JPS589372B2 - Nitric oxide quantitative generator - Google Patents

Nitric oxide quantitative generator

Info

Publication number
JPS589372B2
JPS589372B2 JP8274877A JP8274877A JPS589372B2 JP S589372 B2 JPS589372 B2 JP S589372B2 JP 8274877 A JP8274877 A JP 8274877A JP 8274877 A JP8274877 A JP 8274877A JP S589372 B2 JPS589372 B2 JP S589372B2
Authority
JP
Japan
Prior art keywords
gas
nitrogen
nitrogen monoxide
tube
nitric oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8274877A
Other languages
Japanese (ja)
Other versions
JPS5417397A (en
Inventor
高畠正温
中山実
浜本修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP8274877A priority Critical patent/JPS589372B2/en
Publication of JPS5417397A publication Critical patent/JPS5417397A/en
Publication of JPS589372B2 publication Critical patent/JPS589372B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Description

【発明の詳細な説明】 本発明は、一酸化窒素の定量発生装置に関し、さらに詳
しくは、ガス透過性のパーミエイションチューブを用い
た一酸化窒素の定量発生装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for quantitatively generating nitric oxide, and more particularly to a device for quantitatively generating nitric oxide using a gas-permeable permeation tube.

既知の濃度の一酸化窒素ガス(標準ガス)は、例えば環
境ガス分析における窒素酸化物の連続測定装置の目盛較
正等に不可欠なものであり、一般には、ボンベに充填さ
れた既知の濃度のガスが用いられている。
Nitric oxide gas (standard gas) with a known concentration is indispensable, for example, for calibrating the scale of a continuous measurement device for nitrogen oxides in environmental gas analysis, and is generally a gas with a known concentration filled in a cylinder. is used.

しかし、ppmオーダー以下という希薄なガスをボンベ
に充填すると、ボンベ内で濃度分布を生じたり、また経
時変化するなど濃度の安定性に問題がある。
However, when a cylinder is filled with a dilute gas on the order of ppm or less, there are problems with the stability of the concentration, such as concentration distribution within the cylinder and changes over time.

また数ppmの濃度の一酸化窒素を希釈して用いる場合
には、多量の希釈ガスを必要とし、装置が大型化する等
の欠点がある。
Furthermore, when using diluted nitrogen monoxide with a concentration of several ppm, a large amount of diluting gas is required, resulting in disadvantages such as an increase in the size of the apparatus.

そこで近年、化学的または物理的方法により数ppm以
下の希薄な一酸化窒素標準ガスを発生させようとする試
みが盛んに行なわれている。
Therefore, in recent years, many attempts have been made to generate a dilute nitrogen monoxide standard gas of several ppm or less by chemical or physical methods.

例えば、亜硝酸塩水溶液上に窒素ガスを流し、該水溶液
から窒素酸化物を分解、発生させて希薄な窒素酸化物含
有窒素ガスを得る方法(田中茂他、分析化学第26巻第
5号第285頁、1977年)、および一定濃度の一酸
化窒素標準ガスを圧力差をもってテフロン膜から拡散、
放出せしめ、放出された一酸化窒素を希釈ガス中に混合
して希薄な標準ガスを得る方法(指宿他、日本化学会第
36春季年回講演要旨集1H36、第75頁、1977
年)などが知られている。
For example, a method of flowing nitrogen gas over a nitrite aqueous solution to decompose and generate nitrogen oxides from the aqueous solution to obtain dilute nitrogen oxide-containing nitrogen gas (Shigeru Tanaka et al., Analytical Chemistry Vol. 26, No. 5, No. 285 Page, 1977) and a constant concentration of nitrogen monoxide standard gas diffused through a Teflon membrane with a pressure difference.
A method for obtaining a dilute standard gas by mixing the released nitrogen monoxide with a diluent gas (Ibusuki et al., Proceedings of the 36th Spring Annual Conference of the Chemical Society of Japan 1H36, p. 75, 1977
) are known.

しかしながら、前者の方法では一酸化窒素の他に二酸化
窒素および水蒸気が発生し、一酸化窒素のみを含む希薄
ガスは得られない。
However, in the former method, nitrogen dioxide and water vapor are generated in addition to nitrogen monoxide, and a dilute gas containing only nitrogen monoxide cannot be obtained.

