in grouting methods have been remarkable, on the one hand from the standpoint of materials, and on the other from the standpoint of grouting equipment. In particular, a construction method that combines high-pressure grout and low-pressure grout, cuts the ground in advance with high-pressure grout, and then injects grout into the loosened ground at low pressure is attracting interest as a complete change to conventional construction methods. It is being

この発明者らは、この工法をさらに発展させる
べく研究、実験を重ねたところ、単に周壁に相互
に接近した位置に高圧グラウト吐出口および低圧
グラウト吐出口を形成するよりも、低圧グラウト
吐出口を高圧グラウト吐出口の背後に位置させて
形成した方が、低圧グラウトを高圧グラウトによ
り造成されたゆるい地盤中に確実に注入できるこ
とを見出した。つまり高圧および低圧グラウト吐
出口が管軸方向に所定距離、離間している場合に
おいて、高圧グラウトにより地盤切削が十分でな
い場合低圧グラウトは、高圧グラウトに十分同伴
せず、したがつて確実な注入を期待することは難
しいものである。
After repeated research and experiments to further develop this method, the inventors found that rather than simply forming a high-pressure grout outlet and a low-pressure grout outlet in positions close to each other on the surrounding wall, a low-pressure grout outlet was used. It has been found that low-pressure grout can be more reliably injected into the loose ground created by high-pressure grout when it is formed behind the high-pressure grout outlet. In other words, if the high-pressure grout and low-pressure grout discharge ports are separated by a predetermined distance in the pipe axis direction, and the ground is not sufficiently cut by the high-pressure grout, the low-pressure grout will not be sufficiently entrained by the high-pressure grout, thus ensuring reliable injection. It is difficult to have expectations.

かかる事情に鑑みて提案された本発明は、 二重注入管内に、その内管内、内管と外管との
間隙を利用して、相互に独立の高圧グラウト路お
よび低圧グラウト路を形成し、注入管の先端部に
おいて、高圧グラウト路を注入管の中心より右方
に偏位させ、低圧グラウトを左方に偏位させ、注
入管先端部下部に右方水平に注入管外に開口し、
左右方向に所定の長さおよび巾方向に所定の巾を
それぞれ有する吐出空間23を形成し、この吐出
空間23の左方において前記低圧グラウト路に連
通する低圧グラウト吐出口22aを吐出空間23
に臨んで形成し、前記吐出空間23の左右方向中
間部及び巾方向中央部に位置してノズル子12を
前記吐出空間23内に下方突出させ、このノズル
子12に前記高圧グラウト路に連通する高圧グラ
ウト吐出口12aを前記吐出空間23の高さ方向
中間部位置であつてかつ低圧グラウト吐出口22
aと同一水平線上に一致させた位置において右方
に指向させて形成した注入管を用い; 2液硬化性グラウトを構成する一方の前記高圧
グラウトの吐出圧力を50〜300Kg/cm2、他方の低
圧グラウトの吐出圧力を高圧グラウトの吐出圧力
の0.02〜0.20の比でかつ50Kg/cm2未満の圧力と
し、高圧グラウトを前記高圧グラウト吐出口から
前記圧力範囲で吐出させ、これを吐出空間の壁に
よつて規制しながら前記ノズル子12の周囲を通
つて周辺地盤に向かわせ、 この注入過程で、注入管基部に設けた回転装置
により注入管を軸周りに回転させるとともに引き
上げ、圧搾空気を用いることなく2液硬化性グラ
ウトのみで地盤の改良を行うことを特徴とするも
のである。
The present invention, proposed in view of the above circumstances, is to form mutually independent high-pressure grout passages and low-pressure grout passages within the double injection pipe by utilizing the gap between the inner pipe and the inner pipe and the outer pipe, At the tip of the injection tube, the high-pressure grout path is deviated to the right from the center of the injection tube, the low-pressure grout is deviated to the left, and the lower part of the injection tube tip is opened horizontally to the right outside the injection tube,
A discharge space 23 having a predetermined length in the left-right direction and a predetermined width in the width direction is formed, and a low-pressure grout discharge port 22a communicating with the low-pressure grout path is connected to the left side of the discharge space 23.
The nozzle element 12 is formed facing the discharge space 23 and is located at the middle part in the left-right direction and the center part in the width direction of the discharge space 23 to project downward into the discharge space 23, and the nozzle element 12 is communicated with the high-pressure grout path. The high-pressure grout discharge port 12a is located at an intermediate position in the height direction of the discharge space 23, and the low-pressure grout discharge port 22
Using an injection pipe formed to point to the right at a position aligned on the same horizontal line as a; the discharge pressure of one of the high-pressure grouts constituting the two-component hardening grout is set at 50 to 300 Kg/cm 2 , and the discharge pressure of the other The discharge pressure of the low-pressure grout is set to a ratio of 0.02 to 0.20 to the discharge pressure of the high-pressure grout and a pressure of less than 50 Kg/cm 2 , and the high-pressure grout is discharged from the high-pressure grout outlet in the above pressure range, and this is applied to the wall of the discharge space. In this injection process, the injection pipe is rotated around its axis by a rotating device installed at the base of the injection pipe and pulled up, using compressed air. This method is characterized by improving the ground using only two-component hardening grout without any soil damage.

すなわち、本発明は、たとえば特開昭52−
29214号公報のように、2種流体を同芯ノズルか
ら吐出させるものではなく、2つの吐出口を左右
方向に違えかつ高圧グラウトの吐出口背後に低圧
グラウトの吐出口を位置させたものである。すな
わち、後述のように、高圧グラウトによつて「水
みち」を形成し、この「水みち」に低圧グラウト
を誘導させるのが、本発明の現象的な目的である
から、高圧グラウトの吐出口の背後に低圧グラウ
トの吐出口が形成される。しかも、前記公報発明
は低圧グラウトの周囲を高圧空気が包むようにし
てあり、高圧グラウトを低圧グラウトが遅れて追
つて行くようにしてある本発明装置とは異なる。
また、高圧グラウトの吐出流と低圧グラウトの吐
出流とが同方向に指向するように、低圧グラウト
流を誘導させるために、その流れを規制する吐出
空間が形成されるとともに、この吐出空間にノズ
ル子が突出される。さらに、各吐出口に前後位置
関係をもたせるために、かくグラウト路の先端部
においては注入管の中心に対してそれぞれ前後に
偏位される。そして、低圧グラウト路の後方(第
1図左方)への偏位により、十分な水平方向長さ
をもつた吐出空間を形成でき、これによつて低圧
グラウトが高圧グラウトに追つて行くようにな
る。
That is, the present invention is disclosed in, for example, Japanese Patent Application Laid-Open No.
Unlike Publication No. 29214, the two types of fluids are not discharged from concentric nozzles, but the two discharge ports are different in the left and right direction, and the low-pressure grout discharge port is located behind the high-pressure grout discharge port. . That is, as will be described later, the phenomenological purpose of the present invention is to form a "water channel" with high pressure grout and guide low pressure grout into this "water channel"; A low pressure grout outlet is formed behind the. Furthermore, the disclosed invention is different from the device of the present invention in which the low pressure grout is surrounded by high pressure air, and the low pressure grout follows the high pressure grout with a delay.
In addition, in order to guide the low-pressure grout flow so that the high-pressure grout discharge flow and the low-pressure grout discharge flow are oriented in the same direction, a discharge space is formed to regulate the flow, and a nozzle is installed in this discharge space. The child is highlighted. Further, in order to provide each discharge port with a longitudinal positional relationship, the distal end of the grout path is offset longitudinally with respect to the center of the injection tube. By deflecting the low-pressure grout passage to the rear (to the left in Figure 1), a discharge space with sufficient horizontal length can be formed, allowing the low-pressure grout to follow the high-pressure grout. Become.

また、本発明では、圧搾空気を用いないで、所
定の圧力範囲に設定された2液硬化性グラウトの
高圧グラウトと低圧グラウトとの組合わせのみで
地盤を改良するようにする。
Moreover, in the present invention, the ground is improved only by a combination of high-pressure grout and low-pressure grout, which are two-component hardening grouts set within a predetermined pressure range, without using compressed air.

もし圧搾空気を使用すると、地盤が荒れてしま
い目的の地盤域のみを改良することができなくな
るばかりでなく、圧搾空気が地表に噴出し、地盤
の隆起等のトラブルを生じる。
If compressed air is used, not only will the ground become rough and it will not be possible to improve only the desired ground area, but the compressed air will also blow out onto the ground surface, causing problems such as ground heave.

これに対して、本発明に従つて、2液硬化性グ
ラウトのみで地盤を改良し、また各グラウトの圧
力が上記範囲に設定されることによつて、地盤を
荒らすことがなく、かつ十分な改良径をもち、し
かも「しつかり落着いた」地盤改良を行うことが
できる。
In contrast, according to the present invention, the ground is improved using only two-component hardening grout, and the pressure of each grout is set within the above range, thereby preventing the ground from becoming rough and providing sufficient It has an improved diameter and can perform "firm and stable" ground improvement.

以下この発明を図面に示す具体例によつて説明
すると、注入管1は予め穿孔された挿入孔2に設
置され、その基部は公知の回転装置3により把持
され、注入管全体をその軸周りに回転させ、かつ
引き上げうるようになつている。注入管1は、内
管10と外管20とからなるいわゆる二重管構造
となつており、内管10内が高圧グラウト(A
液)路となり、内管10と外管20との間が低圧
グラウト(B液)路となつている。そして注入管
1の先端部には、軸心から外方に位置して弁内封
管11が設けられ、これにノズル子12が螺着さ
れている。弁内封管11およびノズル子12内に
は先端がコーン状の逆止弁13が配設され、スプ
リング14に付勢されて弁内封管11の流入口1
1aを閉塞している。またノズル子12には、吐
出口12aがほぼ水平に向けて形成されている。
The present invention will be explained below with reference to a specific example shown in the drawings. An injection tube 1 is installed in a pre-drilled insertion hole 2, the base of which is gripped by a known rotating device 3, and the entire injection tube is rotated around its axis. It can be rotated and pulled up. The injection pipe 1 has a so-called double pipe structure consisting of an inner pipe 10 and an outer pipe 20, and the inside of the inner pipe 10 is filled with high pressure grout (A
The space between the inner tube 10 and the outer tube 20 is a low-pressure grout (liquid B) path. A valve inner sealing tube 11 is provided at the distal end of the injection tube 1, located outward from the axis, and a nozzle element 12 is screwed onto the valve inner sealing tube 11. A check valve 13 having a cone-shaped tip is disposed inside the valve inner sealing tube 11 and the nozzle element 12, and is biased by a spring 14 to close the inlet 1 of the valve inner sealing tube 11.
1a is occluded. Further, the nozzle element 12 has a discharge port 12a formed in a substantially horizontal direction.

一方、低圧グラウト路にあつては、先端管21
には、案内路22および吐出空間23が形成さ
れ、それらを連通して低圧グラウト吐出口22a
が形成され、また吐出空間23の端は対地に臨む
吐出口23aとなつている。これら吐出口12
a,23aは吐出口12aの背後に位置し、吐出
口12aと同方向に向いて形成されている。また
案内路22と吐出空間23との連通部には球状逆
止弁24が設けられている。30はクラウンビツ
トを装着した先端沓で、ボルト31,31により
固定されている。
On the other hand, in the case of a low pressure grouting path, the tip pipe 21
A guide path 22 and a discharge space 23 are formed in the , and communicate with each other to form a low pressure grout discharge port 22a.
is formed, and the end of the discharge space 23 serves as a discharge port 23a facing the ground. These discharge ports 12
a, 23a are located behind the discharge port 12a and are formed facing in the same direction as the discharge port 12a. Further, a spherical check valve 24 is provided in a communication portion between the guide path 22 and the discharge space 23. Reference numeral 30 denotes a tip shoe equipped with a crown bit, which is fixed with bolts 31, 31.

