JP2737301B2 - Method of forming superconducting ceramic wiring - Google Patents

Method of forming superconducting ceramic wiring

Info

Publication number
JP2737301B2
JP2737301B2 JP1240719A JP24071989A JP2737301B2 JP 2737301 B2 JP2737301 B2 JP 2737301B2 JP 1240719 A JP1240719 A JP 1240719A JP 24071989 A JP24071989 A JP 24071989A JP 2737301 B2 JP2737301 B2 JP 2737301B2
Authority
JP
Japan
Prior art keywords
superconducting ceramic
wiring
pattern
superconducting
paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1240719A
Other languages
Japanese (ja)
Other versions
JPH03104178A (en
Inventor
博三 横山
伸男 亀原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1240719A priority Critical patent/JP2737301B2/en
Publication of JPH03104178A publication Critical patent/JPH03104178A/en
Application granted granted Critical
Publication of JP2737301B2 publication Critical patent/JP2737301B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔概 要〕 超伝導セラミックス配線の形成方法に関し、 焼成時に超伝導セラミックスペーストが収縮して断線
をするのを防止することを目的とし、 超伝導セラミックスペースト配線層を逆台形状の横断
面に塗布して焼成するように構成する。
DETAILED DESCRIPTION OF THE INVENTION [Summary] The present invention relates to a method of forming a superconducting ceramic wiring, in order to prevent the superconducting ceramic paste from shrinking and breaking during firing. It is configured to be applied to a trapezoidal cross section and fired.

〔産業上の利用分野〕[Industrial applications]

本発明は超伝導セラミックス配線の形成方法に係る。
すなわち本発明は液体窒素温度近傍で電気抵抗が零とな
る超伝導セラミックスを用いた配線材料に係るものであ
る。コンピュータの高速化の要求に伴い、配線の高密度
化が要求されている。このため、従来の金属を用いた配
線に代わって、超伝導体を用いることが考えられる。
The present invention relates to a method for forming a superconducting ceramic wiring.
That is, the present invention relates to a wiring material using superconducting ceramics whose electric resistance becomes zero near the temperature of liquid nitrogen. With the demand for faster computers, higher density wiring is required. Therefore, it is conceivable to use a superconductor instead of the conventional wiring using a metal.

〔従来の技術〕[Conventional technology]

超伝導セラミックスを用い、回路配線を形成する方法
としては、超伝導セラミックスを粉末とし、有機バイン
ダと溶剤を加えてペースト状にし、スクリーン印刷法で
基板上にパターンを形成する方法がある。
As a method of forming circuit wiring using superconducting ceramics, there is a method in which superconducting ceramics is powdered, an organic binder and a solvent are added to form a paste, and a pattern is formed on a substrate by screen printing.

この方法は、簡単で量産性に優れているため、いろい
ろな方面で使われている。
This method is used in various fields because of its simplicity and excellent mass productivity.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

スクリーン印刷法は簡単で量産性に優れているが、超
伝導セラミックスペーストを単に印刷し、焼成するだけ
では配線が分断される。これは、ペースト12を印刷した
際、配線の端部が第7図に示すように拡がり、焼成時に
は得られる超伝導体は面方向5%、厚さ方向40%ほども
収縮するが、超伝導パターンの上部に比べて下部が基板
との接触により収縮が妨げられるため、いうなればあた
かも上部だけが収縮するような形になり、第2図(イ)
の如く、変形し、分断が起きるのが原因である。
The screen printing method is simple and excellent in mass productivity, but simply printing and firing a superconducting ceramic paste can cut the wiring. This is because when the paste 12 is printed, the ends of the wirings expand as shown in FIG. 7, and the resulting superconductor shrinks by about 5% in the plane direction and 40% in the thickness direction during firing. Since the lower part is prevented from contracting by contact with the substrate as compared with the upper part of the pattern, it is as if only the upper part contracts.
It is caused by deformation and fragmentation.

そこで、本発明は、ペースト印刷法で超伝導セラミッ
クス配線を形成し、かつ焼成時の配線の分断を防ぐこと
を目的とする。
Therefore, an object of the present invention is to form a superconducting ceramic wiring by a paste printing method and to prevent the wiring from being disconnected during firing.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は、上記目的を達成するために、基板上に超伝
導セラミックスペースト配線層を塗布し、焼成して超伝
導セラミックス配線を形成する方法において、上記超伝
導セラミックスペースト配線層を横断面が逆台形状に塗
布することを特徴とする超伝導セラミックス配線の形成
方法を提供する。
In order to achieve the above object, the present invention provides a method for forming a superconducting ceramic wiring by applying a superconducting ceramic paste wiring layer on a substrate and firing the superconducting ceramic paste wiring layer. Provided is a method for forming a superconducting ceramic wiring, which is characterized by being applied in a trapezoidal shape.

基板上に超伝導セラミックスペースト層を横断面が逆
台形状になるように塗布する方法としては、基板上に予
め熱分解性に優れた樹脂で逆台形状の溝を形成し、この
溝に超伝導セラミックスペーストを印刷する方法が望ま
しい。この方法によれば、逆台形状の塗布が容易であ
り、かつその後の焼成時に熱分解性樹脂も消失するから
である。このような熱分解性樹脂としてはPMMA、アクリ
ル樹脂、ポリビニルブチラール、エチルセルロースなど
を用いることができる。
As a method of applying a superconducting ceramic paste layer on a substrate so that the cross section becomes an inverted trapezoidal shape, an inverted trapezoidal groove is previously formed on the substrate with a resin having excellent thermal decomposability, and the A method of printing a conductive ceramic paste is desirable. This is because according to this method, the application of the inverted trapezoidal shape is easy, and the thermally decomposable resin is also lost during the subsequent baking. As such a thermally decomposable resin, PMMA, acrylic resin, polyvinyl butyral, ethyl cellulose, and the like can be used.

超伝導セラミックスペースト層の逆台形の形状は、超
伝導セラミックスペーストの種類、配線の幅や厚さに応
じて決められるが、実施例にも示されるようにかなりの
内側角度(135゜以上)を持つことが望ましい。
The inverted trapezoidal shape of the superconducting ceramic paste layer is determined according to the type of superconducting ceramic paste and the width and thickness of the wiring, but as shown in the examples, a considerable inner angle (135 ° or more) is required. It is desirable to have.

超伝導セラミックスとしてはY−Ba−Cu−O系のほか
Bi−Sr−Ca−Cu−O系なども用いることができる。超伝
導セラミックスペーストの組成は慣用のものでよい。
Superconducting ceramics other than Y-Ba-Cu-O
A Bi-Sr-Ca-Cu-O system or the like can also be used. The composition of the superconducting ceramic paste may be a conventional one.

〔作 用〕(Operation)

上述のような配線形状にすれば、下部(基板と接触す
る部分)に比べて上部の幅が広いため、下部が焼成時に
基板との接触のため収縮が妨げられても、配線が分断さ
れることが無い。
With the above-described wiring shape, the width of the upper portion is wider than that of the lower portion (the portion in contact with the substrate). Therefore, even if the lower portion is prevented from contracting due to contact with the substrate during firing, the wiring is divided. There is nothing.

〔実施例〕〔Example〕

図面を参照して説明する。 This will be described with reference to the drawings.

粒子径1μmのY2O31mol,BaCO32molおよびCuO3molに
なるように調合し、ボールミルで48h混合したものを原
料粉末とした。この原料粉末100g、PMMA(アクリル樹
脂)5g、テルピネオール20g、さらにメチルエチルケト
ン20gを加えてボールミルで72h混合した。この後、メノ
ウ乳鉢のらいかい機でメチルエチルケトンを飛散させた
後、さらに、三本ロールミルで混練した。これにより、
超伝導セラミックスペーストを作製した。
Y 2 O 3 1 mol of particle size 1 [mu] m, were blended so that the BaCO 3 2 mol and CuO3mol, a material obtained by 48h mixed in a ball mill was used as a raw material powder. 100 g of this raw material powder, 5 g of PMMA (acrylic resin), 20 g of terpineol, and 20 g of methyl ethyl ketone were added and mixed by a ball mill for 72 hours. Thereafter, methyl ethyl ketone was scattered by a grinder in an agate mortar and then kneaded with a three-roll mill. This allows
A superconducting ceramic paste was prepared.