また後者の方法では、標準ガスをさらに圧力差により膜
を通して拡散させるので濃度決定の要因が多く、実用的
なものとはいえない。
In addition, in the latter method, the standard gas is further diffused through the membrane due to the pressure difference, so there are many factors that determine the concentration, and it cannot be said to be practical.

他方、二酸化窒素の希薄標準ガスの調製方法としては、
液化二酸化窒素を二酸化窒素透過可能な容器内に充填し
、これを定温度下で希釈ガス流中におき、容器の重量減
少と希釈ガス流量とから濃度を決定する、いわゆるパー
ミエイションチューブ法があり、この方法は、同様な二
酸化イオウの標準ガス調製法などと共に実用化されてい
る。
On the other hand, as a method for preparing a dilute standard gas of nitrogen dioxide,
The so-called permeation tube method involves filling liquefied nitrogen dioxide into a nitrogen dioxide-permeable container, placing it in a diluent gas stream at a constant temperature, and determining the concentration from the weight loss of the container and the diluent gas flow rate. This method has been put into practical use along with a similar standard gas preparation method for sulfur dioxide.

この方法を一酸化窒素の標準ガス調製に応用することが
できるが、液化一酸化窒素を要するので、安全性その他
、取扱いが面倒であるという欠点がある。
Although this method can be applied to the preparation of a standard gas of nitrogen monoxide, since it requires liquefied nitrogen monoxide, it has drawbacks such as safety and troublesome handling.

本発明の目的は、上記従来技術の欠点をなくし、一酸化
窒素を含むガス発生源、特に入手および取扱いの容易な
一酸化窒素水溶液を用いて一酸化窒素のみを含む標準ガ
スを容易に調製することができる一酸化窒素の定量発生
装置を提供することにある。
An object of the present invention is to eliminate the drawbacks of the prior art described above, and to easily prepare a standard gas containing only nitrogen monoxide using a gas generating source containing nitrogen monoxide, particularly an aqueous nitrogen monoxide solution that is easy to obtain and handle. An object of the present invention is to provide a device for quantitatively generating nitric oxide.

上記目的を達成するために、本発明は、ガス透過膜を有
し、内部に一酸化窒素発生源が封入されるパーミエイシ
ョンチューブからなる一酸化窒素の発生装置において、
前記ガス透過膜を二層構造とし、これらの層間に乾燥剤
層および酸性ガス吸収剤層を設けたことを特徴とするも
のである。
In order to achieve the above object, the present invention provides a nitric oxide generator comprising a permeation tube having a gas-permeable membrane and in which a nitric oxide generating source is enclosed.
The gas permeable membrane is characterized in that it has a two-layer structure, and a desiccant layer and an acidic gas absorbent layer are provided between these layers.

すなわち、本発明は上記構成のパーミエイションチュー
ブの透過膜に水を含む一酸化窒素発生源から生成するガ
スを透過させ、該透過膜間に保持された乾燥剤によって
チューブから蒸散しようとする水を捕獲し、また、酸性
ガス吸収剤によって三酸化二窒素以上の高酸化状態にあ
る窒素酸化物を捕獲し、実際上容器外に放散するガスを
一酸化窒素のみに限定しようとするものである。
That is, the present invention allows gas generated from a nitrogen monoxide source containing water to permeate the permeation membrane of the permeation tube configured as described above, and prevents water that is about to evaporate from the tube by the desiccant held between the permeation membranes. It also captures nitrogen oxides in a highly oxidized state of dinitrogen trioxide or higher using an acidic gas absorbent, effectively limiting the gas released outside the container to only nitrogen monoxide. .

本発明に用いる一酸化窒素発生源としては、亜硝酸態窒
素、すなわち亜硝酸およびその塩の水溶液が最も好まし
く用いられるが、その他に一酸化窒素を吸着せしめた活
性炭や鉄ニトロシル錯体溶液なども良好な発生源となり
得る。
As the nitric oxide generating source used in the present invention, nitrite nitrogen, that is, an aqueous solution of nitrous acid and its salts, is most preferably used, but activated carbon adsorbed with nitric oxide and iron nitrosyl complex solutions are also suitable. This can be a source of serious problems.

しかしこれらの調製法としては、亜硝酸塩水溶液を用い
る方法が最も容易かつ安価であり、まだ一酸化窒素発生
量も大きい。
However, among these preparation methods, the method using a nitrite aqueous solution is the easiest and cheapest, and still generates a large amount of nitrogen monoxide.

本発明に用いるパーミエイションチューブは、ガス透過
膜で被覆された開口部を有する密閉容器からなる。
The permeation tube used in the present invention consists of a closed container having an opening covered with a gas permeable membrane.

ガス透過膜としては、ポリエチレン、ポリプロピレンの
ようなポリオレフィン系樹脂、四フツ化エチレン樹脂の
ようなフッ素系樹脂、シリコン系樹脂等からなる膜が用
いられる。
As the gas permeable membrane, a membrane made of a polyolefin resin such as polyethylene or polypropylene, a fluororesin such as tetrafluoroethylene resin, a silicone resin, or the like is used.

膜厚は特に限定されず、所望の透過性を得ることができ
れば、薄膜から板状の膜まで任意の厚さを選択し得る。
The film thickness is not particularly limited, and any thickness from a thin film to a plate-like film can be selected as long as the desired permeability can be obtained.

本発明における上記透過膜は、間隔をおいた二層構造体
とし、その一方の透過膜が前記チューブの開口部を被覆
するように接合させ、さらに前記二層の透過膜間に乾燥
剤層と酸性ガス吸収剤層を設けたものである。
The above-mentioned permeable membrane in the present invention has a two-layer structure separated by an interval, one of the permeable membranes is joined so as to cover the opening of the tube, and a desiccant layer is further provided between the two layers of permeable membranes. It is provided with an acidic gas absorbent layer.

乾燥剤層と酸性ガス吸収剤は、パーミエイションチュー
ブの前記開口部に近い方からこの順序に配置することが
のぞましい。
It is preferable that the desiccant layer and the acidic gas absorbent are arranged in this order from the one closest to the opening of the permeation tube.

またガス透過膜と乾燥剤間、乾燥剤と酸性ガス吸収剤間
および該吸収剤とガス透過膜にはそれぞれ必要に応じて
ガラスクールのような充填材料を詰めてもよい。
Further, a filling material such as glass coolant may be filled between the gas permeable membrane and the desiccant, between the desiccant and the acidic gas absorbent, and between the absorbent and the gas permeable membrane, respectively, as required.

上記乾燥剤は水蒸気の放散を防止とするものであり、一
般の乾燥剤が使用可能であるが、特に五酸化リンや過塩
素酸マグネシウムなど強力な乾燥剤が好ましく用いられ
る。
The desiccant mentioned above is for preventing the dissipation of water vapor, and although general desiccant agents can be used, strong desiccant agents such as phosphorus pentoxide and magnesium perchlorate are particularly preferably used.

酸性ガス吸収剤は二酸化窒素等の酸性ガスを除去するも
ので、例えば水酸化ナトリウム、水酸化カリウム、ソー
ダライム等が用いられる。
The acidic gas absorbent removes acidic gases such as nitrogen dioxide, and uses sodium hydroxide, potassium hydroxide, soda lime, etc., for example.

乾燥剤とガス吸収剤の両方の性質を兼ねるもの、(例え
ば酸化マグネシウムのようなアルカリ性の乾燥剤)も使
用可能であるが、この場合は透過膜間に一種類の薬剤を
充填するのみでよい。
It is also possible to use a substance that has the properties of both a desiccant and a gas absorbent (for example, an alkaline desiccant such as magnesium oxide), but in this case, only one type of chemical needs to be filled between the permeable membranes. .

以下、本発明を図面によりさらに詳細に説明する。Hereinafter, the present invention will be explained in more detail with reference to the drawings.

すなわち、添付図面は本発明に用いるパーミエイション
チューブの一例を示す概略断面図である。
That is, the accompanying drawing is a schematic sectional view showing an example of a permeation tube used in the present invention.

このチューブは、上部開口を有するガラス容器1と、上
記ガラス容器の上部開口を被覆して設けられたガス透過
膜2Aと、該ガス透過膜2Aを挾んで前記容器1の開口
周縁部に当接された筒部3と、該筒部と接するガス透過
膜2A上に順次充填されたガラスウール層4A,乾燥剤
層5、ガラスウール層4Bと、酸性ガス吸収剤6および
ガラスウール層4Cと、該ガラスウール層4Cの上部を
被覆して設けられたガス透過膜2Bとから主として構成
され、さらにガス漏出を防止するために、前記容器1と
前記筒部3の接合端にはそれぞれ溝部が設けられ、さら
にその外側に該溝部に合致するように成形されたガス不
透過性の合成樹脂筒8が設けられ、これらの間に前記ガ
ス透過膜2Aおよび2Bの端部を挿入し、その外側から
締め付けることができるように構成されている。
This tube includes a glass container 1 having an upper opening, a gas permeable membrane 2A provided to cover the upper opening of the glass container, and abutting against the periphery of the opening of the container 1 with the gas permeable membrane 2A sandwiched therebetween. The cylindrical part 3, the glass wool layer 4A, the desiccant layer 5, the glass wool layer 4B, the acidic gas absorbent 6 and the glass wool layer 4C filled in order on the gas permeable membrane 2A in contact with the cylindrical part, It mainly consists of a gas permeable membrane 2B provided to cover the upper part of the glass wool layer 4C, and grooves are provided at the joint ends of the container 1 and the cylindrical part 3 to prevent gas leakage. Furthermore, a gas-impermeable synthetic resin cylinder 8 molded to match the groove is provided on the outside of the cylinder, and the ends of the gas-permeable membranes 2A and 2B are inserted between these cylinders, and the ends of the gas-permeable membranes 2A and 2B are inserted from the outside. It is configured so that it can be tightened.

ガラス容器1と筒部3は、上述のようにガス不透過性の
合成樹脂管8(例えば肉厚の四フツ化エチレン樹脂管)
によって連結することができるが、他の方法としてはエ
ポキシ系の接着剤を用いて直接接合することもできる。
The glass container 1 and the cylindrical portion 3 are made of a gas-impermeable synthetic resin pipe 8 (for example, a thick-walled polytetrafluoroethylene resin pipe) as described above.
However, as another method, direct bonding using an epoxy adhesive is also possible.

みた、接合剤を用いずにガラス容器1と筒部3は溶着さ
せてもよい。
However, the glass container 1 and the cylindrical portion 3 may be welded together without using a bonding agent.

まだガラスウール層4A,4Bおよび4cは、乾燥剤5
およびガス吸収剤6を保持するために設けられたもので
あり、乾燥剤等が自己保持性のものであれば本発明にお
いて必らずしも要しない。
Still glass wool layers 4A, 4B and 4c are coated with desiccant 5
It is provided to hold the gas absorbent 6, and is not necessarily required in the present invention if the desiccant etc. are self-holding.

また、ガラスウール層の代りに発泡体等の他の保持手段
を用いることができる。
Also, other retention means such as foam can be used in place of the glass wool layer.

上記パーミエイションチューブは、希釈ガスの気流中に
おかれ、該チューブから一定量の一酸化窒素ガスが透過
膜外に拡散され、所定の低濃度ガスを得ることができる
The above-mentioned permeation tube is placed in an airflow of diluent gas, and a certain amount of nitrogen monoxide gas is diffused from the tube to the outside of the permeable membrane, thereby making it possible to obtain a predetermined low concentration gas.

以下、本発明の実施例を示す。Examples of the present invention will be shown below.

実施例 1 図面に示したパーミエイションチューブを試作し、この
チューブを用いて一酸化窒素の窒素希釈ガスを調製した
Example 1 The permeation tube shown in the drawing was prototyped, and nitrogen dilution gas for nitric oxide was prepared using this tube.

このガス濃度は、チューブの重量減少量とガス流量から
求められるが、この値と化学発光法による窒素酸化物分
析計で得られた一酸化窒素の分析値が比較された。
This gas concentration is determined from the weight loss of the tube and the gas flow rate, and this value was compared with the nitrogen monoxide analysis value obtained using a nitrogen oxide analyzer using a chemiluminescence method.

図面中のガラス容器1内には亜硝酸態窒素含有物として
1モル/l亜硝酸ナトリウム水溶液と1規定硫酸を1対
2の割合で混合した液が内部液9として導入される。
A liquid containing 1 mol/l sodium nitrite and 1N sulfuric acid mixed in a ratio of 1:2 is introduced as an internal liquid 9 into a glass container 1 in the drawing.

ガス透過膜2Aおよび2Bとしてはポリエチレンフイル
ムが用いられる。
Polyethylene films are used as the gas permeable membranes 2A and 2B.

ガラス容器1と筒部3の接合は接合部に接着剤を塗った
のち、肉厚の四フツ化エチレン系樹脂筒7を接合部に覆
いかぶせて行なった。
The glass container 1 and the cylindrical portion 3 were joined by applying an adhesive to the joint, and then covering the joint with a thick polytetrafluoroethylene resin cylinder 7.

乾燥剤5としては過塩素酸マグネシウム、酸性ガス吸収
剤6としては水酸化カリウム粉末を用いた。
Magnesium perchlorate was used as the desiccant 5, and potassium hydroxide powder was used as the acidic gas absorbent 6.

筒部3内におけるこれらの充填順序は、ガラス容器1の
ポリエチレンフイルム上にガラスウール、過塩素酸マグ
ネシウム、ガラスウール、水酸化カリウムおよびガラス
ウールの順であり、さらにその上部にポリエチレンフイ
ルムが被覆された。
The order in which these materials are filled in the cylindrical portion 3 is as follows: glass wool, magnesium perchlorate, glass wool, potassium hydroxide, and glass wool are placed on the polyethylene film of the glass container 1, and the top is further covered with a polyethylene film. Ta.

上記チューブを21゜C、500ml/分の流量の窒素
気流中に置いて、ガス中の一酸化窒素濃度を測定した。
The tube was placed in a nitrogen stream at 21° C. and a flow rate of 500 ml/min, and the concentration of nitrogen monoxide in the gas was measured.

238分にわたる測定の結果、チューブの重量減少量は
0.0397g、すなわち1.32ミリモルであり、一
方、ガス分析値より求めた一酸化窒素発生量は1.35
ミリモルであり、両者の値はほぼ一致した。
As a result of the measurement over 238 minutes, the weight loss of the tube was 0.0397 g, or 1.32 mmol, while the amount of nitrogen monoxide generated from the gas analysis value was 1.35.
mmol, and both values were almost the same.

また、このときの一酸化窒素濃度は350ppmから1
50pprまで直線的な減少を示し、二酸化窒素は検出
されなかった。
In addition, the concentration of nitric oxide at this time ranges from 350 ppm to 1
It showed a linear decrease up to 50 ppr and no nitrogen dioxide was detected.

次に塩素酸マグネシウム、塩化カリウムの充填量ヲ多く
シ、より厚いポリエチレンフイルムを用いた同様な構成
のチューブを用い、同じ条件にて315分にわたる測定
を行なった。
Next, measurements were carried out over 315 minutes under the same conditions using a tube of the same construction with a larger amount of magnesium chlorate and potassium chloride and a thicker polyethylene film.

この間、放出ガス中の一酸化窒素濃度は27ppm程度
を保持した。
During this time, the concentration of nitrogen monoxide in the released gas was maintained at about 27 ppm.

この測定値から求めた一酸化窒素発生量は0. 168
ミIJモル、一方、チューブの重量減少から求めた一酸
化窒素発生量は0.160ミIJモルであった。
The amount of nitric oxide generated from this measured value was 0. 168
On the other hand, the amount of nitrogen monoxide generated determined from the weight loss of the tube was 0.160 mmIJ mole.

この場合も、二酸化窒素は検出されなかった。Again, no nitrogen dioxide was detected.

比較例 1 実施例1において、乾燥剤を用いずに吸収剤として水酸
化ナトリウムのみを充填した同様なチューブを作り、6
10℃、500ml/分の窒素気流中においてガスを放
散せしめた。
Comparative Example 1 A similar tube was made in Example 1 but filled only with sodium hydroxide as an absorbent without using a desiccant, and 6
Gas was diffused in a nitrogen stream of 500 ml/min at 10°C.

1.14時間の間に分析計によって測定された一酸化窒
素は0.7 6 3μモルにすぎなかったが、チューブ
重量減少量を一酸化窒素放散量として計算すると11.
5μモルに達し、両者の値は全く一致しなかった。
The amount of nitric oxide measured by the analyzer during 1.14 hours was only 0.763 μmol, but when the weight loss of the tube was calculated as the amount of nitric oxide released, it was 11.
The amount reached 5 μmol, and the two values did not match at all.

この実験を温度33℃として、6.10時間行なった場
合は分析計の指示は0.72ppmで一定していだが、
チューブ重量減少量を基準とした一酸化窒素濃度の計算
値は54ppmで、両者の値はこの場合も大きく異なっ
ていた。
When this experiment was conducted for 6.10 hours at a temperature of 33°C, the reading on the analyzer remained constant at 0.72 ppm.
The calculated value of the nitric oxide concentration based on the amount of tube weight loss was 54 ppm, and the two values were also significantly different in this case.

なお、本比較例においても二酸化窒素は測定されなかっ
た。
Note that nitrogen dioxide was not measured in this comparative example either.

実施例 2 比較例1において水酸化ナトリウムの代りに酸化マグネ
シウムを用い、温度33℃で比較例2と同じ条件で15
.5時間にわたってガスを放散させた。
Example 2 In Comparative Example 1, magnesium oxide was used instead of sodium hydroxide, and the temperature was 33°C under the same conditions as Comparative Example 2.
.. The gas was allowed to evolve over a period of 5 hours.

このガスの2酸化窒素分析計値は6.2ppmで安定し
、これから求めた総一酸化窒素発生量は0.127mモ
ルであり、チューブ重量減少量を基準として求めた値0
.135mモルとほぼ一致した。
The nitrogen dioxide analyzer value of this gas stabilized at 6.2 ppm, and the total amount of nitrogen monoxide generated was 0.127 mmol, which was calculated based on the amount of tube weight loss, which was 0.
.. It was almost the same as 135 mmol.

これは酸化マグネシウムが酸性ガス吸収剤と乾燥剤の両
方の性質を有するためと思われる。
This seems to be because magnesium oxide has the properties of both an acid gas absorbent and a desiccant.

以上、本発明によればパーミエイションチユーブに乾燥
剤層および酸性ガス吸収剤層を設けることにより、発生
する一酸化窒素含有ガスから一酸化窒素のみをチューブ
外に放散させることができる。
As described above, according to the present invention, by providing the desiccant layer and the acidic gas absorbent layer in the permeation tube, only nitrogen monoxide can be diffused out of the tube from the generated nitrogen monoxide-containing gas.

従って一酸化窒素発生源として入手および取扱いの容易
な亜硝酸態窒素の水溶液を用いることができ、また放散
される一酸化窒素量も経時的に安定しているなど、優れ
た効果が得られる。
Therefore, an aqueous solution of nitrite nitrogen, which is easy to obtain and handle, can be used as a nitrogen monoxide generation source, and excellent effects such as the amount of nitrogen monoxide released are stable over time can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明に用いるパーミエイションチューブの一例
を示す概略断面図である。 1・・・ガラス容器、2A,2B・・・ガス透過膜、3
・・・ガラス筒、4A,4B,4C・・・ガラスウール
、5・・・乾燥剤、6・・・酸性ガス吸収剤、7・・・
合成樹脂筒。
The drawing is a schematic sectional view showing an example of a permeation tube used in the present invention. 1... Glass container, 2A, 2B... Gas permeable membrane, 3
...Glass tube, 4A, 4B, 4C... Glass wool, 5... Desiccant, 6... Acidic gas absorbent, 7...
Synthetic resin tube.

Claims (1)

【特許請求の範囲】 1 ガス透過膜を有し、内部に二酸化窒素発生源が封入
されるパーミエイションチューブからなる一酸化窒素の
発生装置において、前記ガス透過膜を二層構造とし、こ
れらの層間に乾燥剤層および酸性ガス吸収剤層を設けた
ことを特徴とする二酸化窒素の定量発生装置。 2 特許請求の範囲第1項において、前記一酸化窒素発
生源が亜硝酸態窒素水溶液であることを特徴とする一酸
化窒素の定量発生装置。
[Scope of Claims] 1. A nitrogen monoxide generator comprising a permeation tube having a gas permeable membrane and a nitrogen dioxide generation source sealed inside, the gas permeable membrane having a two-layer structure, A quantitative generation device for nitrogen dioxide, characterized in that a desiccant layer and an acid gas absorbent layer are provided between the layers. 2. The quantitative generation device for nitrogen monoxide according to claim 1, wherein the nitrogen monoxide generation source is an aqueous nitrite nitrogen solution.
JP8274877A 1977-07-11 1977-07-11 Nitric oxide quantitative generator Expired JPS589372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8274877A JPS589372B2 (en) 1977-07-11 1977-07-11 Nitric oxide quantitative generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8274877A JPS589372B2 (en) 1977-07-11 1977-07-11 Nitric oxide quantitative generator

Publications (2)

Publication Number Publication Date
JPS5417397A JPS5417397A (en) 1979-02-08
JPS589372B2 true JPS589372B2 (en) 1983-02-21

Family

ID=13783039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8274877A Expired JPS589372B2 (en) 1977-07-11 1977-07-11 Nitric oxide quantitative generator

Country Status (1)

Country Link
JP (1) JPS589372B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0326146Y2 (en) * 1983-03-30 1991-06-06
JPH0524079Y2 (en) * 1987-09-04 1993-06-18
JP2004309497A (en) * 2004-06-04 2004-11-04 Nippon Api Corp Liquid sample container for producing standard gas and standard gas producer

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5224471B2 (en) * 2009-09-09 2013-07-03 住友精化株式会社 Method and apparatus for producing nitric oxide gas
CN102716698B (en) * 2012-06-13 2014-04-16 国电环境保护研究院 Mercury calibration source slow-release device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0326146Y2 (en) * 1983-03-30 1991-06-06
JPH0524079Y2 (en) * 1987-09-04 1993-06-18
JP2004309497A (en) * 2004-06-04 2004-11-04 Nippon Api Corp Liquid sample container for producing standard gas and standard gas producer

Also Published As

Publication number Publication date
JPS5417397A (en) 1979-02-08

Similar Documents

Publication Publication Date Title
US4267023A (en) Chemically integrating dosimeter and gas analysis methods
US4761164A (en) Method for gas separation
Brubaker et al. Separation of gases by plastic membranes-permeation rates and extent of separation
US10214420B2 (en) Method, system, and device for delivery of process gas
McCandless Separation of binary mixtures of CO and H2 by permeation through polymeric films
US5643799A (en) Process for analyzing CO2 in seawater
JPS6215823B2 (en)
JPH0357809B2 (en)
JPS589372B2 (en) Nitric oxide quantitative generator
EP3733265B1 (en) Method and apparatus both for removing co2
US4022578A (en) Detector tube
US3533272A (en) Preparation of gas mixtures
EP0445287B1 (en) Concentration detection element for solute in aqueous solution
US3106458A (en) Process for detecting nitrogen dioxide in gases
US3909204A (en) Gas pollution monitor
Braman et al. Sublimation sources for nitrous acid and other nitrogen compounds in air
CA1284462C (en) Method for gas separation
Wickham et al. Advanced Supported Liquid Membranes for Carbon Dioxide Control in Extravehicular Activity Applications
JPH0553377B2 (en)
JPH085607A (en) Oxygen senser
JPH02162257A (en) Method and apparatus for measuring concentrations of components of fluorine-containing gas
JPS61218941A (en) Method for measuring concentration of carbon dioxide in water and vessel for measurement used therein
Park et al. Facilitated transport of carbon dioxide through an immobilized liquid membrane of K 2 CO 3/KHCO 3 aqueous solution
JPH07113605B2 (en) Gas analyzer
US20220260540A1 (en) Measurement method and measurement device using gas sensor