このように構成された装置において、高圧グラ
ウト路を介してA液(高圧グラウト)を圧送し逆
止弁13を押し下げつつ吐出口12aから周辺地
盤に噴出させる。これによつて周辺地盤を崩壊さ
せ切削しつつA液を注入できる。そしてA液によ
る水みちを造成する。そしてB液(低圧グラウ
ト)を低圧グラウト路を介して吐出口23aから
吐出させれば、A液により同伴して流れ(水力学
が教える現象である)、またA液によつて造成さ
れた水みちに沿つて確実に浸透注入される。な
お、B液の一部は構造上少量下方へ注入されるも
のもある。
In the device configured in this manner, liquid A (high pressure grout) is force-fed through the high-pressure grout passage, and is ejected from the discharge port 12a into the surrounding ground while pushing down the check valve 13. This allows the A liquid to be injected while collapsing and cutting the surrounding ground. Then, create a water path using liquid A. Then, if liquid B (low pressure grout) is discharged from the discharge port 23a through the low pressure grout path, it will flow together with liquid A (a phenomenon taught by hydraulics), and the water created by liquid A will flow together with liquid A (a phenomenon taught by hydraulics). It is injected securely along the path. Note that a small amount of liquid B may be injected downward due to the structure.

さらに低圧グラウト路は、注入前において、周
知の方法のようにこれに水を流し地盤の撹乱を図
ることもできる。そしてA液とB液とは二液硬化
性の材料である場合、上述のように確実に同伴し
合流するものであるから、この装置は特に有効で
ある。また注入管1全体を回転および引上げを行
うと、ほぼ同一径の広径の均質な固結体を造成で
きる。その理由は、吐出口12aと23aとが同
一水平線上に一致しているから、常時A液とB液
とが等量混合され、注入位置も同じであるからで
ある。
Additionally, the low-pressure grout channel can be disturbed by flowing water through it in a well-known manner prior to injection. When the A and B liquids are two-component curing materials, this device is particularly effective because they reliably entrain and merge as described above. Furthermore, by rotating and pulling up the entire injection tube 1, a wide, homogeneous solid body having approximately the same diameter can be created. The reason for this is that since the discharge ports 12a and 23a are aligned on the same horizontal line, equal amounts of liquid A and liquid B are always mixed and the injection positions are also the same.

この場合、A液の吐出圧力は50〜300Kg/cm2
液のそれは50〜300Kg/cm2に対して0.02〜0.20の
比でかつ50Kg/cm2未満の圧力で注入するのが好ま
しい。
In this case, the discharge pressure of liquid A is 50 to 300 kg/cm 2 B
The liquid one is preferably injected in a ratio of 0.02 to 0.20 to 50 to 300 Kg/cm 2 and at a pressure of less than 50 Kg/cm 2 .

この発明において高圧で注入されるA液として
は、限定されないが、水ガラスに水を混入したも
のが、ノズルその他機械器具を損傷させないこ
と、地盤の切削性、浸透性あるいは経済性の点で
特に好適である。またB液についても限定されな
いが、前記A液に対してはセメントと高炉スラグ
とに水を混入したものは、固結体の強度、耐候性
および経済性の点で望ましいものの一つである。
そしてこの材料の他に水ガラスとセメント、水ガ
ラスとアルミン酸ソーダ等公知の二液性硬化材料
であれば使用できる。
In this invention, the liquid A to be injected at high pressure is not limited to, but it is particularly important that liquid glass mixed with water does not damage nozzles and other mechanical equipment, has good machinability and permeability of the ground, and is economical. suitable. The B solution is also not limited, but a solution prepared by mixing cement and blast furnace slag with water is one of the desirable solutions in terms of the strength of the solid body, weather resistance, and economical efficiency.
In addition to this material, any known two-component hardening materials such as water glass and cement, water glass and sodium aluminate, etc. can be used.

また高圧としては50〜300Kg/cm2、好ましくは
100〜200Kg/cm2で、低圧としてはその高圧に対し
て0.02〜0.20、好ましくは0.03〜0.10である。こ
の高圧によつて噴射したA液によつて、地盤を切
削できる。この場合、A液は低粘土であればある
ほど切削範囲は広がるが、それより切削性につい
て大きな要因は圧力である。しかし、300Kg/cm2
以上となると地盤が乱れ過ぎるとともに、作業に
危険が伴う。こうして地盤を切削して入り込んだ
A液に対して、他のノズルから低圧でB液を合流
させるように吐出させると、この材料は先の材料
によつて水みちがつけられているので容易に地盤
に入り込んで合流が可能である。
In addition, the high pressure is 50 to 300Kg/cm 2 , preferably
100 to 200 Kg/cm 2 , and the low pressure is 0.02 to 0.20, preferably 0.03 to 0.10, relative to the high pressure. The ground can be cut by the liquid A injected under this high pressure. In this case, the lower the clay content of liquid A, the wider the cutting range, but the greater factor in machinability is pressure. However, 300Kg/ cm2
If this happens, the ground will be too disturbed and the work will be dangerous. When the A liquid that has entered the ground by cutting the ground is discharged from another nozzle at a low pressure to join the B liquid, this material is easily drained because it has a water path created by the previous material. It is possible to enter the ground and merge.

ここで注目すべきことは、高圧力と低圧力との
間に上記のような相関があることである。その理
由は、この発明者の判断では、高圧側が圧力的に
高すぎ、低圧側が低すぎる場合、A液のみが遠く
まで達するのに対して、B液がそれに同伴しない
ため、結果的に短径の固結体となり、逆の場合A
液の注入範囲が狭く、またB液はもともと低圧で
吐出されるので自らで遠くまで達することがなく
これまた短径の固結体しか得られないのであると
考えられる。
What should be noted here is that there is a correlation as described above between high pressure and low pressure. The reason for this is that, in the inventor's judgment, if the pressure on the high pressure side is too high and the pressure on the low pressure side is too low, only liquid A will reach far, while liquid B will not accompany it. becomes a solid, and in the opposite case A
It is thought that this is because the injection range of the liquid is narrow, and since the B liquid is originally discharged at a low pressure, it does not reach far by itself, and only a short-diameter solidified body can be obtained.

ところで、この発明において、吐出方向につい
て、高圧グラウト吐出口を前方に、低圧グラウト
吐出口を後方に位置させるのは、前述のように確
実な注入を行わんとすることに理由がある。これ
をさらに説明すると、この発明は高圧グラウトに
より切削して改良範囲を広げるとともに、続く低
圧グラウトの「水みち」を形成し、この「水み
ち」に沿つて低圧グラウトを誘導させることに基
本思想がある。そして、前述のように、周壁に相
互に接近した位置に高圧および低圧のグラウト吐
出口を形成し、地盤中で合流硬化させる方法(た
とえば特公昭49−49059号公報のような方法)で
は、合流の確実性がなく、高圧グラウトのみが遠
くまで達するのに対し、低圧グラウトは周壁に近
い個所で高圧グラウトとの反応硬化を完了させ、
結局改良された範囲は短径であることになりかね
ない。
By the way, in the present invention, the reason why the high-pressure grout outlet is located at the front and the low-pressure grout outlet is located at the rear in the discharge direction is to ensure reliable injection as described above. To explain this further, the basic idea of this invention is to widen the range of improvement by cutting with high pressure grout, and to form a "water path" for the subsequent low pressure grout, and to guide the low pressure grout along this "water path". There is. As mentioned above, in the method of forming high-pressure and low-pressure grout outlets at positions close to each other on the peripheral wall and confluent hardening in the ground (for example, the method as disclosed in Japanese Patent Publication No. 49-49059), it is difficult to There is no certainty that high-pressure grout will reach far, whereas low-pressure grout completes the reaction hardening with high-pressure grout near the surrounding wall.
In the end, the improved range may end up being the short axis.

他方、特公昭51−4003号公報には、同心的に配
したノズルを用い、前方からある種のグラウトを
後方から別種のグラウトを50〜1000Kg/cm2で注入
する思想が開示されている。しかし、同公報第5
図をみれば明らかなように、その合流混合位置は
注入管の極く近傍であるため、そして低圧グラウ
ト吐出口が高圧グラウト吐出口より前方に位置し
ているため、合流位置において直ちに化学反応が
生じ、そこで硬化を開始し、その近傍の粘性が経
時的に増加する。こうなると、背後から噴出させ
る高圧グラウトは、合流混合位置より前方に固結
物または半固結物を同伴させながら注入されるこ
ととなり、対象地盤の対象切削部位に固結物を持
ち込む。持ち込まれた固結物は切削部位を目詰め
し、切削抵抗が増加し、またその後も同様な現象
を招く。その結果、切削能力が経時的に順次低下
し、折角高圧をかける利点が阻害されるばかりで
なく、切削線または切削面の全ての個所において
均質的に二液を硬化させて地盤を改良することが
できず、地盤を荒すだけである。
On the other hand, Japanese Patent Publication No. 51-4003 discloses the idea of injecting one type of grout from the front and another type of grout from the rear at a rate of 50 to 1000 kg/cm 2 using nozzles arranged concentrically. However, the same bulletin No. 5
As is clear from the figure, because the merging and mixing position is very close to the injection pipe and the low-pressure grout outlet is located in front of the high-pressure grout outlet, the chemical reaction occurs immediately at the merging position. At that point, it begins to harden, and the viscosity in the vicinity increases over time. In this case, the high-pressure grout that is ejected from behind is injected forward from the convergence and mixing position while entraining solidified or semi-consolidated matter, bringing the solidified matter into the target cutting site of the target ground. The brought in solids clog the cutting area, increasing cutting resistance and causing similar phenomena afterwards. As a result, the cutting ability gradually decreases over time, which not only hinders the advantage of applying high pressure, but also makes it difficult to improve the ground by uniformly hardening the two liquids at all locations on the cutting line or cutting surface. This will only make the ground rougher.

このように、同公報記載技術は、注入管近傍で
合流硬化させたものを高圧で地盤に押し込むとい
う思想に立却しているが故に限界がある。
As described above, the technique described in this publication has its limitations because it rejects the idea of forcing confluent hardened material near the injection pipe into the ground under high pressure.

これに対して、この発明においては、二液合流
薬液を高圧力で無理に注入するのではなくして浸
透注入を目的として低圧グラウト吐出口を高圧グ
ラウト吐出口の背後に位置させるものであるか
ら、低圧グラウトは、吐出方向に関し、高圧グラ
ウトに遅れて吐出されこれと合流され、高圧グラ
ウトに誘導されながら、高圧グラウトによつて形
成された「水みち」に沿つて入つて行く。その結
果、初期粘性の増加がなく、切削抵抗の増加がな
く、高圧グラウトに対してかける高圧力がそのま
ま地盤改良径となつてあらわれる。また高圧グラ
ウトは、自らは先行的に切削するとともに、後か
ら追いかけてくる低圧グラウトを誘導するように
なるので、「水みち」のあらゆる個所に均一に低
圧グラウトを誘導し、もつて「水みち」上で無理
のない均質な改良体が造成される。
On the other hand, in this invention, the low-pressure grout outlet is located behind the high-pressure grout outlet for the purpose of penetrating injection, instead of forcibly injecting the two-component combined chemical solution at high pressure. Regarding the discharge direction, the low pressure grout is discharged after the high pressure grout, merges with the high pressure grout, and enters along the "water path" formed by the high pressure grout while being guided by the high pressure grout. As a result, there is no increase in initial viscosity, no increase in cutting resistance, and the high pressure applied to the high-pressure grout directly appears as the ground improvement diameter. In addition, the high-pressure grout cuts in advance and guides the low-pressure grout that follows, so it guides the low-pressure grout uniformly to all parts of the "water path" and ” A reasonably homogeneous improved body is created.

なお、この効果を発揮させるために、高圧力と
低圧力との比を前述のように適切に選定する必要
があるのである。
In addition, in order to exhibit this effect, it is necessary to appropriately select the ratio of high pressure and low pressure as described above.

以上の通り、この発明は、高圧グラウト吐出口
の背後に低圧グラウト吐出口を設けたものである
ので、確実に合流し複雑な地層であつても均質な
固結体を得ることができる。さらに、本発明では
吐出空間を形成したので、低圧グラウト流を規制
しながら、高圧グラウト流と同一指向性をもつて
後続させることができる。
As described above, since the present invention provides a low-pressure grout outlet behind a high-pressure grout outlet, it is possible to reliably merge and obtain a homogeneous solidified body even in complicated geological formations. Further, in the present invention, since the discharge space is formed, the low pressure grout flow can be regulated while following the high pressure grout flow with the same directivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は注入方法の概要図、第2図は注入装置
の縦断面図、第3図はその、−線矢視図であ
る。 1……注入管、2……挿入孔、3……回転装
置、10……内管、11……弁内封管、11a…
…流入口、12……ノズル子、12a……吐出
口、13……逆止弁、14……スプリング、20
……外管、21……先端管、22……案内路、2
3……吐出空間、24……逆止弁、30……先端
沓、31……ボルト。
FIG. 1 is a schematic diagram of the injection method, FIG. 2 is a longitudinal sectional view of the injection device, and FIG. 3 is a view taken along the - line. DESCRIPTION OF SYMBOLS 1... Injection pipe, 2... Insertion hole, 3... Rotating device, 10... Inner tube, 11... Valve sealing tube, 11a...
...Inflow port, 12...Nozzle element, 12a...Discharge port, 13...Check valve, 14...Spring, 20
... Outer tube, 21 ... Tip tube, 22 ... Guide path, 2
3...Discharge space, 24...Check valve, 30...Tip shoe, 31...Bolt.

Claims (1)

【特許請求の範囲】 1 二重注入管内に、その内管内、内管と外管と
の間隙を利用して、相互に独立の高圧グラウト路
および低圧グラウト路を形成し、注入管の先端部
において、高圧グラウト路を注入管の中心より右
方に偏位させ、低圧グラウトを左方に偏位させ、
注入管先端部下部に右方水平に注入管外に開口
し、左右方向に所定の長さおよび巾方向に所定の
巾をそれぞれ有する吐出空間23を形成し、この
吐出空間23の左方において前記低圧グラウト路
に連通する低圧グラウト吐出口22aを吐出空間
23に臨んで形成し、前記吐出空間23の左右方
向中間部及び巾方向中央部に位置してノズル子1
2を前記吐出空間23内に下方突出させ、このノ
ズル子12に前記高圧グラウト路に連通する高圧
グラウト吐出口12aを前記吐出空間23の高さ
方向中間部位置であつてかつ低圧グラウト吐出口
22aと同一水平線上に一致させた位置において
右方に指向させて形成した注入管を用い; 2液硬化性グラウトを構成する一方の前記高圧
グラウトの吐出圧力を50〜300Kg/cm2、他方の低
圧グラウトの吐出圧力を高圧グラウトの吐出圧力
の0.02〜0.20の比でかつ50Kg/cm2未満の圧力と
し、高圧グラウトを前記高圧グラウト吐出口から
前記圧力範囲で吐出させ、これを吐出空間の壁に
よつて規制しながら前記ノズル子12の周囲を通
つて周辺地盤に向かわせ、 この注入過程で、注入管基部に設けた回転装置
により注入管を軸周りに回転させるとともに引き
上げ、圧搾空気を用いることなく2液硬化性グラ
ウトのみで地盤の改良を行うことを特徴とするグ
ラウト注入工法。
[Scope of Claims] 1. A mutually independent high-pressure grout path and low-pressure grout path are formed in the double injection tube by utilizing the inner tube and the gap between the inner tube and the outer tube, and the distal end of the injection tube , the high-pressure grout path is deviated to the right from the center of the injection pipe, the low-pressure grout is deviated to the left,
A discharge space 23 is formed in the lower part of the injection tube tip horizontally to the right and has a predetermined length in the left-right direction and a predetermined width in the width direction. A low-pressure grout discharge port 22a communicating with the low-pressure grout path is formed facing the discharge space 23, and is located at the middle part in the left-right direction and the center part in the width direction of the discharge space 23.
2 protrudes downward into the discharge space 23, and the nozzle element 12 is provided with a high-pressure grout discharge port 12a communicating with the high-pressure grout path at an intermediate position in the height direction of the discharge space 23 and a low-pressure grout discharge port 22a. using an injection pipe formed to point to the right at a position aligned with the same horizontal line; the discharge pressure of one of the high-pressure grouts constituting the two-component hardening grout is 50 to 300 Kg/cm 2 , and the discharge pressure of the other low pressure The discharge pressure of the grout is set to a ratio of 0.02 to 0.20 of the discharge pressure of the high-pressure grout and a pressure of less than 50 Kg/cm 2 , and the high-pressure grout is discharged from the high-pressure grout discharge port in the pressure range, and this is applied to the wall of the discharge space. In this injection process, the injection pipe is rotated around its axis by a rotation device provided at the base of the injection pipe and pulled up, using compressed air. This grout injection method is characterized by improving the ground using only two-component hardening grout.
JP5545582A 1982-04-05 1982-04-05 Grout injector Granted JPS5862212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5545582A JPS5862212A (en) 1982-04-05 1982-04-05 Grout injector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5545582A JPS5862212A (en) 1982-04-05 1982-04-05 Grout injector

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP14847277A Division JPS5481615A (en) 1977-12-10 1977-12-10 Method of construction of grout injection and its device

Publications (2)

Publication Number Publication Date
JPS5862212A JPS5862212A (en) 1983-04-13
JPS6358972B2 true JPS6358972B2 (en) 1988-11-17

Family

ID=12999074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5545582A Granted JPS5862212A (en) 1982-04-05 1982-04-05 Grout injector

Country Status (1)

Country Link
JP (1) JPS5862212A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6040412A (en) * 1983-08-11 1985-03-02 Yamaguchi Kikai Kogyo Kk Method and apparatus for injection of chemical grout
JPS61207712A (en) * 1985-03-12 1986-09-16 N I T:Kk Method and device of improving ground
JP2630587B2 (en) * 1986-03-04 1997-07-16 日東化学工業株式会社 Grout injection method
JPH079088B2 (en) * 1989-01-27 1995-02-01 鹿島建設株式会社 Large diameter ground improvement method
US5343968A (en) * 1991-04-17 1994-09-06 The United States Of America As Represented By The United States Department Of Energy Downhole material injector for lost circulation control
JP2729749B2 (en) * 1993-06-22 1998-03-18 志朗 中嶋 Omnidirectional ground improvement body construction method and its device
DE10236257A1 (en) * 2002-08-09 2004-02-26 Stump Spezialtiefbau Gmbh Ground jet system of suspension and air feed fits suspension outlets in end of nozzle support at angle to drillrod so suspension feeds via ball valve to outlets as nozzle support rotates.
JP4488403B2 (en) * 2003-08-06 2010-06-23 ライト工業株式会社 Waste mud recycling method and equipment for ground improvement method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS514003A (en) * 1974-04-05 1976-01-13 Subsea Equipment Ass Ltd
JPS5297214A (en) * 1976-02-12 1977-08-15 Kajima Corp Concrete solidification method for subsoil improvement

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS514003A (en) * 1974-04-05 1976-01-13 Subsea Equipment Ass Ltd
JPS5297214A (en) * 1976-02-12 1977-08-15 Kajima Corp Concrete solidification method for subsoil improvement

Also Published As

Publication number Publication date
JPS5862212A (en) 1983-04-13

Similar Documents

Publication Publication Date Title
JP3884018B2 (en) Soft ground improvement device
JPH0160614B2 (en)
JP2004346734A (en) Device for injecting quick setting agent using high-speed jet fluid
JPS6358972B2 (en)
KR100973745B1 (en) Front Device for Grouting and Grouting Method using the same
KR102103556B1 (en) Steel pipe for propulsion used in S.P.M method
JPS61211418A (en) Chemical solution pouring method
CN113529703B (en) Double-liquid sealing grouting leakage-stopping construction method for foundation pit support anchor cable leakage
JPH0649974B2 (en) Ground injection method
JP2586984B2 (en) Ground injection method and injection pipe
JPH0565649B2 (en)
JPS6050927B2 (en) Ground injection method
JPH06158636A (en) Method for grouting
JPS6357562B2 (en)
JP2878892B2 (en) Grout three-phase injection method
CN216108479U (en) Foundation pit support anchor cable seepage double-liquid sealing grouting arrangement structure
JPS62141220A (en) Ground improving work
JP2937606B2 (en) Grout injection method
JPS6243007B2 (en)
JPH05195525A (en) Ground grouting work
KR860001294B1 (en) Grouting method and grouting pipe
JPH07252822A (en) Ground grouting method
KR200325158Y1 (en) The Rapid-set Injection System by High-speed Jet Fluid
JPH02289719A (en) Press-in method of concrete sheet pile
JPH0651970B2 (en) Injection pipe for ground injection