JPH02304987A - Forming method for superconductive circuit wirings - Google Patents

Forming method for superconductive circuit wirings

Info

Publication number
JPH02304987A
JPH02304987A JP1124185A JP12418589A JPH02304987A JP H02304987 A JPH02304987 A JP H02304987A JP 1124185 A JP1124185 A JP 1124185A JP 12418589 A JP12418589 A JP 12418589A JP H02304987 A JPH02304987 A JP H02304987A
Authority
JP
Japan
Prior art keywords
powder
paste
superconducting
added
strontium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1124185A
Other languages
Japanese (ja)
Inventor
Yoshiki Muramatsu
佳樹 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1124185A priority Critical patent/JPH02304987A/en
Publication of JPH02304987A publication Critical patent/JPH02304987A/en
Pending legal-status Critical Current

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To obtain wirings exhibiting superconductivity by adding powder to be added made of oxide powder of all or part of constituent elements of superconductive powder to superconducting powder exhibiting superconductivity, and baking paste of the mixed powder. CONSTITUTION:Powder to be added made of oxide powder of all or part of bismuth, lead, strontium of part of constituent components of superconducting powder is added to superconductive powder containing constituent elements of bismuth Bi, lead Pb, strontium Sr, calcium Ca, copper Cu and oxygen O as material powder. Organic binder and solvent are added to the material powder as paste, the paste is screen-printed on a board, and baked. That is, ths powder of easily depositing component is added to superconductive powder on an alumina board as paste, screen printed and baked. Thus, wirings exhibiting superconductivity are obtained.

Description

【発明の詳細な説明】 〔概要] 超伝導回路配線の形成方法、すなわち従来のプリント基
板にみられる回路配線材料に代わり、高密度実装の可能
な超伝導回路配線を形成する方法に関し、 超伝導ペーストの成分のうち、粉末成分が超伝導を示す
超伝導粉末だけからなる超伝導ペーストの高温の焼成に
おいても、組成比の変化を制御する方法を提供すること
を目的とし、 ビスマス(Bi)、鉛(Pb)、ストロンチウム(Sr
)、カルシウム(、Ca)、m(Cu)、酸素(O)を
構成元素とする超伝導粉末に、該超伝導粉末の構成元素
の一部であるビスマス、鉛、ストロンチウムのすべてま
たは一部の酸化物粉末からなる添加粉末を加えて原料粉
末とし、該原料粉末に有機バインダおよび溶剤を加えて
ペーストとし、該ペーストを基板上にスクリーン印刷し
、焼成することを特徴とする超伝導回路配線の形成方法
を含み構成する。
[Detailed Description of the Invention] [Summary] This invention relates to a method for forming superconducting circuit wiring, that is, a method for forming superconducting circuit wiring that can be mounted at high density in place of circuit wiring materials found in conventional printed circuit boards. The purpose of the present invention is to provide a method for controlling changes in the composition ratio even during high-temperature firing of a superconducting paste consisting only of superconducting powder that exhibits superconductivity among the powder components of the paste.Bismuth (Bi), Lead (Pb), strontium (Sr)
), calcium (,Ca), m(Cu), and oxygen (O) as constituent elements, all or part of bismuth, lead, and strontium, which are some of the constituent elements of the superconducting powder, are added A superconducting circuit wiring method characterized by adding an additive powder made of oxide powder to obtain a raw material powder, adding an organic binder and a solvent to the raw material powder to make a paste, screen printing the paste on a substrate, and baking it. Contains and constitutes a forming method.

〔産業上の利用分野〕[Industrial application field]

本発明は、超伝導回路配線の形成方法、すなわち従来の
プリント基板にみられる回路配線材料に代わり、高密度
実装の可能な超伝導回路配線を形成する方法に関する。
The present invention relates to a method of forming superconducting circuit wiring, that is, a method of forming superconducting circuit wiring that can be mounted at high density in place of circuit wiring materials found in conventional printed circuit boards.

〔従来の技術] 近年のコンピュータシステムの高速化の要求に伴い、配
線の高密度化が要求されている。
[Prior Art] With the recent demand for higher speed computer systems, higher density wiring is required.

このため、従来の金属を用いた配線材料に代わって、超
伝導体を用いることが考えられている。
For this reason, it is being considered to use superconductors instead of conventional wiring materials using metals.

従来は、プリント基板に所定の配線を例えば銅(Cu)
で形成し、かつ、プリント基板の所定の位置に電子部品
を実装していたが、配線の高密度化を実現するためにC
u配線に代えて超伝導体で配線を形成する方法が研究さ
れている。
Conventionally, predetermined wiring on a printed circuit board was made of copper (Cu), for example.
The electronic components were mounted on the printed circuit board at predetermined positions, but in order to achieve higher wiring density
A method of forming wiring using a superconductor in place of the u-wiring is being researched.

超伝導体(酸化物系高温超伝導セラミックス)を用い、
回路配線を形成する方法の一つとして、超伝導体を粉砕
し、有機バインダ、溶剤を添加し、ペースト状にしてス
クリーンを介し、基板上にスクリーン印刷し、焼成する
方法が開発されつつあり、この方法では、線幅50μm
程度の配線を形成することが可能である。
Using superconductors (oxide-based high-temperature superconducting ceramics),
As one method for forming circuit wiring, a method is being developed in which a superconductor is crushed, an organic binder and a solvent are added, the paste is formed, the material is screen printed onto a substrate through a screen, and then fired. In this method, the line width is 50 μm.
It is possible to form wiring of approximately

〔発明が解決しようとする課題〕 上述のようなスクリーン印刷は、量産性に優れているが
、超伝導ペーストの成分のうち、粉末成分がすでに超伝
導を示す超伝導粉末だけからなる超伝導ペーストをその
まま基板上に印刷、焼成すると、焼成の際、その成分が
一部藻発し、もとの超伝導体の組成が崩れもはや原料の
超伝導特性を得ることはできない。
[Problems to be Solved by the Invention] Screen printing as described above is excellent in mass production, but the superconducting paste consists only of superconducting powder in which the powder component already exhibits superconductivity. If it is printed on a substrate as it is and fired, some of its components will emit algae during firing, and the original composition of the superconductor will collapse, making it no longer possible to obtain the superconducting properties of the raw material.

第2図は、超伝導を示す銅(Cu)、カルシウム(Ca
)、ストロンチウム(Sr)、ビスマス(旧)、鉛(P
b)、酸素(O)の超伝導組成の粉末だけからなる超伝
導ペーストを20分(1/3h)焼成したときの焼成温
度と超伝導ペーストの組成比の変化との関係を示す線図
で、横軸に焼成温度を〔°C〕でとり、縦軸に組成比を
〔%]でとる。Cu、 Ca・・・などの符号を付した
線はそれぞれの物質Cu、 Ca・・・などの組成比を
示す。第2図の線図は温度が840°Cを超えると、C
u、 Ca・・・などの組成比が著しく変化すること、
例えばC,uとCaはその組成比が大になる傾向をもち
、Sr、 Bi、 Pbは逆にそれぞれの組成比が減少
する傾向にあることを示し、このような組成比の変化が
あると、当該ペーストの焼成によって形成した配線は超
伝導性を示さない。
Figure 2 shows copper (Cu) and calcium (Ca) exhibiting superconductivity.
), strontium (Sr), bismuth (old), lead (P
b) is a diagram showing the relationship between the firing temperature and the change in the composition ratio of the superconducting paste when a superconducting paste consisting only of powder with a superconducting composition of oxygen (O) is fired for 20 minutes (1/3 h). , the horizontal axis shows the firing temperature in [°C], and the vertical axis shows the composition ratio in [%]. Lines with symbols such as Cu, Ca, etc. indicate the composition ratios of the respective substances, Cu, Ca, etc. The diagram in Figure 2 shows that when the temperature exceeds 840°C,
A significant change in the composition ratio of u, Ca..., etc.
For example, the composition ratios of C, u, and Ca tend to increase, while the composition ratios of Sr, Bi, and Pb tend to decrease. , the wiring formed by firing the paste does not exhibit superconductivity.

第3図は、超伝導を示す第2図の例と同じ超伝導ペース
トを、温度840°Cで焼成したときの焼成時間と組成
比の変化との関係を示す線図で、横軸に時間を時(h)
でとり、縦軸に組成比を〔%〕でとった。この線図は、
温度840°Cでの焼成では、焼成が始まってから10
分台の僅かの時間の経過で組成比の変化が認められ、3
時間経過したころから組成比の変化が大になり、6時間
経過すると組成比の変化はかなり顕著になることを示す
Figure 3 is a diagram showing the relationship between the firing time and the change in composition ratio when the same superconducting paste as in Figure 2, which shows superconductivity, is fired at a temperature of 840°C. hour (h)
The vertical axis shows the composition ratio in [%]. This diagram is
When firing at a temperature of 840°C, 10
Changes in the composition ratio were observed over a short period of time, and 3
It is shown that the change in the composition ratio becomes large as time elapses, and the change in the composition ratio becomes quite remarkable after 6 hours.

上記した組成比の変化を抑えて焼成するためには、低温
(840°C以下)で短時間(約6時間以内)の焼成が
望ましいと考えられるが、このような焼成では、焼結が
不十分であり粒子間の接触が十分にとれないために低温
にしても抵抗が残ってしまう。
In order to perform firing while suppressing the change in the composition ratio described above, it is considered desirable to perform firing at a low temperature (below 840°C) and for a short period of time (within approximately 6 hours). Because there is insufficient contact between the particles, resistance remains even at low temperatures.

そのことは第4図の線図に示され、同図で、横軸には温
度を(K)で、また縦軸には比抵抗(Resist−i
vity)を任意単位でとる。この線図は、上記した例
が100Kで超伝導性を示さないことを表わす。
This is shown in the diagram of Figure 4, where the horizontal axis represents temperature (K) and the vertical axis represents resistivity (Resist-i).
vity) in arbitrary units. This diagram shows that the example described above does not exhibit superconductivity at 100K.

そこで本発明は、超伝導を示す超伝導粉末だけからなる
超伝導ペーストの高温の焼成においても、組成比の変化
を制御する方法を提供することを目的とする。
Therefore, an object of the present invention is to provide a method for controlling changes in the composition ratio even during high-temperature firing of a superconducting paste made only of superconducting powder exhibiting superconductivity.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題は、ビスマス(Bi) 、鉛(Pb)、ストロ
ンチウム(Sr)、カルシウム(Ca)、銅(Cu)、
酸素(O)を構成元素とする超伝導粉末に、該超伝導粉
末の構成元素の一部であるビスマス、鉛、ストロンチウ
ムのすべてまたは一部の酸化物粉末からなる添加粉末を
加えて原料粉末とし、該原料粉末に有機バインダおよび
溶剤を加えてペーストとし、該ペーストを基板上にスク
リーン印刷し、焼成することを特徴とする超伝導回路配
線の形成方法によって解決される。すなわち、簡単で、
量産性に優れたペースト印刷の手法を利用し、アルミナ
基板上に、超伝導粉末へ蒸発し易い成分の粉末を添加し
てペースト化してスクリーン印刷して焼成することによ
って、超伝導性を示す配線が得られたのである。
The above issues include bismuth (Bi), lead (Pb), strontium (Sr), calcium (Ca), copper (Cu),
Additive powder consisting of oxide powder of all or part of bismuth, lead, and strontium, which are some of the constituent elements of the superconducting powder, is added to a superconducting powder containing oxygen (O) as a constituent element to obtain a raw material powder. This problem is solved by a method for forming superconducting circuit wiring, which is characterized by adding an organic binder and a solvent to the raw material powder to form a paste, screen printing the paste on a substrate, and baking it. That is, it is easy,
Utilizing the paste printing method, which is excellent in mass production, wiring that exhibits superconductivity is created on an alumina substrate by adding powder of components that easily evaporate to superconducting powder, making it into a paste, screen printing, and baking. was obtained.

〔作用〕[Effect]

すなわち本発明によれば、もともと超伝導性をもってい
た粉末からなるペーストの焼成時の蒸発による組成分の
不足を前取て補っておくことによって良好な超伝導特性
(Tcend= 100K)を得るものである。
That is, according to the present invention, good superconducting properties (Tcend = 100K) can be obtained by making up for the lack of composition in advance due to evaporation during firing of a paste made of powder that originally had superconductivity. be.

〔実施例] 以下、本発明を図示の実施例により具体的に説明する。〔Example] Hereinafter, the present invention will be specifically explained with reference to illustrated embodiments.

Bi :Pb:Sr:Ca:Cu = 0.7 : 0
.3: 1 : 1 :1.8(モル比)に調合した混
合粉末を840″C1150h熱処理して超伝導体(T
cend = 107K)を得た。これを粉砕し、超伝
導粉末とした。
Bi:Pb:Sr:Ca:Cu=0.7:0
.. A mixed powder prepared at a molar ratio of 3:1:1:1.8 was heat-treated at 840"C1150h to form a superconductor (T
send = 107K) was obtained. This was crushed to obtain superconducting powder.

Bi : Pb : 5r=0.8 : 0.2 : 
0.8 (モル比)になるようにBi2O3、PbO,
5rCO,、を調合して添加粉末を得た。この添加粉末
と超伝導粉末とを1:4(重量比)で混合して、ペース
ト原料粉末とした。
Bi: Pb: 5r=0.8: 0.2:
Bi2O3, PbO,
An additive powder was obtained by blending 5rCO. This additive powder and superconducting powder were mixed at a ratio of 1:4 (weight ratio) to obtain a paste raw powder.

これに樹脂、およびテルピネオールをそれぞれ2wt%
、30tmt%添加し、メチル・エチル・ケトン(ME
K)を加えて、48h混練した後、MEKを飛散させて
、ペーストを得た。
Add 2wt% each of resin and terpineol to this.
, 30tmt% and methyl ethyl ketone (ME
After adding K) and kneading for 48 hours, MEK was scattered to obtain a paste.

このペーストをスクリーンを介し、焼結アルミナ基板(
純度99.7%)上にスクリーン印刷した。
This paste is passed through a screen to a sintered alumina substrate (
(purity 99.7%) was screen printed on.

このスクリーン印刷した基板を840°C16h大気中
で焼成し、印刷配線基板を得た。本発明実施例、すなわ
ちこの基板上の印刷配線の比抵抗は第1図に示され、同
図で、横軸には温度を(K)でとり、縦軸には比抵抗(
Resistivity)を任意単位でとるが、焼成中
に超伝導粉末から失われる物質を添加粉末中の物質によ
って補ったこの印刷配線は、Tcend =100にで
超伝導性を示した。
This screen-printed board was baked at 840° C. for 16 hours in the atmosphere to obtain a printed wiring board. The specific resistance of the printed wiring on this substrate according to the present invention is shown in FIG. 1, in which the horizontal axis shows temperature (K) and the vertical axis shows specific resistance
This printed wiring, in which the material lost from the superconducting powder during firing was compensated for by the material in the added powder, exhibited superconductivity at Tcend = 100, with resistance (resistivity) taken in arbitrary units.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、超伝導を示す超伝導粉末
に、それのみから成るペーストを焼成したときに失われ
る組成分からなる添加粉末を加え、これら混成粉末のペ
ーストを焼成することにより超伝導性を示す配線を得る
ことができた。
As described above, according to the present invention, a superconducting powder exhibiting superconductivity is added with an additive powder having a composition that is lost when a paste consisting only of the superconducting powder is fired, and a paste of these mixed powders is fired. We were able to obtain conductive wiring.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例の比抵抗を示す線図、第2図は超
伝導ペーストの焼成における焼成温度と組成の変化との
関係を示す線図、 第3図は超伝導ペーストの焼成における焼成時間と組成
の変化との関係を示す線図、 第4図は超伝導ペーストを840”C以下の温度で短時
間焼成して得た配線の比抵抗を示す線図である。
Fig. 1 is a diagram showing the specific resistance of the example of the present invention, Fig. 2 is a diagram showing the relationship between firing temperature and composition change in the firing of superconducting paste, and Fig. 3 is a diagram showing the relationship between firing temperature and composition change in firing of superconducting paste. A diagram showing the relationship between firing time and composition change. FIG. 4 is a diagram showing the specific resistance of a wiring obtained by firing a superconducting paste for a short time at a temperature of 840''C or less.

Claims (1)

【特許請求の範囲】 ビスマス(Bi)、鉛(Pb)、ストロンチウム(Sr
)、カルシウム(Ca)、銅(Cu)、酸素(O)を構
成元素とする超伝導粉末に、該超伝導粉末の構成元素の
一部であるビスマス、鉛、ストロンチウムのすべてまた
は一部の酸化物粉末からなる添加粉末を加えて原料粉末
とし、 該原料粉末に有機バインダおよび溶剤を加えてペースト
とし、 該ペーストを基板上にスクリーン印刷し、焼成すること
を特徴とする超伝導回路配線の形成方法。
[Claims] Bismuth (Bi), lead (Pb), strontium (Sr)
), calcium (Ca), copper (Cu), and oxygen (O) as constituent elements, oxidation of all or part of bismuth, lead, and strontium, which are some of the constituent elements of the superconducting powder. Formation of superconducting circuit wiring characterized by: adding an additive powder consisting of a substance powder to obtain a raw material powder, adding an organic binder and a solvent to the raw material powder to make a paste, screen printing the paste on a substrate, and baking it. Method.
JP1124185A 1989-05-19 1989-05-19 Forming method for superconductive circuit wirings Pending JPH02304987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1124185A JPH02304987A (en) 1989-05-19 1989-05-19 Forming method for superconductive circuit wirings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1124185A JPH02304987A (en) 1989-05-19 1989-05-19 Forming method for superconductive circuit wirings

Publications (1)

Publication Number Publication Date
JPH02304987A true JPH02304987A (en) 1990-12-18

Family

ID=14879087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1124185A Pending JPH02304987A (en) 1989-05-19 1989-05-19 Forming method for superconductive circuit wirings

Country Status (1)

Country Link
JP (1) JPH02304987A (en)

Similar Documents

Publication Publication Date Title
JPH0818836B2 (en) Oxide superconductor, its manufacturing method and applied products
JPH02304987A (en) Forming method for superconductive circuit wirings
JP2817048B2 (en) Method for producing Bi-Sr-Ca-Cu-O-based superconducting film by screen printing
JPS62250626A (en) Thick film capacitor and manufacture of the same
JP2870993B2 (en) Manufacturing method of superconducting wiring
KR100213420B1 (en) Resistance material and resistance paste and resistor comprising material
JPH0288407A (en) Ceramic superconducting paste and its production and ceramic superconducting distributing board and its production
JPH0744323B2 (en) Superconducting ceramic substrate
JP2764087B2 (en) Ceramic superconductor paste and method of manufacturing ceramic superconductor wiring circuit board using the paste
JP2737301B2 (en) Method of forming superconducting ceramic wiring
JP2650293B2 (en) Manufacturing method of ceramic superconductor paste
JPH01270518A (en) Superconductor thick film and production thereof
JP3272349B2 (en) Manufacturing method of superconducting wiring
JPH0248458A (en) Ceramic superconductor and production thereof
JPH0256990A (en) Manufacture of ceramic superconductor wiring board
JP2889595B2 (en) Method for forming electrode of oxide superconductor film
JP3338461B2 (en) Oxide superconductor and manufacturing method thereof
JPH01238190A (en) Manufacture of superconductor thick film
JPH0256816A (en) Manufacture of ceramic superconductive paste, manufacture of superconductive thick film wiring plate and ceramic superconductive powder
JPH0215519A (en) Method of forming conductor junction film for ceramics superconductor
JPH0274528A (en) Superconducting powder, production thereof and superconducting paste
JPS63301405A (en) Manufacture of low temperature baking type conductive paste and circuit board
JPH0573358B2 (en)
JPH01107593A (en) Superconductive ceramic wiring board
JPS63250025A (en) Superconductive paste