高純度アルミナ基板(FGA基板)1上にポリビニルブ
チラール樹脂(PVB)をテルピオネールに溶かしたペー
スト(メチルエチルケトンに溶解した後テルピネオール
で置換したもの)を用いて第1図(ア)に示したよう
に、スクリーン印刷2,3,4を繰り返して階段状とし、逆
台形型の樹脂パターン5を形成した。このパターン5
に、先に作製した超伝導セラミックスペーストをスクリ
ーン印刷し、第1図(イ)のような配線6を得た。この
パターンは厚さ40μm、底部の幅100μm、頂部の幅500
μmである。
As shown in FIG. 1 (a), a paste in which polyvinyl butyral resin (PVB) was dissolved in terpionel (dissolved in methyl ethyl ketone and replaced with terpineol) on a high-purity alumina substrate (FGA substrate) 1 was used. Then, screen printing 2, 3, and 4 were repeated to form a stepped shape, and an inverted trapezoidal resin pattern 5 was formed. This pattern 5
Then, the superconducting ceramic paste prepared above was screen-printed to obtain the wiring 6 as shown in FIG. This pattern has a thickness of 40 μm, a bottom width of 100 μm, and a top width of 500 μm.
μm.

これを大気中120℃で10min乾燥し、大気中500℃で樹
脂パターンを飛散させた後、1010℃,1minで焼成し、炉
冷した。これにより、超伝導体のパターンを形成した。
This was dried in the air at 120 ° C. for 10 minutes, and after the resin pattern was scattered in the air at 500 ° C., it was fired at 1010 ° C. for 1 minute and cooled in a furnace. Thus, a superconductor pattern was formed.

得られた超伝導セラミックス配線7は第2図(ア)に
示す如く分断のないキレイなパターンであった。
The obtained superconducting ceramic wiring 7 had a beautiful pattern without division as shown in FIG.

このパターンを四端子法で温度−抵抗の関係を測定し
た。結果を第3図に示す。臨界温度(Tc)は77Kであ
る。
The temperature-resistance relationship of this pattern was measured by a four-terminal method. The results are shown in FIG. The critical temperature (Tc) is 77K.

さらに、このパターンについてX線回折を行なった。
結果を第5図に示す。同図中、Aはアルミニウムのピー
クを示す。超伝導体セラミックスパターン中に、アルミ
ナ基板からのAlの拡散が少ない(パターン頂部にAl相が
少ない)ことがわかる(比較例の第6図と対称)。これ
がTcの向上に寄与しているものと考えられる。
Further, X-ray diffraction was performed on this pattern.
The results are shown in FIG. In the figure, A indicates the peak of aluminum. It can be seen that the diffusion of Al from the alumina substrate is small in the superconductor ceramic pattern (the Al phase is small at the top of the pattern) (symmetric with FIG. 6 of the comparative example). This is considered to contribute to the improvement of Tc.

比較のために、常法に従い、上部と同じ超伝導セラミ
ックスペースト配線パターンを基板上にスクリーン印刷
した。パターンの幅は300μm、厚さは40μmである。
その結果、第7図に示す如く下部が末広りのパターンに
なった。
For comparison, the same superconducting ceramic paste wiring pattern as that on the upper portion was screen-printed on the substrate according to a conventional method. The pattern has a width of 300 μm and a thickness of 40 μm.
As a result, the lower portion became a divergent pattern as shown in FIG.

このパターンを実施例と同じ条件で焼成した。得られ
た超伝導セラミックス配線パターン7は第2図(イ)に
示す如く、分断されたパターンであった。
This pattern was fired under the same conditions as in the example. The obtained superconducting ceramic wiring pattern 7 was a divided pattern as shown in FIG.

このパターンについても温度−抵抗の関係の測定及び
X線回折分析を行なった。結果を第4図及び第6図に示
す。臨界温度(Tc)は55Kであり、実施例よりかなり低
い。また、超伝導セラミックス中にAlの拡散が多いこと
が認められる。
This pattern was also subjected to measurement of the temperature-resistance relationship and X-ray diffraction analysis. The results are shown in FIGS. 4 and 6. The critical temperature (Tc) is 55K, which is considerably lower than in the example. In addition, it is recognized that there is much diffusion of Al in the superconducting ceramics.

〔発明の効果〕〔The invention's effect〕

本発明によれば、簡単で量産性の高いペースト印刷法
を用いて超伝導セラミックス配線を形成し、配線の分断
がなく、しかも臨界温度を向上させることができる効果
がある。
ADVANTAGE OF THE INVENTION According to this invention, the superconducting ceramic wiring is formed using the paste printing method which is simple and has high productivity, and there is an effect that the wiring is not divided and the critical temperature can be improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図(ア)(イ)は本発明の実施例の工程を示す図、
第2図(ア)(イ)は実施例及び比較例で得られた超伝
導セラミックス配線パターンの様子を示す図、第3図及
び第4図は実施例及び比較例の超伝導配線の温度−抵抗
の関係を示す図、第5図及び第6図は実施例及び比較例
のX線回折チャート、第7図は従来の配線ペースト印刷
の模式断面図である。 1……基板、2〜4……樹脂層、 5……逆台形溝、 6……超伝導セラミックスペーストパターン、 7……超伝導セラミックス配線、 11……基板、 12……超伝導セラミックスペースト。
FIGS. 1 (a) and 1 (a) are diagrams showing steps of an embodiment of the present invention.
2 (a) and 2 (a) are diagrams showing the state of the superconducting ceramic wiring pattern obtained in the example and the comparative example, and FIGS. 3 and 4 are diagrams showing the temperature of the superconducting wiring in the example and the comparative example. FIGS. 5 and 6 are X-ray diffraction charts of an example and a comparative example, and FIG. 7 is a schematic cross-sectional view of conventional wiring paste printing. DESCRIPTION OF SYMBOLS 1 ... board | substrate, 2-4 ... resin layer, 5 ... inverted trapezoid groove, 6 ... superconducting ceramic paste pattern, 7 ... superconducting ceramic wiring, 11 ... board | substrate, 12 ... superconducting ceramic paste.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板上に超伝導セラミックスペースト配線
層を塗布し、焼成して超伝導セラミックス配線を形成す
るに当り、上記超伝導セラミックスペースト配線層を横
断面が逆台形状に塗布することを特徴とする超伝導セラ
ミックス配線の形成方法。
In forming a superconducting ceramic wiring by applying a superconducting ceramic paste wiring layer on a substrate and firing it, applying the superconducting ceramic paste wiring layer in an inverted trapezoidal cross section. Characteristic method of forming superconducting ceramic wiring.
JP1240719A 1989-09-19 1989-09-19 Method of forming superconducting ceramic wiring Expired - Fee Related JP2737301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1240719A JP2737301B2 (en) 1989-09-19 1989-09-19 Method of forming superconducting ceramic wiring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1240719A JP2737301B2 (en) 1989-09-19 1989-09-19 Method of forming superconducting ceramic wiring

Publications (2)

Publication Number Publication Date
JPH03104178A JPH03104178A (en) 1991-05-01
JP2737301B2 true JP2737301B2 (en) 1998-04-08

Family

ID=17063685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1240719A Expired - Fee Related JP2737301B2 (en) 1989-09-19 1989-09-19 Method of forming superconducting ceramic wiring

Country Status (1)

Country Link
JP (1) JP2737301B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4994727B2 (en) * 2005-09-08 2012-08-08 株式会社リコー Organic transistor active substrate, manufacturing method thereof, and electrophoretic display using the organic transistor active substrate

Also Published As

Publication number Publication date
JPH03104178A (en) 1991-05-01

Similar Documents

Publication Publication Date Title
KR900007678B1 (en) Multi-layer super canducting circuit substrate and process for manufacturing same
JP2924177B2 (en) Functionally graded circuit board
CA1305259C (en) Crystalline rare earth alkaline earth copper oxide thick film conductor
US4973575A (en) Preferential orientation of metal oxide superconducting materials by mechanical means
JP2737301B2 (en) Method of forming superconducting ceramic wiring
US4992415A (en) Method for fabricating ceramic superconductors
JP2646015B2 (en) Method of forming superconducting wiring
JP2583901B2 (en) Superconducting electrical circuit
KR910004862B1 (en) Target material for forming superconductive film
JP2870993B2 (en) Manufacturing method of superconducting wiring
JP3272349B2 (en) Manufacturing method of superconducting wiring
JP2599387B2 (en) Ceramic superconductor
JPH0251806A (en) Superconducting ceramic laminated body and manufacture thereof
JP2737187B2 (en) Processing method of ceramics
JP3281892B2 (en) Ceramic superconducting composite and manufacturing method thereof
JP2759266B2 (en) Oxide superconductor coating
JPS63304529A (en) Formation of oxide superconductor thin film
JPH0744323B2 (en) Superconducting ceramic substrate
JPH02304987A (en) Forming method for superconductive circuit wirings
JP3187089B2 (en) Oxide superconducting structure
JP2889595B2 (en) Method for forming electrode of oxide superconductor film
JPH01107594A (en) Manufacture of superconductive ceramic board
JPH0269994A (en) Ceramic superconductive multilayer wiring board and manufacture of the same
JPH0215519A (en) Method of forming conductor junction film for ceramics superconductor
JP2855124B2 (en) Oxide superconductor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees