JP2722407B2 - Powder transfer method - Google Patents

Powder transfer method

Info

Publication number
JP2722407B2
JP2722407B2 JP2242716A JP24271690A JP2722407B2 JP 2722407 B2 JP2722407 B2 JP 2722407B2 JP 2242716 A JP2242716 A JP 2242716A JP 24271690 A JP24271690 A JP 24271690A JP 2722407 B2 JP2722407 B2 JP 2722407B2
Authority
JP
Japan
Prior art keywords
powder
vibration
traveling wave
powder conveying
hollow pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2242716A
Other languages
Japanese (ja)
Other versions
JPH04125215A (en
Inventor
義朗 富川
剛浩 高野
敬士 大沢
健一郎 脇
廣明 土屋
展之 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2242716A priority Critical patent/JP2722407B2/en
Priority to US07/757,638 priority patent/US5270484A/en
Publication of JPH04125215A publication Critical patent/JPH04125215A/en
Priority to US08/122,287 priority patent/US5414497A/en
Application granted granted Critical
Publication of JP2722407B2 publication Critical patent/JP2722407B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Dry Development In Electrophotography (AREA)
  • Jigging Conveyors (AREA)
  • Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は粉体を搬送する方法に関する。Description: TECHNICAL FIELD The present invention relates to a method for conveying powder.

[従来の技術] 従来、粉体を搬送する方法として最も一般的な技術は
スクリューを用いたものであり、あらゆる粉体搬送手段
に用いられている。これは例えばパイプ内の粉体をパイ
プ内部に設けられたスクリューを回転することによって
搬送するものである。
[Prior Art] Conventionally, the most common technique for conveying powder is a method using a screw, which is used for all powder conveying means. In this method, for example, powder in a pipe is conveyed by rotating a screw provided inside the pipe.

[発明が解決しようとする課題] しかしながら、上記従来例はパイプ内のスクリューを
モータによって回転させなければならないため、消費電
力が大きくなり回転音も比較的大きくなるという問題点
があった。
[Problems to be Solved by the Invention] However, in the above-described conventional example, since the screw in the pipe must be rotated by the motor, there is a problem that power consumption is large and the rotation noise is relatively large.

構成もスクリューという比較的複雑な部材とモータが
必要となりスペース的にも大きくなりコスト的にも高く
なってしまう。
The configuration also requires a relatively complicated member such as a screw and a motor, so that the space is increased and the cost is increased.

また、パイプ内壁とスクリューの隙間が大きいと搬送
効率が落ちてしまい、逆にスクリューとパイプ内壁との
隙間が小さいと搬送効率は上がるが、スクリューとパイ
プ内壁との摩擦によってスクリューの回転トルクが大き
くなるという問題点も有していた。
Also, if the gap between the pipe inner wall and the screw is large, the transfer efficiency will decrease, and if the gap between the screw and the pipe inner wall is small, the transfer efficiency will increase, but the rotational torque of the screw will increase due to the friction between the screw and the pipe inner wall. It also had the problem of becoming

さらに、内壁とスクリューの摩擦等により粉体が劣
化、破壊、あるいは摩擦熱によって溶融してしまうこと
がある。また、一般に粉体は帯電しやすいため、搬送中
に粉体が帯電し、スクリューに付着することが多く、ひ
どい場合は搬送不良が発生するという問題点もあった。
Further, the powder may be deteriorated, broken, or melted by frictional heat due to friction between the inner wall and the screw. In addition, since powder is generally easily charged, the powder is often charged during transport and adheres to the screw in many cases. In severe cases, transport failure occurs.

本発明は上記問題点を解決し、低消費電力、低騒音で
あって搬送効率が良い粉帯搬送方法を提供することを目
的としている。
An object of the present invention is to solve the above-mentioned problems and to provide a method for conveying a powder band with low power consumption, low noise, and good conveyance efficiency.

[課題を解決するための手段] 本発明によれば、上記目的は、 粉体を長手方向へ搬送する管状もしくは樋状粉体搬送
部材の長手方向の複数位置に振動発生手段を配設し、該
振動発生手段によって上記粉体搬送部材の半径方向へ振
動を与え、該振動によって長手方向に進行波を発生さ
せ、各振動発生手段間の粉体搬送部材を振動吸収部材を
介して接続することによって上記進行波の干渉を抑え、
上記粉体搬送部材内で所定方向に粉体を搬送する、 ことにより達成される。
[Means for Solving the Problems] According to the present invention, the object is to provide vibration generating means at a plurality of longitudinal positions of a tubular or trough-shaped powder transporting member for transporting powder in a longitudinal direction, Vibration is applied in the radial direction of the powder conveying member by the vibration generating means to generate a traveling wave in the longitudinal direction by the vibration, and the powder conveying member between the vibration generating means is connected via a vibration absorbing member. By suppressing the interference of the traveling wave,
It is achieved by conveying powder in a predetermined direction within the powder conveying member.

[作用] 本発明によれば、粉体搬送部材の長手方向に複数位置
に配設された振動発生手段によって該粉体搬送部材の半
径方向に振動が発生する。すると、各振動発生手段を中
心として長手方向の両方向に進行波が発生する。しか
し、各振動発生手段の片方の近傍には振動吸収部材が取
り付けられており、該振動吸収部材が取り付けられた方
向へ進む逆進行波の発生を抑えて進行波同士の干渉を防
ぐ。したがって、各振動発生手段から発生する進行波
は、上記振動吸収部材の取り付けられた方向とは逆方向
へ進むものだけとなり、各進行波が合成される。かくし
て、粉体搬送部材内の粉体は合成された進行波の方向と
は逆方向へ搬送されることとなる。
[Operation] According to the present invention, vibration is generated in the radial direction of the powder conveying member by the vibration generating means arranged at a plurality of positions in the longitudinal direction of the powder conveying member. Then, traveling waves are generated in both longitudinal directions around each vibration generating means. However, a vibration absorbing member is attached near one of the vibration generating means, and the generation of a backward traveling wave traveling in the direction in which the vibration absorbing member is attached is suppressed to prevent interference between traveling waves. Therefore, the traveling wave generated from each vibration generating means only travels in the direction opposite to the direction in which the vibration absorbing member is attached, and the traveling waves are combined. Thus, the powder in the powder transport member is transported in a direction opposite to the direction of the synthesized traveling wave.

[実施例] 本発明の第一実施例ないし第四実施例を添付図面に基
づいて説明する。
Embodiments First to fourth embodiments of the present invention will be described with reference to the accompanying drawings.

<第一実施例> 先ず、本発明の第一実施例について第1図ないし第11
図を用いて説明する。
<First Embodiment> First, a first embodiment of the present invention will be described with reference to FIGS.
This will be described with reference to the drawings.

第1図に本発明の第一実施例を示す。この装置は本発
明を利用した粉体搬送装置である。
FIG. 1 shows a first embodiment of the present invention. This device is a powder conveying device using the present invention.

第1図において、1は粉体を供給するホッパーであ
り、2は管状の粉体部材たるアクリルの中空パイプであ
る。該中空パイプ2は外径15mm、内径10mmで長手方向に
長く伸びている。
In FIG. 1, 1 is a hopper for supplying powder, and 2 is an acrylic hollow pipe as a tubular powder member. The hollow pipe 2 has an outer diameter of 15 mm and an inner diameter of 10 mm and is elongated in the longitudinal direction.

該中空パイプ2の長手方向には一定間隔で振動発生手
段たる超音波振動発生用圧電素子3が配設されており交
流電源4によって交流電圧が印加される。
An ultrasonic vibration generating piezoelectric element 3 as vibration generating means is disposed at regular intervals in the longitudinal direction of the hollow pipe 2, and an AC voltage is applied by an AC power supply 4.

上記圧電素子3は第2図に示すごとく外径30mm、内径
15mm、厚み2mmのセラミックPZTを両面から電極で挟み込
むタイプである。
The piezoelectric element 3 has an outer diameter of 30 mm and an inner diameter of 30 mm as shown in FIG.
This type sandwiches ceramic PZT with a thickness of 15mm and a thickness of 2mm between electrodes from both sides.

電極間に電圧を印加することで第3図に示すようにセ
ラミックの伸縮力により内径及び外径方向つまりr方向
に伸び縮み振動が励起され、その振動が中空パイプ2に
進行波として伝達される。この圧電素子3によって発生
した進行波により中空パイプ内の粉体は進行波の方向と
は逆方向(第1図中A)に搬送されることとなる。な
お、上記実施例ではピーク対ピーク電圧100V、周波数50
KHzの交流電圧を印加している。これは圧電素子の形状
による共振モードから算出された値であり、圧電素子の
厚み及び形状を変えることで共振周波数は変化させう
る。また、本実施例では圧電素子は一層のみであるが第
4図に示すように多数個サンドイッチタイプ(多積層
型)にすればさらに励起振動量は大きくでき、中空パイ
プに伝わる進行波も大きくなるため粉体搬送力も増加す
る。また、第5図のように圧電素子の円周部に電極を設
けても良い。さらに、圧電素子の電極を細分化し、印加
電圧の極性を変えることで種々の振動モードを得ること
が可能となる。具体的には第6図の電極配列により第7
図に示す((1,1))モードと呼ばれる1軸対称型の振
動を励振することができる。
By applying a voltage between the electrodes, as shown in FIG. 3, expansion and contraction vibrations are excited in the inner and outer diameter directions, that is, in the r direction by the stretching force of the ceramic, and the vibrations are transmitted to the hollow pipe 2 as traveling waves. . Due to the traveling wave generated by the piezoelectric element 3, the powder in the hollow pipe is transported in a direction (A in FIG. 1) opposite to the direction of the traveling wave. In the above embodiment, the peak-to-peak voltage is 100 V, and the frequency is 50.
KHz AC voltage is applied. This is a value calculated from the resonance mode based on the shape of the piezoelectric element, and the resonance frequency can be changed by changing the thickness and the shape of the piezoelectric element. In this embodiment, only one piezoelectric element is used. However, as shown in FIG. 4, a large number of sandwich types (multi-layer type) can further increase the amount of excitation vibration and the traveling wave transmitted to the hollow pipe. Therefore, the powder conveying force also increases. Further, as shown in FIG. 5, an electrode may be provided on the circumference of the piezoelectric element. Furthermore, various vibration modes can be obtained by subdividing the electrodes of the piezoelectric element and changing the polarity of the applied voltage. Specifically, the electrode arrangement shown in FIG.
It is possible to excite a uniaxially symmetric vibration called a ((1,1)) mode shown in the figure.

またさらに第8図に示すように電極分割を細分化する
と第9図のように((2,1))モードと呼ばれる中心軸
の平行振動を励起できる。さらにこれらの電極に印加す
る交流電圧の位相を90゜ずらすことで振動の回転モード
も可能となる。
Further, when the electrode division is subdivided as shown in FIG. 8, a central axis parallel vibration called ((2, 1)) mode can be excited as shown in FIG. Further, by rotating the phase of the AC voltage applied to these electrodes by 90 °, a rotation mode of the vibration is also possible.

このように電極分割の細分化及びそれぞれの電極への
印加電圧の位相をずらすことで多くの振動モードを励起
できる。これらの種々のモードを活用することで、さま
ざまな粉体の特性に合せた最適な励起モードを選択し、
それぞれの粉体に合せて十分な搬送力を得ることができ
る。
In this manner, many vibration modes can be excited by subdividing the electrode division and shifting the phase of the voltage applied to each electrode. By utilizing these various modes, it is possible to select the optimal excitation mode that matches the characteristics of various powders,
A sufficient conveying force can be obtained according to each powder.

粉体の質量、比重、すべり性、粘着性、帯電性はさま
ざまであり、中空パイプが同一でも、粉体の搬送性はそ
の粉体自身の特性に強く依存するためである。
This is because the powder has various masses, specific gravities, slip properties, tackiness, and charging properties, and even if the hollow pipe is the same, the powder transportability strongly depends on the characteristics of the powder itself.

また中空パイプの材質、表面性、帯電性が変る場合で
も同様のことが言える。
The same can be said for the case where the material, surface properties and chargeability of the hollow pipe change.

しかし、長い中空パイプに複数個の圧電素子を接続し
て粉体を長い距離搬送しようとしても、圧電素子によっ
て発生する振動は圧電素子を中心に対称型の進行波が常
に発生し、一方向への粉体搬送は不可能となる。第16図
(B)に長い同一中空パイプに複数個の圧電素子によっ
て発生するそれぞれの進行波の模式図を示す。そして第
16図(C)にそれぞれの進行波を合成した後の中空パイ
プに励振された進行波の振動及び、その進行波による粉
体搬送力の大きさと方向性の模式図をしめす。
However, even if a plurality of piezoelectric elements are connected to a long hollow pipe and powder is conveyed for a long distance, the vibration generated by the piezoelectric elements always produces a symmetrical traveling wave around the piezoelectric elements, and the vibration is generated in one direction. Cannot be transferred. FIG. 16 (B) is a schematic view of each traveling wave generated by a plurality of piezoelectric elements in the same long hollow pipe. And the second
FIG. 16 (C) shows a schematic diagram of the vibration of the traveling wave excited in the hollow pipe after the respective traveling waves are synthesized, and the magnitude and direction of the powder conveying force by the traveling wave.

これらの図から明らかなように粉体搬送力は各圧電素
子方向に働くため一方向への粉体搬送は不可能となり、
第16図(A)に示すごとく、各電圧素子近傍にブランチ
状に粉体が滞留してしまう結果となる。
As is clear from these figures, the powder transfer force acts in the direction of each piezoelectric element, so that powder transfer in one direction becomes impossible,
As shown in FIG. 16 (A), the result is that the powder stays in the form of a branch near each voltage element.

そこで本発明では第1図に示すごとく圧電素子の間の
中空パイプを分断し、圧電素子によって発生する進行波
が他の圧電素子が発生させる進行波と干渉しないように
構成した。
Therefore, in the present invention, as shown in FIG. 1, the hollow pipe between the piezoelectric elements is divided so that the traveling wave generated by the piezoelectric element does not interfere with the traveling wave generated by another piezoelectric element.

さらに自ら発生させる逆進行波の影響をできるだけ小
さく抑えるため、逆進行波の発生する圧電素子近くの中
空パイプを切断し、振動を吸収し、伝達しない部材、い
わゆる振動吸収部材を介在させている。この振動吸収部
材の作用を説明するために第10図(B)に圧電素子によ
って発生するそれぞれの進行波の模式図を示す。
Further, in order to minimize the effect of the backward traveling wave generated by itself, a hollow pipe near the piezoelectric element where the backward traveling wave is generated is cut, and a member that absorbs vibration and does not transmit, that is, a so-called vibration absorbing member is interposed. FIG. 10 (B) is a schematic view of each traveling wave generated by the piezoelectric element to explain the function of the vibration absorbing member.

第10図に示すように振動吸収部材5によって中空パイ
プ2を伝ってきた進行波は減衰し、隣接した中空パイプ
2には進行波が伝わらない。
As shown in FIG. 10, the traveling wave transmitted through the hollow pipe 2 is attenuated by the vibration absorbing member 5, and the traveling wave is not transmitted to the adjacent hollow pipe 2.

そして第10図(C)にそれぞれの進行波を合成した後
の中空パイプ2に励振された進行波の振動を示す。
FIG. 10 (C) shows the vibration of the traveling wave excited in the hollow pipe 2 after each traveling wave is synthesized.

逆進行波の発生する中空パイプ2を切断し、その間に
振動吸収部材を介することで逆進行波の影響を小さく抑
えることができ、第10図(C)に示すような、粉体搬送
力の大きさと方向性を有することが可能となる。
By cutting the hollow pipe 2 in which the backward traveling wave is generated, and by interposing a vibration absorbing member therebetween, the influence of the backward traveling wave can be reduced, and as shown in FIG. It is possible to have size and directionality.

これから明らかなように実効的な粉体搬送力は一定方
向に働き、第10図(A)に示すごとく矢印A方向に粉体
が強力に搬送される。つまり、振動吸収部材の位置を隣
接圧電素子間の中間点よりずらすことでずらし方向と逆
方向に粉体搬送が可能となり、圧電素子に近ければ近い
程搬送力が増大する。
As is clear from this, the effective powder conveying force acts in a certain direction, and the powder is strongly conveyed in the direction of arrow A as shown in FIG. 10 (A). In other words, by shifting the position of the vibration absorbing member from an intermediate point between adjacent piezoelectric elements, the powder can be transported in the direction opposite to the shifting direction, and the transport force increases as the distance from the piezoelectric element increases.

また、中空パイプ2の振動吸収部材5と接する端部に
おける振動幅が圧電素子部での振動幅の1/2以下に減衰
していないと、端部での反射波の影響が大きくなり、進
行波の搬送力の減衰が大きくなり好ましくない。
Further, if the vibration width at the end of the hollow pipe 2 which is in contact with the vibration absorbing member 5 is not attenuated to half or less of the vibration width at the piezoelectric element, the influence of the reflected wave at the end increases, and The attenuation of the wave carrier force is undesirably large.

そして、振動吸収部材5は第11図に示すように防振ゴ
ム(NBR)5Bとシリコーン系接着剤5Aにより中空アクリ
ルパイプを接続した。
Then, as shown in FIG. 11, the vibration-absorbing member 5 was connected to a hollow acrylic pipe by a vibration-proof rubber (NBR) 5B and a silicone-based adhesive 5A.

これにより、長さ2mの長い距離を粉体が詰まることな
くスムーズに搬送することができた。粉体として一成分
磁性トナー平均粒径12μmを用いたところ粉体の搬送力
は500g/minであった。
As a result, the powder could be smoothly transported over a long distance of 2 m without being clogged with powder. When a one-component magnetic toner having an average particle diameter of 12 μm was used as the powder, the powder conveyance force was 500 g / min.

さらに粉体をガラスビーズ平均粒径60μm及びフェラ
イトキャリア平均粒径60μm及び非磁性トナー平均粒径
8μmの粉体及びこれらの混合体を用いても磁性トナー
と同様の搬送力を得ることが判った。
Further, it was found that the same conveying force as that of the magnetic toner can be obtained by using a powder having an average particle diameter of glass beads of 60 μm, an average particle diameter of ferrite carrier of 60 μm, and a non-magnetic toner having an average particle diameter of 8 μm or a mixture thereof. .

このとき粉体搬送量は圧電素子に印加する電圧に比例
して変化し、粉体搬送量の制御が可能となった。
At this time, the amount of powder conveyed changed in proportion to the voltage applied to the piezoelectric element, and it became possible to control the amount of powder conveyed.

ちなみに本実施例では、同位相、同電圧の交流電圧
(ピーク体ピーク電圧100V、周波数50KHz)を連続的に
印加したが、振動吸収部材により圧電素子はそれぞれ独
立事象になり、それぞれの電圧素子の位相、印加時間、
印加電圧を変えても他の電圧素子への影響を与えずにそ
の電圧素子の粉体搬送力を制御できる。
Incidentally, in this embodiment, the same phase and the same AC voltage (peak body peak voltage 100 V, frequency 50 KHz) were continuously applied, but the piezoelectric elements became independent events by the vibration absorbing member, and the Phase, application time,
Even if the applied voltage is changed, the powder conveying force of the voltage element can be controlled without affecting other voltage elements.

また、粉体搬送部材に用いる材質は比較的減衰率が大
きいものが良く発生させた励振の振幅に対して端部にて
1/2以下になっていれば反射波の影響が少なく搬送能力
がすぐれていることがわかった。実験によればアクリ
ル、ナイロンPOM(ポリアセタール)ABSポリプロピレ
ン、ポリスチロール等が適している。
In addition, the material used for the powder conveying member has a relatively large damping rate, and the amplitude of the excitation generated at the end portion is relatively large.
It was found that if the ratio was less than 1/2, the influence of the reflected wave was small and the carrying capacity was excellent. According to experiments, acrylic, nylon POM (polyacetal) ABS polypropylene, polystyrene and the like are suitable.

また振動吸収部材としてはNBR、ウレタンゴム、Siゴ
ムEKDM、ゲル状樹脂、Siゴム系接着剤等が最適であり、
ゴム硬度を小さくすることでほぼ100%進行波の振動を
吸収可能である。さらに実験により、振動吸収率50%の
ときには振動吸収部材を伝搬する進行波の振幅が1/2以
下に減衰すれば隣接する中空パイプ及び厚電素子から発
生する進行波に影響をほとんど与えずに粉体搬送がスム
ーズに行なわれることも判った。
As the vibration absorbing member, NBR, urethane rubber, Si rubber EKDM, gel resin, Si rubber adhesive, etc. are optimal,
By making the rubber hardness small, almost 100% of traveling wave vibration can be absorbed. According to experiments, if the amplitude of the traveling wave propagating through the vibration absorbing member is attenuated to half or less when the vibration absorption rate is 50%, the traveling wave generated from the adjacent hollow pipe and the thick electric element is hardly affected. It was also found that the powder was smoothly transferred.

このように中空パイプ内部にスクリュー等搬送部材が
ないので粉体を劣化、破壊、溶融等することがなく効率
良く搬送することが可能となった。
As described above, since there is no conveying member such as a screw inside the hollow pipe, the powder can be efficiently conveyed without deterioration, destruction, melting, or the like.

本実施例はアクリル中空パイプを用いているが、この
構成は粉体搬送部材であるアクリル中空パイプの一部に
与えられた振動の振幅がその部材、つまりアクリル中空
パイプ自身の振動の吸収により減衰されている。本発明
は励振された粉体搬送部材の振幅が、搬送方向端部にお
いて減衰しているよう構成し、進行波を発生させ、粉体
を搬送させるものであるが、本実施例のごとき構成にて
も効果がありかつ簡易、安価にて実現できる。
In this embodiment, an acrylic hollow pipe is used, but in this configuration, the amplitude of vibration given to a part of the acrylic hollow pipe as a powder conveying member is attenuated by absorbing the vibration of the member, that is, the acrylic hollow pipe itself. Have been. The present invention is configured such that the excited amplitude of the powder conveying member is attenuated at the end in the conveying direction, generates a traveling wave, and conveys the powder. However, it is effective and can be realized simply and inexpensively.

構成は減衰の大きな材質を用いる他にも減衰の小さい
材質、たとえば金属パイプの一部に減衰の大きな材質を
はりつける、あるいは金属パイプ自身の形状を溝をつけ
る等ほどこして減衰を大きくすることが挙げられる。
In addition to using a material with a large attenuation, the material may be a material with a small attenuation, such as attaching a material with a large attenuation to a part of a metal pipe, or forming a groove in the metal pipe itself to increase the attenuation. Can be

<第二実施例> 次に本発明の第二実施例を第12図を用いて説明する。
なお、第一実施例との共通箇所には同一符号を付して説
明を省略する。
Second Embodiment Next, a second embodiment of the present invention will be described with reference to FIG.
The same parts as those in the first embodiment are denoted by the same reference numerals, and the description is omitted.

本実施例は、第12図に示すように中空パイプ間をゴム
チューブ5を被覆して連結したところが第一実施例と異
なる。この方法を用いることでゴムだけでなく例えば、
ナイロン、ポリプロピレン、塩化ビニル、PTFE,PFA等の
軟質樹脂を利用できる。
This embodiment is different from the first embodiment in that the hollow pipes are connected by covering with a rubber tube 5 as shown in FIG. By using this method, not only rubber but also
Soft resins such as nylon, polypropylene, vinyl chloride, PTFE, and PFA can be used.

本実施例によっても第一実施例と同様な効果を奏する
ことができる。
According to this embodiment, the same effects as those of the first embodiment can be obtained.

<第三実施例> 次に、本発明の第三実施例を第13図及び第14図を用い
て説明する。なお、第一実施例との共通箇所には同一符
号を付して説明を省略する。
Third Embodiment Next, a third embodiment of the present invention will be described with reference to FIGS. The same parts as those in the first embodiment are denoted by the same reference numerals, and the description is omitted.

本実施例は第13図に示すように中空パイプ2の代りに
溝状の搬送部材2を用いたところが第一実施例と異な
る。本実施例においても搬送部材にはアクリルを適用し
ている。
This embodiment is different from the first embodiment in that a groove-shaped conveying member 2 is used instead of the hollow pipe 2 as shown in FIG. Also in this embodiment, acrylic is applied to the conveying member.

搬送原理は第一実施例と同様で交流電源4から圧電素
子3に電圧を印加しそれぞれの圧電素子の進行波が相互
干渉しないように振動防止部材5を用いることで長い溝
内の粉体を搬送するものである。
The transport principle is the same as that of the first embodiment, and a voltage is applied to the piezoelectric elements 3 from the AC power supply 4 and the vibration preventing member 5 is used so that the traveling waves of the respective piezoelectric elements do not interfere with each other. To be transported.

これは中空パイプではなく上部が開放されているため
この溝開口部より粉体の補給等が簡単に行なえる利点を
もつ。
This has the advantage that powder can be easily supplied from the groove opening because the upper part is opened instead of the hollow pipe.

また、第14図に示すように粉体搬送部材2を樋状にし
ても同様の効果を奏することができる。
The same effect can be obtained even if the powder conveying member 2 is formed in a gutter shape as shown in FIG.

<第四実施例> 次に、本発明の第四実施例を第15図を用いて説明す
る。なお、第一実施例との共通箇所には同一符号を付し
て説明を省略する。
Fourth Embodiment Next, a fourth embodiment of the present invention will be described with reference to FIG. The same parts as those in the first embodiment are denoted by the same reference numerals, and the description is omitted.

本実施例は第15図に示すように圧電素子3を中空パイ
プ2の下部に固定したところが第一実施例と異なる。こ
れは積層圧電素子等の板状の圧電素子を振動させ中空パ
イプの一部を圧電素子により叩くことで進行波を一部か
ら発生させ粉体の搬送を行う方法であり他の実施例と同
様に十分な搬送力が発生する。また振動防止部材5は中
空パイプの軸直角方向に挿入しているが、中空パイプの
軸に対し、角度を設けても良いし非対称にしても良い。
円筒パイプの一部から進行波が発生する場合は反射波の
影響を考えて振動防止部材5の形状を変えることも良
い。
This embodiment is different from the first embodiment in that the piezoelectric element 3 is fixed to the lower part of the hollow pipe 2 as shown in FIG. This is a method in which a plate-like piezoelectric element such as a laminated piezoelectric element is vibrated and a part of a hollow pipe is hit with a piezoelectric element to generate a traveling wave from a part and to convey the powder, as in the other embodiments. Sufficient conveyance force is generated. Further, although the vibration preventing member 5 is inserted in a direction perpendicular to the axis of the hollow pipe, an angle may be provided with respect to the axis of the hollow pipe, or the axis may be asymmetric.
When a traveling wave is generated from a part of the cylindrical pipe, the shape of the vibration preventing member 5 may be changed in consideration of the influence of the reflected wave.

このような構成にすれば簡易コンパクトに粉体搬送が
実現できパイプの交換、コスト等に有利である。
With such a configuration, the powder can be transported simply and compactly, which is advantageous for pipe replacement and cost.

[発明の効果] 以上説明したように、本発明によれば、振動吸収部材
で接続された粉体搬送部材に、振動発生手段によって半
径方向への振動を与えて進行波を発生させるので、少な
いエネルギーで効率良く粉体を長距離搬送することがで
きる。また、粉体が劣化、破損、溶融することなく静か
に、かつ、円滑に搬送することができる。
[Effects of the Invention] As described above, according to the present invention, vibration is generated in the radial direction by the vibration generating means to the powder conveying member connected by the vibration absorbing member to generate a traveling wave. The powder can be efficiently transported over a long distance with energy. Further, the powder can be conveyed quietly and smoothly without deterioration, breakage or melting.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の第一実施例装置の概略構成を示す斜視
図、第2図は第1図装置の振動発生手段の概略構成を示
す斜視図、第3図は第1図装置の粉体搬送部材の外壁の
変化を示す図、第4図は第2図の手段を積層した場合の
概略構成を示す斜視図、第5図は第2図の手段の円周部
に電極を設けた場合の概略構成を示す斜視図、第6図は
第2図の手段の((1,1))モードの電極配列を示す
図、第7図は第6図に示す配列の場合における粉体搬送
部材の外壁の変化を示す図、第8図は第2図の手段の
((2,1))モードの電極配列を示す図、第9図は第8
図の配列の場合における粉体搬送部材の外壁の変化を示
す図、第10図(A)は第1図装置の粉体搬送部材内部に
おける粉体の様子を示す図、第10図(B)は第1図装置
における粉体搬送部材内に発生する進行波を説明する
図、第10図(C)は第10図(B)の各進行波を合成した
後の進行波を説明する図、第11図は第1図装置の振動吸
収部材の概略構成を示す図、第12図は本発明の第二実施
例装置の概略構成を示す図、第13図は本発明の第三実施
例装置の概略構成を示す図、第14図は第13図装置の粉体
搬送部材を樋状に形成した場合を示す図、第15図は本発
明の第四実施例装置の概略構成を示す図、第16図(A)
は第1図装置に振動吸収部材を取り付けなかった場合に
おける粉体搬送部材内部の粉体の状態を示す図、第16図
(B)は第16図装置における粉体搬送部材内に発生する
進行波を説明する図、第16図(C)は第16図(B)の各
進行波を合成した後の進行波を説明する図である。 2……粉体搬送部材(中空パイプ) 3……振動発生手段(圧電素子) 5……振動吸収部材
FIG. 1 is a perspective view showing a schematic configuration of a first embodiment of the apparatus of the present invention, FIG. 2 is a perspective view showing a schematic configuration of a vibration generating means of the apparatus of FIG. 1, and FIG. FIG. 4 is a view showing a change in the outer wall of the body conveying member, FIG. 4 is a perspective view showing a schematic configuration when the means of FIG. 2 are stacked, and FIG. 5 is provided with electrodes on the circumferential portion of the means of FIG. FIG. 6 is a perspective view showing a schematic configuration in the case, FIG. 6 is a view showing an electrode arrangement in the ((1,1)) mode of the means of FIG. 2, and FIG. FIG. 8 is a view showing the change of the outer wall of the member, FIG. 8 is a view showing the electrode arrangement in the ((2, 1)) mode of the means of FIG. 2, and FIG.
FIG. 10 (A) is a diagram showing a change in the outer wall of the powder conveying member in the case of the arrangement shown in FIG. 10, FIG. 10 (A) is a diagram showing the state of powder inside the powder conveying member of the FIG. 1 apparatus, and FIG. 10 (B). FIG. 10 is a diagram illustrating a traveling wave generated in a powder conveying member in the apparatus of FIG. 1, FIG. 10 (C) is a diagram illustrating a traveling wave after synthesizing each traveling wave of FIG. 10 (B), FIG. 11 is a view showing a schematic configuration of a vibration absorbing member of the apparatus of FIG. 1, FIG. 12 is a view showing a schematic configuration of a second embodiment apparatus of the present invention, and FIG. 13 is a third embodiment apparatus of the present invention. FIG. 14 is a diagram showing a schematic configuration of the apparatus, FIG. 14 is a view showing a case where the powder conveying member of the apparatus of FIG. 13 is formed in a gutter shape, FIG. 15 is a view showing a schematic configuration of a fourth embodiment apparatus of the present invention, Fig. 16 (A)
FIG. 16 is a view showing a state of powder inside the powder conveying member when the vibration absorbing member is not attached to the apparatus in FIG. 1, and FIG. 16 (B) shows a progress generated in the powder conveying member in the apparatus in FIG. FIG. 16 (C) is a diagram illustrating a traveling wave after the traveling waves of FIG. 16 (B) are combined. 2 ... powder conveying member (hollow pipe) 3 ... vibration generating means (piezoelectric element) 5 ... vibration absorbing member

───────────────────────────────────────────────────── フロントページの続き (72)発明者 土屋 廣明 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (72)発明者 伊東 展之 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (56)参考文献 特公 昭45−30423(JP,B1) ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hiroaki Tsuchiya 3-30-2 Shimomaruko, Ota-ku, Tokyo Inside Canon Inc. (72) Inventor Nobuyuki Ito 3-30-2 Shimomaruko, Ota-ku, Tokyo Inside Canon Inc. (56) References JP-B-45-30423 (JP, B1)

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】粉体を長手方向へ搬送する管状もしくは樋
状粉体搬送部材の長手方向の複数位置に振動発生手段を
配設し、該振動発生手段によって上記粉体搬送部材の半
径方向へ振動を与え、該振動によって長手方向に進行波
を発生させ、各振動発生手段間の粉体搬送部材を振動吸
収部材を介して接続することによって上記進行波の干渉
を抑え、上記粉体搬送部材内で所定方向に粉体を搬送す
る粉体搬送方法。
1. A vibration generating means is provided at a plurality of longitudinal positions of a tubular or trough-shaped powder conveying member for conveying powder in a longitudinal direction, and the vibration generating means moves the powder in a radial direction of the powder conveying member. Vibration is applied, and the vibration generates a traveling wave in the longitudinal direction. By connecting the powder conveying member between the vibration generating means via a vibration absorbing member, interference of the traveling wave is suppressed, and the powder conveying member A powder conveying method for conveying powder in a predetermined direction in the inside.
【請求項2】進行波は粉体搬送部材の粉体搬送方向にお
いて減衰することとする請求項(1)に記載の粉体搬送
方法。
2. The powder conveying method according to claim 1, wherein the traveling wave is attenuated in a powder conveying direction of the powder conveying member.
【請求項3】振動発生手段は圧電素子を用いることとす
る請求項(1)または請求項(2)に記載の粉体搬送方
法。
3. The powder conveying method according to claim 1, wherein the vibration generating means uses a piezoelectric element.
【請求項4】粉体搬送部材は中空パイプを用いることと
する請求項(1)ないし請求項(3)に記載の粉体搬送
方法。
4. The powder conveying method according to claim 1, wherein a hollow pipe is used as the powder conveying member.
【請求項5】振動吸収部材は進行波の振幅を減衰させる
ものを用いることとする請求項(1)ないし請求項
(4)に記載の粉体搬送方法。
5. The powder conveying method according to claim 1, wherein the vibration absorbing member is configured to attenuate the amplitude of the traveling wave.
【請求項6】振動吸収部材は樹脂またはゴム系接着剤を
用いることとする請求項(1)ないし請求項(5)に記
載の粉体搬送方法。
6. The powder conveying method according to claim 1, wherein the vibration absorbing member uses a resin or a rubber-based adhesive.
JP2242716A 1990-09-14 1990-09-14 Powder transfer method Expired - Fee Related JP2722407B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2242716A JP2722407B2 (en) 1990-09-14 1990-09-14 Powder transfer method
US07/757,638 US5270484A (en) 1990-09-14 1991-09-11 Powder conveying device
US08/122,287 US5414497A (en) 1990-09-14 1993-10-21 Powder conveying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2242716A JP2722407B2 (en) 1990-09-14 1990-09-14 Powder transfer method

Publications (2)

Publication Number Publication Date
JPH04125215A JPH04125215A (en) 1992-04-24
JP2722407B2 true JP2722407B2 (en) 1998-03-04

Family

ID=17093178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2242716A Expired - Fee Related JP2722407B2 (en) 1990-09-14 1990-09-14 Powder transfer method

Country Status (1)

Country Link
JP (1) JP2722407B2 (en)

Also Published As

Publication number Publication date
JPH04125215A (en) 1992-04-24

Similar Documents

Publication Publication Date Title
US4400641A (en) Piezoelectric motor with two part rotor
US5270484A (en) Powder conveying device
US7576474B2 (en) Piezoelectric motor
EP0469881B1 (en) Vibration driven actuator
JPH07152264A (en) Vibration system of electrophotographic device
JP2722407B2 (en) Powder transfer method
JP2829938B2 (en) Powder transfer method
JPH02237481A (en) Oscillatory wave motor
JPH04189215A (en) Powder material carrying device
JPH04322271A (en) Powder carrying device
JPH04365070A (en) Powder conveyor
JPS63262068A (en) Vibration wave motor
KR100661311B1 (en) Piezoelectric ultrasonic motor
JP2513241B2 (en) Ultrasonic motor
JPH07157043A (en) Powder carrier devicer
JPS63290176A (en) Driving method for supersonic motor
JP2760297B2 (en) Ultrasonic motor
JPS59204479A (en) Surface wave motor utilizing supersonic wave vibration
CN117636831A (en) Sound absorbing device for mobile body
JPH04355677A (en) Ultrasonic wave actuator for conveyer and conveyer thereof
JPH01110070A (en) Driving method for supersonic motor
SU1729606A1 (en) Ultrasonic centrifuge
JPH0323143A (en) Sheet feed device
JPH08115548A (en) Tape guide mechanism
JP2808573B2 (en) Ultrasonic motor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081128

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081128

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091128

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees