JPH0573358B2 - - Google Patents

Info

Publication number
JPH0573358B2
JPH0573358B2 JP63009373A JP937388A JPH0573358B2 JP H0573358 B2 JPH0573358 B2 JP H0573358B2 JP 63009373 A JP63009373 A JP 63009373A JP 937388 A JP937388 A JP 937388A JP H0573358 B2 JPH0573358 B2 JP H0573358B2
Authority
JP
Japan
Prior art keywords
superconducting
paste
ceramic
wiring
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63009373A
Other languages
Japanese (ja)
Other versions
JPS6471196A (en
Inventor
Hirozo Yokoyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP889373A priority Critical patent/JPS6471196A/en
Priority to EP88304129A priority patent/EP0290271B1/en
Priority to DE3853316T priority patent/DE3853316T2/en
Priority to CN88102627A priority patent/CN1040937C/en
Publication of JPS6471196A publication Critical patent/JPS6471196A/en
Priority to CN91101166A priority patent/CN1059349A/en
Priority to US08/064,668 priority patent/US5286713A/en
Publication of JPH0573358B2 publication Critical patent/JPH0573358B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】[Detailed description of the invention]

〔概要〕 本発明は、高純度アルミナ基板上に超伝導セラ
ミツクスを形成し、配線材料とした回路基板に関
する。 〔産業上の利用分野〕 スーパーコンピユータなどの高速電算機用の回
路基板に関するものである。高速処理用の回路基
板は信号を効率よく伝送させるため、回路基板に
使用する絶縁材料の比誘電率が低いことと共に、
導体材料の電気抵抗も低いことが要求されてい
る。液体窒素温度(77K)で電気抵抗が0となる
セラミツクス系超伝導体材料の研究・開発が急速
に進められつつある。 超伝導セラミツクスをペーストとして、ハイブ
リツドICなどに使用しているアルミナ基板等の
上にスクリーン印刷し、これを焼成して超伝導体
の配線材料とすることが、超伝導セラミツクスの
応用技術に不可欠である。 〔従来技術とその問題点〕 従来、多層セラミツク基板の代表的な製造方法
としては、厚膜多層法、印刷多層法および積層法
がある。まず厚膜多層法は、焼成セラミツク板上
に低抵抗金属からなる導体ペーストを印刷、焼成
して導体層を形成し、この上にガラスペーストを
厚く印刷焼成した絶縁層を形成することを繰り返
して多層化する。一方、印刷多層法および積層法
は、生セラミツクと金属からなる導体ペーストと
を交互に設けたものを焼成する。すなわち印刷多
層法はセラミツク生シート上にセラミツクペース
トと導体ペーストとを交互に印刷して多層化し、
積層法はセラミツク生シートに導体ペーストを印
刷したもの多数個を形成し、これを積層するもの
である。 上記厚膜多層法に用いられる一般的なセラミツ
ク基板は、完全な結晶体を除けば、アルミナ基板
にかぎらず、結晶粒子(グレン)、ガラス相と呼
ばれる結晶粒界(グレンバウンダリ)、空孔(ポ
ア)の三者の組合せからなる組織を持つている。
そしてガラス相の多いもの程、すなわち純度の低
いもの程低温度で焼成できる。 このため、一般のセラミツク基板は焼成温度を
下げる目的で、ガラス相になる成分を添加し、
1500℃近辺で焼成している。 一方、セラミツク絶縁基板上にセラミツクス系
の超伝導物質で電気回路の配線を形成した超伝導
材利用のプリント基板の開発も行なわれつつあ
る。(昭和62年4月22日 日経新聞) ところが、超伝導体セラミツクスの圧粉成形体
では超伝導を示すものが、ペースト化して低純度
アルミナ基板上に形成した超伝導セラミツクスは
超伝導を示さないと云う問題点が生ずる。 〔従来技術の問題点を解決するための手段〕 超伝導セラミツクスをペーストとして、ハイブ
リツドICなどに使用しているアルミナ基板上に
スクリーン印刷し、これを焼成して超伝導体の配
線材料とする。 しかしながら、超伝導体セラミツクスの圧粉成
形体では超伝導を示すものが、ペースト化して低
純度アルミナ基板上に形成した超伝導セラミツク
スは超伝導を示さないと云う原因は、後述する実
施例から、市販アルミナ基板は純度が低く、しか
も不純物にガラス室成分や、非晶質SiO2や、
H2O3が含まれている。このガラス成分が超伝導
セラミツクスと反応して偏析が起こり、配線導体
としての超伝導セラミツクスの組成にずれが生じ
てしまうことにより、超伝導現象を示さなくなる
ことが判つた。 本発明は、超伝導セラミツクスペーストを焼成
して超伝導セラミツクス配線材料とする際、超伝
導セラミツクスと反応する、ガラス質成分や、非
晶質SiO2等の不純物を除去した絶縁基板を用い
る。 即ち、本発明は、ガラス相成分にならない
MgO、Cr2O3を微量添加し、高温度(1600℃)で
ち密に焼成した高純度基板を使用する必要がある
ことを見出したものである。 この場合、セラミツク基板としては熱的、機械
的強度、電気的性質に優れたアルミナ基板とす
る。(かかるアルミナ基板の製法は特公昭55−
11483等を参照されたい) なお、配線導体として同日出願の特願昭62−
114328号「酸化物超伝導材料とその製法」に記載
の 液体窒素温度(77K)で超伝導を示す、下記
〔1〕式 {(MO)X(M2O31-XY ・(CuO)2(O)σ ……〔1〕 M:Ba、Sr、Ca、Mg M:Y、Sc、La、Ce、Pr、Nd、Sm、Eu、
Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu 0.5≦X≦0.9 1≦Y≦2 1≦Z≦2 (O)σ:化学量論組成からの酸素のズレ量 で示される化学式を有する酸化物超伝導材料、よ
り具体的にはBa−Y−Cu−O系の高温超伝導材
料を用いることが出来る。 実施例 1 粒子径1μmのRaCO30.6molと粒子径1μmの
Y2O30.4molおよび粒子径2μmのCuO1molをボー
ルミリングで48h混合したものを原料粉末とし
た。この原料粉末100部、エチルセルロース1部、
テルピネオール10部およびチクソトロピー剤(ヒ
マ硬)0.6部、さらにメチルエチルケトン20部を
加えてボールミリングで72h混合した。この後ら
いかい機(メノウ乳鉢)で1.5h混練し、さらに三
本ロールミルで混練した。これにより超伝導セラ
ミツクスペーストができた。 このペーストを99.7%アルミナ基板(Al2O3
MgO−Cr2O3系、FGA基板)にスクリーン印刷
して配線パターンとした。そして大気中で1020
℃、4h焼成した。 この厚さ25μmのパターンを形成した基板を液
体窒素に浸漬して、配線パターンの電気的特性を
調べた結果、超伝導を示した。 次に種々基板について同様に配線パターン厚さ
を変えて実験した結果を表に示す。表に示したよ
うに、高純度アルミナ基板で、しかもガラス質を
含まない基板を用いることにより、超伝導セラミ
ツクスペーストはパターン厚さが薄くても超伝導
の性質を示すことがわかる。 また、高純度でガラス相を含む基板では、パタ
ーン厚さを厚くすれば超伝導の性質を示す。
[Summary] The present invention relates to a circuit board in which superconducting ceramics are formed on a high-purity alumina substrate and used as a wiring material. [Industrial Application Field] This relates to circuit boards for high-speed computers such as supercomputers. In order for circuit boards for high-speed processing to transmit signals efficiently, the dielectric constant of the insulating material used for the circuit board is low, and
The electrical resistance of the conductor material is also required to be low. Research and development of ceramic superconductor materials whose electrical resistance becomes zero at liquid nitrogen temperature (77K) is progressing rapidly. Screen-printing superconducting ceramics as a paste onto alumina substrates used in hybrid ICs, etc., and firing the paste to use it as a superconductor wiring material is essential to the application technology of superconducting ceramics. be. [Prior Art and its Problems] Conventionally, typical methods for manufacturing multilayer ceramic substrates include thick film multilayer method, printed multilayer method, and lamination method. First, the thick film multilayer method involves printing and firing a conductive paste made of a low-resistance metal on a fired ceramic plate to form a conductive layer, and then repeatedly forming an insulating layer by printing and firing a thick layer of glass paste on top of this. Be multilayered. On the other hand, in the printing multilayer method and the lamination method, raw ceramic and conductive paste made of metal are alternately provided and then fired. In other words, the printing multilayer method prints ceramic paste and conductor paste alternately on a raw ceramic sheet to create a multilayer structure.
In the lamination method, a large number of raw ceramic sheets printed with conductive paste are formed and then laminated. The general ceramic substrates used in the above-mentioned thick film multilayer method are not limited to alumina substrates, except for completely crystalline materials, but also include crystal grains (grains), crystal grain boundaries called glass phases (grain boundaries), and voids ( It has an organization consisting of a combination of three members (pores).
The more glass phase there is, that is, the lower the purity, the lower the temperature can be used for firing. For this reason, in order to lower the firing temperature of general ceramic substrates, components that form a glass phase are added.
Fired at around 1500℃. On the other hand, printed circuit boards using superconducting materials, in which electrical circuit wiring is formed using ceramic-based superconducting materials on ceramic insulating substrates, are also being developed. (Nikkei Shimbun, April 22, 1988) However, although compacted compacts of superconducting ceramics exhibit superconductivity, superconducting ceramics made into a paste and formed on low-purity alumina substrates do not exhibit superconductivity. A problem arises. [Means for solving the problems of the conventional technology] Superconducting ceramics is used as a paste and screen printed on an alumina substrate used in hybrid ICs, etc., and then fired to become a superconductor wiring material. However, the reason why superconducting ceramic compacts exhibit superconductivity, but superconducting ceramics formed into a paste and formed on low-purity alumina substrates does not exhibit superconductivity is explained by the examples described below. Commercially available alumina substrates have low purity and contain impurities such as glass chamber components, amorphous SiO 2 ,
Contains H2O3 . It was found that this glass component reacts with the superconducting ceramic to cause segregation, causing a shift in the composition of the superconducting ceramic as a wiring conductor, which causes the superconducting phenomenon to no longer be exhibited. In the present invention, when a superconducting ceramic paste is fired to produce a superconducting ceramic wiring material, an insulating substrate is used from which impurities such as glassy components and amorphous SiO 2 that react with the superconducting ceramic are removed. That is, the present invention does not become a glass phase component.
It was discovered that it is necessary to use a high-purity substrate to which trace amounts of MgO and Cr 2 O 3 have been added and densely fired at high temperature (1600°C). In this case, the ceramic substrate is an alumina substrate having excellent thermal, mechanical strength, and electrical properties. (The manufacturing method for such alumina substrates was published in 1983.
11483, etc.) Furthermore, as a wiring conductor, a patent application filed on the same day, 1982-
114328 "Oxide superconducting materials and their manufacturing method" The following [1] formula shows superconductivity at liquid nitrogen temperature (77K) {(MO) X (M 2 O 3 ) 1-X } Y・( CuO) 2 (O)σ ...[1] M: Ba, Sr, Ca, Mg M: Y, Sc, La, Ce, Pr, Nd, Sm, Eu,
Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu 0.5≦X≦0.9 1≦Y≦2 1≦Z≦2 (O)σ: Chemical formula indicated by the deviation of oxygen from the stoichiometric composition. It is possible to use an oxide superconducting material, more specifically, a Ba-Y-Cu-O-based high-temperature superconducting material. Example 1 0.6 mol of RaCO 3 with a particle size of 1 μm and 0.6 mol of RaCO 3 with a particle size of 1 μm
A raw material powder was prepared by mixing 0.4 mol of Y 2 O 3 and 1 mol of CuO with a particle size of 2 μm for 48 hours by ball milling. 100 parts of this raw material powder, 1 part of ethyl cellulose,
10 parts of terpineol, 0.6 parts of a thixotropic agent (castor bean), and 20 parts of methyl ethyl ketone were added and mixed by ball milling for 72 hours. After this, the mixture was kneaded for 1.5 hours in a daikon machine (agate mortar), and further kneaded in a three-roll mill. This produced a superconducting ceramic paste. This paste was applied to a 99.7% alumina substrate (Al 2 O 3
A wiring pattern was created by screen printing on a MgO-Cr 2 O 3 system (FGA board). and 1020 in the atmosphere
It was baked at ℃ for 4 hours. The substrate on which this 25-μm-thick pattern was formed was immersed in liquid nitrogen, and the electrical characteristics of the wiring pattern were examined, and the results showed that it exhibited superconductivity. Next, the results of experiments conducted on various substrates with different wiring pattern thicknesses are shown in the table. As shown in the table, by using a high-purity alumina substrate that does not contain glass, the superconducting ceramic paste exhibits superconducting properties even if the pattern thickness is thin. In addition, a highly purified substrate containing a glass phase exhibits superconducting properties if the pattern thickness is increased.

〔超伝導厚膜の作製〕[Fabrication of superconducting thick film]

(1) 超伝導ペースト スクリーン印刷法により超伝導回路配線を得
るため、超伝導体のペーストの作製工程の概略
を第1図に示す。 ペーストはY−Ba−Cu−Oのバルクの超伝
導体から作製するのが好ましい。バルクはイツ
トリア(Y2O3)、酸化バリウム(BaO)、酸化
ストロンチウム(SrO)、酸化銅(CuO)等の
粉末を用いる。これらの粉末をボールミルを用
いてよく混練した後、圧粉成形する。次にこの
圧粉体を大気中で800−1100℃で焼成し、バル
クの超伝導体を作製する。 次にこのバルクの粉砕した粉末を、有機バイ
ンダーおよび有機溶剤に均一に分散し、伸びの
よいペーストを作製する。ペーストに使用する
有機バインダーは、焼成により分解飛散するも
のでなければならない。熱解重合分解する
PMMAを用いることにより焼成後の有機バイ
ンダーの残留を極力低くおさえることができ
る。また、粉末に対するビヒクルの量はペース
トの粘性および印刷性に大きな影響を及ぼす。
このためビヒクル量の最適化を行い、ペースト
にはおよそ、超伝導セラミツクス成分粉末100
重量部に対しバインダ、難揮発性溶剤等5.5〜
40重量部くらいのビヒクルが含まれるようにす
る。これにより微細なパターンの形成が可能と
なる。 (2) 回路パターンの形成 上記の超伝導ペーストを用い、各種のセラミ
ツク基板にスクリーン法でパターンを印刷し、
基板を大気中800−1000℃で数〜数十時間焼成
する。 〔超伝導厚膜の特性〕 高純度のアルミナ基板(FGA基板:Fine
Grained Aumina基板)に印刷したペーストは焼
成後、超伝導体になることが確かめられた。
FGA基に形成した厚膜の電気抵抗の温度変化を
第2図に示す。Tcendは89Kであり、バルクの特
性と大きな違いはない。また、振動試料型磁力形
(VSM)を用いて試料の磁化を測定してみると、
厚膜試料はバルク試料に比べて反磁化の割合は小
さいものの、マイスナー効果が確認された。 一方、X線回折により、結晶構造を調べた結果
を第3図に示す。バルクと同様なY2BaCu3O7-d
のピークが観測される。 実施例 4 超伝導ペーストとして昭和63年1月11日特願昭
62−114328号優先権主張に基いて出願され記載さ
れる、Y−Ba−Cu−O系セラミツクスのBaをSr
で置換し、Y−(Ba−Sr)−Cu−O系のペースト
を作製し、PGA基板に印刷することによつて超
伝導相の密度が高い配線を作製する。 バルクに対して、Sr置換量に対するTco(オン
セツト温度)の測定とSEMによつて、微構造を
観察した。微細構造の観察からSr濃度が増すに
つれて、グレインサイズが小さくなり、密度が増
すことがわかる。 x<0.5の試料の室温における比抵抗はこの影
響を強く受けて徐々に減少する。X線回折から求
めた格子定数の組成変化からSrで置換すること
は、その濃度が増すにつれて酸素が抜け出す、す
なわち、還元効果のように作用することがわかつ
た。また、x=0.5で斜方晶系から正方晶系へ転
移するにもかかわらず超伝導性を示すことから、
超伝導はCu−Oの一次元鎖ではなくCuoの二次
元平面が支配している可能性が強い。室温の比抵
抗の組成変化が最小値を持ち、Tco(onset温度)
の組成変化がx=0.5以上で減少が大きくなるの
は、x=0.5を境界にして酸素の抜けるサイトが
異なつていると考えられる。 (SrXBa1-X8Y2Cu10O7-d系酸化物超伝導酸化
物はBaとSrの比が1対1であるx=0.5の組成を
境に物性が変化する。 x=0.5で結晶構造は斜方晶系から正方晶系へ
転移し、Tcoは約83Kと高くなる。 〔試料作製〕 出発原料にはY2O3(99.9%、2−3μm)、
BaCO3(99.9%、2μm)、SrO(99%、280μm)、
CuO(99.9%、2μm)を用いた。各粉末を(SrX
Ba1-X8Y2Cu10O7-d(x=0、0.125、0.25、
0.375、0.5、0.75)の組成になるように秤量した。
これらの粉末を24時間ボールミルを行い混合し
た。ボールミルにはアルミナボールを使用した。
次に200MPa/cm2で加圧して粉末を成形し、半径
15mm、厚さ約3mmのペレツトを作製した。最後に
アルミナ基板の上で950℃、12時間、大気中で焼
成した。 電気抵抗測定 Tco(オンセツト温度)のSr濃度依存性を第4
図に示す。 Sr濃度が増すにつれて、Tcoは減少するが、
Sr、Baの比が1対1のときTcoは突然回復する。 微構造 x=0.125、x=0.5における試料のSEMによる
微構造の観察結果から、Sr濃度が増すにつれグ
レインサイズが小さくなり、密度が増加している
ことが判明した。 Tco、密度のSr濃度依存性の定性的な図を第5
図に示す。これから(SrXBa1-X8Y2Cu10O7-d
おいて、x=0.4〜0.6の範囲の物質が、密度、
Tcoとも高いことがわかる。よつて、この組成範
囲で、ペーストを作製すれば超伝導相の密度が高
いため、安定した配線を作製することができる。 酸化物超伝導体 (SrXBa1-X8Y2Cu10O7-dにおいて、x=0.4〜
0.6の組成の物質を用いて、ペースト、線材、薄
膜を作製することにより超伝導相密度の高い超伝
導セラミツクスを配線材料に用いた回路基板を形
成できる。 〔発明の効果〕 超伝導セラミツクスペーストの配線化が可能と
なつた。 ●超伝導セラミツクスペーストをハイブリツド
ICなどの配線材料に使用できた。
(1) Superconducting paste Figure 1 shows an outline of the process for producing superconducting paste to obtain superconducting circuit wiring using the screen printing method. Preferably, the paste is made from a bulk superconductor of Y--Ba--Cu--O. For the bulk, powders such as yttoria (Y 2 O 3 ), barium oxide (BaO), strontium oxide (SrO), copper oxide (CuO), etc. are used. After thoroughly kneading these powders using a ball mill, they are compacted. Next, this green compact is fired at 800-1100°C in the air to create a bulk superconductor. Next, this bulk pulverized powder is uniformly dispersed in an organic binder and an organic solvent to produce a spreadable paste. The organic binder used in the paste must be one that decomposes and scatters when fired. thermal depolymerization decompose
By using PMMA, the amount of organic binder remaining after firing can be kept to a minimum. Also, the amount of vehicle to powder has a large effect on the viscosity and printability of the paste.
For this reason, the amount of vehicle was optimized, and the paste contained approximately 100% of superconducting ceramic component powder.
Binder, non-volatile solvent, etc. 5.5 to parts by weight
Approximately 40 parts by weight of vehicle should be included. This makes it possible to form fine patterns. (2) Formation of circuit pattern Using the above superconducting paste, print patterns on various ceramic substrates by screen method.
The substrate is fired in the air at 800-1000°C for several to several tens of hours. [Characteristics of superconducting thick film] High purity alumina substrate (FGA substrate: Fine
It was confirmed that the paste printed on the Grained Aumina substrate (Grained Aumina substrate) becomes a superconductor after firing.
Figure 2 shows the temperature change in electrical resistance of the thick film formed on the FGA base. Tcend is 89K, which is not much different from the bulk characteristics. Also, when measuring the magnetization of a sample using a vibrating sample magnet (VSM),
Although the proportion of demagnetization in the thick film sample was smaller than that in the bulk sample, the Meissner effect was confirmed. On the other hand, the results of examining the crystal structure by X-ray diffraction are shown in FIG. Y 2 BaCu 3 O 7-d similar to bulk
peak is observed. Example 4 Patent application filed on January 11, 1985 as a superconducting paste
62-114328, which is filed and described based on the priority claim, is a Y-Ba-Cu-O based ceramic.
By replacing the superconducting phase with Y-(Ba-Sr)-Cu-O-based paste and printing it on a PGA substrate, wiring with a high density of superconducting phase is produced. The microstructure of the bulk was observed by measuring Tco (onset temperature) with respect to the amount of Sr substitution and by SEM. Observation of the microstructure reveals that as the Sr concentration increases, the grain size decreases and the density increases. The specific resistance of the sample with x<0.5 at room temperature is strongly influenced by this and gradually decreases. From changes in the composition of the lattice constant determined from X-ray diffraction, it was found that substitution with Sr causes oxygen to escape as its concentration increases, that is, it acts like a reduction effect. Also, since it shows superconductivity despite the transition from orthorhombic to tetragonal system at x = 0.5,
It is highly likely that superconductivity is dominated by two-dimensional planes of CuO rather than one-dimensional chains of Cu-O. The compositional change in resistivity at room temperature has a minimum value, Tco (onset temperature)
The reason why the decrease becomes large when the composition change of x=0.5 or more is considered to be that the sites from which oxygen escapes differ around the boundary of x=0.5. (Sr X Ba 1-X ) 8 Y 2 Cu 10 O 7-d- based oxide superconducting oxides have physical properties that change at a composition of x=0.5, where the ratio of Ba to Sr is 1:1. At x=0.5, the crystal structure transitions from orthorhombic to tetragonal, and Tco increases to about 83K. [Sample preparation] Starting materials include Y 2 O 3 (99.9%, 2-3 μm),
BaCO3 (99.9%, 2μm), SrO (99%, 280μm),
CuO (99.9%, 2 μm) was used. Each powder ( Sr
Ba 1-X ) 8 Y 2 Cu 10 O 7-d (x=0, 0.125, 0.25,
0.375, 0.5, 0.75).
These powders were mixed by ball milling for 24 hours. Alumina balls were used in the ball mill.
Next, the powder is molded by applying pressure at 200 MPa/ cm2 , and the radius
Pellets with a size of 15 mm and a thickness of about 3 mm were produced. Finally, it was fired on an alumina substrate at 950°C for 12 hours in the air. Electrical resistance measurement The dependence of Tco (onset temperature) on Sr concentration was
As shown in the figure. As Sr concentration increases, Tco decreases, but
When the ratio of Sr and Ba is 1:1, Tco suddenly recovers. Microstructure Observation of the microstructure of the sample using SEM at x=0.125 and x=0.5 revealed that as the Sr concentration increased, the grain size became smaller and the density increased. A qualitative diagram of the Sr concentration dependence of Tco and density is shown in the fifth figure.
As shown in the figure. From this , in ( Sr
It can be seen that Tco is also high. Therefore, if a paste is produced within this composition range, stable wiring can be produced because the density of the superconducting phase is high. Oxide superconductor (Sr X Ba 1-X ) 8 Y 2 Cu 10 O 7-d , x = 0.4 ~
By creating pastes, wires, and thin films using substances with a composition of 0.6, circuit boards using superconducting ceramics with a high superconducting phase density as wiring materials can be formed. [Effects of the invention] It has become possible to create wiring using superconducting ceramic paste. ●Hybrid of superconducting ceramic paste
It could be used as a wiring material for ICs, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は超伝導ペーストを作製する1実施例工
程図、第2図は超伝導バルク(〇−〇)及び厚膜
法により回路基板上に形成された超伝導配線(□
−□)の電気抵抗の温度変化を示す図、第3図は
厚膜法により回路基板上に形成された超伝導配線
のX線回折パターンを示す図、第4図は(SrX
Ba1-X8Y2Cu10O7-d系超伝導材料の電気的特性、
電気抵抗及びTco(オンセツト温度)のSr濃度依
存性を示す図、第5図は(SrXBa1-X
8Y2Cu10O7-d系超伝導材料のTco(オンセツト温
度)及び密度のSr濃度依存性を示す図である。
Figure 1 is an example process diagram for producing superconducting paste, and Figure 2 shows superconducting bulk (〇-〇) and superconducting wiring (□) formed on a circuit board by the thick film method.
Figure 3 shows the X-ray diffraction pattern of superconducting wiring formed on a circuit board by the thick film method, and Figure 4 shows the temperature change in electrical resistance of ( Sr
Electrical properties of Ba 1-X ) 8 Y 2 Cu 10 O 7-d superconducting materials,
Figure 5 shows the Sr concentration dependence of electrical resistance and Tco ( onset temperature).
FIG. 8 is a diagram showing the Sr concentration dependence of Tco (onset temperature) and density of 8 Y 2 Cu 10 O 7-d based superconducting material.

Claims (1)

【特許請求の範囲】[Claims] 1 超伝導セラミツクスのペーストを、99%以上
の高純度アルミナ基板に印刷して配線パターンを
形成し、焼成することにより、超伝導セラミツク
スを配線材料としたことを特徴とする回路基板。
1. A circuit board characterized by using superconducting ceramics as a wiring material by printing a superconducting ceramic paste on a 99% or higher purity alumina substrate to form a wiring pattern and firing it.
JP889373A 1987-05-08 1988-01-19 Printed-circuit board with wiring material of superconductive ceramic Granted JPS6471196A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP889373A JPS6471196A (en) 1987-05-11 1988-01-19 Printed-circuit board with wiring material of superconductive ceramic
EP88304129A EP0290271B1 (en) 1987-05-08 1988-05-06 Superconducting circuit board and process of manufacturing it
DE3853316T DE3853316T2 (en) 1987-05-08 1988-05-06 Superconducting circuit card and process for its manufacture.
CN88102627A CN1040937C (en) 1987-05-08 1988-05-07 Superconducting circuit board and paste adopted therefor
CN91101166A CN1059349A (en) 1987-05-08 1991-02-23 A kind of coating that is used to form superconducting ceramic film
US08/064,668 US5286713A (en) 1987-05-08 1993-05-21 Method for manufacturing an oxide superconducting circuit board by printing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11432787 1987-05-11
JP889373A JPS6471196A (en) 1987-05-11 1988-01-19 Printed-circuit board with wiring material of superconductive ceramic

Publications (2)

Publication Number Publication Date
JPS6471196A JPS6471196A (en) 1989-03-16
JPH0573358B2 true JPH0573358B2 (en) 1993-10-14

Family

ID=14635048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP889373A Granted JPS6471196A (en) 1987-05-08 1988-01-19 Printed-circuit board with wiring material of superconductive ceramic

Country Status (1)

Country Link
JP (1) JPS6471196A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6450324A (en) * 1987-08-20 1989-02-27 Sanyo Electric Co Manufacture of oxide superconductive film

Also Published As

Publication number Publication date
JPS6471196A (en) 1989-03-16

Similar Documents

Publication Publication Date Title
EP0292125B1 (en) Multi-layer superconducting circuit substrate and process for manufacturing same
EP0356722B1 (en) Oxide superconductor and method of producing the same
KR910001346B1 (en) Superconducting ceramics
EP0290271B1 (en) Superconducting circuit board and process of manufacturing it
JPH0573358B2 (en)
US5286713A (en) Method for manufacturing an oxide superconducting circuit board by printing
EP0367571B1 (en) Superconducting thick film circuit board, production thereof, thick film superconductor and production thereof
JP2606697B2 (en) Manufacturing method of superconducting ceramics
US5270293A (en) Molten salt synthesis of anisotropic powders
JP2817048B2 (en) Method for producing Bi-Sr-Ca-Cu-O-based superconducting film by screen printing
JPH01246136A (en) Superconductive ceramic paste
JPH0251806A (en) Superconducting ceramic laminated body and manufacture thereof
JPS63280488A (en) Circuit board
US5552370A (en) Silver additives for ceramic superconductors
KR930002579B1 (en) Manufacturing method of thick film super conductor
JP2748931B2 (en) Superconducting ceramic paste
JPH0744323B2 (en) Superconducting ceramic substrate
JP2523687B2 (en) Method of forming superconducting film pattern
JPH01238190A (en) Manufacture of superconductor thick film
JP2590370B2 (en) Superconducting material and manufacturing method thereof
Kokkomäki et al. Screen-printed superconducting Y-Ba-Cu-O thick films on various substrates
JPH0569059B2 (en)
JPS63233067A (en) Preparation of superconductive ceramic
JP2748932B2 (en) Superconducting ceramic paste
JPH01300594A (en) Manufacture of multilayer board using superconducting ceramics