JPH04365070A - Powder conveyor - Google Patents

Powder conveyor

Info

Publication number
JPH04365070A
JPH04365070A JP3166216A JP16621691A JPH04365070A JP H04365070 A JPH04365070 A JP H04365070A JP 3166216 A JP3166216 A JP 3166216A JP 16621691 A JP16621691 A JP 16621691A JP H04365070 A JPH04365070 A JP H04365070A
Authority
JP
Japan
Prior art keywords
powder
vibration
traveling wave
piezoelectric element
powder conveying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3166216A
Other languages
Japanese (ja)
Inventor
Takashi Osawa
敬士 大沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP3166216A priority Critical patent/JPH04365070A/en
Publication of JPH04365070A publication Critical patent/JPH04365070A/en
Pending legal-status Critical Current

Links

Landscapes

  • Dry Development In Electrophotography (AREA)
  • Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)

Abstract

PURPOSE:To reduce the power consumption, reduce noise, improve the conveyance efficiency, and perform branch conveyance at multiple positions. CONSTITUTION:A hopper 1 feeding powder and an acrylic hollow pipe 2 which is a tubular powder conveying member are provided. The hollow pipe 2 is branched into two in the middle and extended long in the longitudinal direction. Ultrasonic vibration generating piezoelectric elements 3 serving as vibration generating means are arranged at a fixed interval in the longitudinal direction of the hollow pipes 2, and AC voltage is applied by AC power sources 4. The piezoelectric element 3 is the type pinching a ceramic with electrodes from both faces. The hollow pipes 2 between the piezoelectric elements 3 are connected by vibration absorbing members 5. When voltage is applied across the electrodes, the expanding/shrinking vibration is excited in the inner and outer diameter directions by the expanding/shrinking force of the ceramic, the vibration is transmitted as the traveling wave on the hollow pipes 2, and the powder in the hollow pipes 2 is conveyed by the traveling wave in the opposite direction to the traveling wave.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は粉体を搬送する装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for conveying powder.

【0002】0002

【従来の技術】従来、粉体を搬送する方法として最も一
般的な技術はスクリューを用いたものであり、あらゆる
粉体搬送手段に用いられている。この手法は例えばパイ
プ内の粉体をパイプ内部に設けられたスクリューを回転
することによって搬送するものである。
BACKGROUND OF THE INVENTION Conventionally, the most common technique for conveying powder is the use of a screw, which is used in all types of powder conveying means. In this method, for example, powder inside a pipe is transported by rotating a screw provided inside the pipe.

【0003】0003

【発明が解決しようとする課題】しかしながら、上記従
来例はパイプ内のスクリューをモータによって回転させ
なければならないため、消費電力が大きくなり回転音も
比較的大きくなるという問題点があった。
However, in the conventional example described above, since the screw in the pipe must be rotated by a motor, there are problems in that the power consumption is large and the rotation noise is relatively loud.

【0004】また、構成上もスクリューという比較的複
雑な部材とモータが必要となるため装置が大型化し、さ
らに、コスト的にも高くなるという問題点を有していた
[0004] Furthermore, since a comparatively complicated member such as a screw and a motor are required in terms of construction, the device becomes large in size, and furthermore, there are problems in that the cost becomes high.

【0005】また、パイプ内壁とスクリューの隙間が大
きいと搬送効率が落ちてしまい、逆にスクリューとパイ
プ内壁との隙間が小さいと搬送効率は上がるが、スクリ
ューとパイプ内壁との摩擦によってスクリューの回転ト
ルクが大きくなるという問題点も有していた。
[0005] Furthermore, if the gap between the screw and the inner wall of the pipe is large, the conveyance efficiency will decrease, and conversely, if the gap between the screw and the inner wall of the pipe is small, the conveyance efficiency will increase, but the rotation of the screw will be reduced due to the friction between the screw and the inner wall of the pipe. Another problem was that the torque increased.

【0006】さらに、内壁とスクリューの摩擦等により
粉体が劣化、破壊、あるいは摩擦熱によって溶融してし
まうことがある。また、一般に粉体は帯電しやすいため
、搬送中に粉体が帯電し、スクリューに付着することが
多く、ひどい場合は搬送不良が発生するという問題点も
あった。
Furthermore, the powder may deteriorate or break due to friction between the inner wall and the screw, or may melt due to frictional heat. In addition, since powder is generally easily charged, the powder often becomes charged during transportation and adheres to the screw, and in severe cases, there is a problem that transportation failure occurs.

【0007】また、パイプの中にスクリューを通してい
るため、二箇所以上に分岐搬送を行うことが非常に困難
であり、分岐搬送を行うには一旦粉体を溜める手段が必
要になり、装置が複雑化するという問題点があった。
In addition, since the screw is passed through the pipe, it is very difficult to carry out branched conveyance to two or more locations, and in order to carry out branched conveyance, a means to temporarily store the powder is required, making the equipment complicated. There was a problem that it became

【0008】本発明は上記問題点を解決し、低消費電力
、低騒音であって搬送効率が良く、かつ、複数箇所に分
岐搬送を行うことのできる粉体搬送装置を提供すること
を目的としている。
[0008] The present invention solves the above-mentioned problems, and aims to provide a powder conveying device that has low power consumption, low noise, has good conveyance efficiency, and is capable of branching conveyance to multiple locations. There is.

【0009】[0009]

【課題を解決するための手段】本発明によれば、上記目
的は、複数方向に分岐して形成され、粉体を各分岐方向
に搬送する管状もしくは樋状の粉体搬送部材と、該粉体
搬送部材の分岐の前後にそれぞれ少なくとも一つ以上配
設された振動発生手段と、各振動発生手段間の粉体搬送
部材を接続せしめる振動吸収部材とを備えたことにより
達成される。
[Means for Solving the Problems] According to the present invention, the above object is to provide a powder conveying member in the form of a tube or gutter which is formed by branching in a plurality of directions and conveys powder in each branching direction; This is achieved by providing at least one vibration generating means disposed before and after the branching of the body conveying member, and a vibration absorbing member connecting the powder conveying member between the vibration generating means.

【0010】0010

【作用】本発明によれば、分岐した粉体搬送部材の分岐
の前後に配設された振動発生手段によって該粉体搬送部
材の半径方向に振動が発生する。すると、各振動発生手
段を中心として分岐の前後における該粉体搬送部材の長
手方向の両方向に進行波が発生する。しかし、各振動発
生手段の片方の近傍には振動吸収部材が取り付けられて
おり、該振動吸収部材が取り付けられた方向へ進む逆進
行波の発生を抑えて進行波同士の干渉を防ぐ。したがっ
て、各振動発生手段から発生する進行波は、上記振動吸
収部材の取り付けられた方向とは逆方向へ進むものだけ
となり、各進行波が合成される。かくして、分岐した粉
体搬送部材内の粉体は合成された進行波の方向とは逆方
向であって、該粉体搬送部材の各分岐方向へ搬送される
こととなる。
According to the present invention, vibrations are generated in the radial direction of the powder conveying member by the vibration generating means disposed before and after the branching of the powder conveying member. Then, traveling waves are generated in both longitudinal directions of the powder conveying member before and after the branching, centering on each vibration generating means. However, a vibration absorbing member is attached near one side of each vibration generating means, and the generation of a backward traveling wave traveling in the direction in which the vibration absorbing member is attached is suppressed to prevent interference between the traveling waves. Therefore, the traveling waves generated from each vibration generating means are only those traveling in the direction opposite to the direction in which the vibration absorbing member is attached, and the traveling waves are combined. Thus, the powder in the branched powder conveying member is conveyed in the direction opposite to the direction of the combined traveling wave, and in each branching direction of the powder conveying member.

【0011】[0011]

【実施例】本発明の第一実施例ないし第四実施例を添付
図面に基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First to fourth embodiments of the present invention will be described with reference to the accompanying drawings.

【0012】〈第一実施例〉先ず、本発明の第一実施例
について図1ないし図10を用いて説明する。
First Embodiment First, a first embodiment of the present invention will be described with reference to FIGS. 1 to 10.

【0013】図1に本発明の第一実施例を示す。この装
置は本発明を利用した粉体搬送装置である。
FIG. 1 shows a first embodiment of the present invention. This device is a powder conveying device that utilizes the present invention.

【0014】図1において、1は粉体を供給するホッパ
ーであり、2は管状の粉体搬送部材たるアクリルの中空
パイプである。該中空パイプ2は外径15mm、内径1
0mmで途中から二手に分岐してそれぞれ長手方向に長
く伸びている。
In FIG. 1, 1 is a hopper for supplying powder, and 2 is an acrylic hollow pipe that is a tubular powder conveying member. The hollow pipe 2 has an outer diameter of 15 mm and an inner diameter of 1
At 0 mm, it branches into two parts in the middle and each part extends long in the longitudinal direction.

【0015】該中空パイプ2の長手方向には一定間隔で
振動発生手段たる超音波振動発生用圧電素子3が配設さ
れており交流電源4によって交流電圧が印加される。
Ultrasonic vibration generating piezoelectric elements 3 serving as vibration generating means are arranged at regular intervals in the longitudinal direction of the hollow pipe 2, and an AC voltage is applied to them by an AC power source 4.

【0016】上記圧電素子3は図2に示すごとく外径3
0mm、内径15mm、厚み2mmのセラミックPZT
を両面から電極で挟み込むタイプである。
The piezoelectric element 3 has an outer diameter 3 as shown in FIG.
0mm, inner diameter 15mm, thickness 2mm ceramic PZT
It is a type that is sandwiched between electrodes from both sides.

【0017】電極間に電圧を印加することで図3に示す
ようにセラミックの伸縮力により内径及び外径方向つま
りr方向に伸び縮み振動が励起され、その振動が中空パ
イプ2に進行波として伝達される。この圧電素子3によ
って発生した進行波により中空パイプ内の粉体は進行波
の方向とは逆方向(図1中矢印A方向)に搬送されるこ
ととなる。なお、上記実施例ではピーク対ピーク電圧1
00V 、周波数50KHz の交流電圧を印加してい
る。これは圧電素子の形状による共振モードから算出さ
れた値であり、圧電素子の厚み及び形状を変えることで
共振周波数は変化させうる。また、本実施例では圧電素
子は一層のみであるが図4に示すように多数個サンドイ
ッチタイプ(多積層型)にすればさらに励起振動量は大
きくでき、中空パイプに伝わる進行波も大きくなるため
粉体搬送力も増加する。また、図5のように圧電素子の
円周部に電極を設けても良い。さらに、圧電素子の電極
を細分化し、印加電圧の極性を変えることで種々の振動
モードを得ることが可能となる。具体的には図6の電極
配列により図7に示す((1,1))モードと呼ばれる
1軸対称型の振動を励振することができる。
By applying a voltage between the electrodes, as shown in FIG. 3, the expansion and contraction force of the ceramic excites expansion and contraction vibrations in the inner and outer diameter directions, that is, in the r direction, and the vibrations are transmitted to the hollow pipe 2 as traveling waves. be done. The powder in the hollow pipe is transported by the traveling wave generated by the piezoelectric element 3 in a direction opposite to the direction of the traveling wave (direction of arrow A in FIG. 1). In addition, in the above embodiment, the peak-to-peak voltage 1
An alternating current voltage of 00 V and a frequency of 50 KHz is applied. This is a value calculated from the resonance mode depending on the shape of the piezoelectric element, and the resonance frequency can be changed by changing the thickness and shape of the piezoelectric element. In addition, in this example, the piezoelectric element is only one layer, but if a multiple sandwich type (multilayer type) is used as shown in Fig. 4, the amount of excited vibration can be further increased, and the traveling wave transmitted to the hollow pipe will also be larger. The powder conveying force also increases. Further, as shown in FIG. 5, electrodes may be provided around the circumference of the piezoelectric element. Furthermore, by subdividing the electrodes of the piezoelectric element and changing the polarity of the applied voltage, it is possible to obtain various vibration modes. Specifically, the electrode arrangement shown in FIG. 6 can excite a uniaxially symmetrical vibration called the ((1,1)) mode shown in FIG.

【0018】また、図8に示すように電極分割を細分化
すると図9のように((2,1))モードと呼ばれる中
心軸の平行振動を励起できる。さらにこれらの電極に印
加する交流電圧の位相を90°ずらすことで振動の回転
モードも可能となる。
Furthermore, if the electrode division is subdivided as shown in FIG. 8, parallel vibration of the central axis called the ((2,1)) mode can be excited as shown in FIG. Furthermore, by shifting the phase of the AC voltage applied to these electrodes by 90 degrees, a rotational mode of vibration is also possible.

【0019】このように電極分割の細分化及びそれぞれ
の電極への印加電圧の位相をずらすことで多くの振動モ
ードを励起でき、これらの種々のモードを活用すること
で、さまざまな粉体の特性に合せた最適な励起モードを
選択し、それぞれの粉体に合せて十分な搬送力を得るこ
とができる。
[0019] In this way, many vibration modes can be excited by subdividing the electrodes and shifting the phase of the voltage applied to each electrode, and by utilizing these various modes, it is possible to control the characteristics of various powders. By selecting the most suitable excitation mode for each powder, you can obtain sufficient transport force for each powder.

【0020】それぞれの粉体に合わせるのは、粉体の質
量、比重、すべり性、粘着性、帯電性がさまざまであり
、中空パイプが同一でも、粉体の搬送性はその粉体自身
の特性に強く依存するためである。また、中空パイプの
材質、表面性、帯電性が変る場合でも同様のことが言え
る。
[0020] The mass, specific gravity, slipperiness, adhesion, and chargeability of the powder vary to suit each powder, and even if the hollow pipe is the same, the transportability of the powder will depend on the characteristics of the powder itself. This is because it strongly depends on The same thing can be said even if the material, surface properties, and chargeability of the hollow pipe are changed.

【0021】しかし、長い中空パイプに複数個の圧電素
子を接続して粉体を長い距離搬送しようとする場合、圧
電素子によって発生する振動は圧電素子を中心に対称型
の進行波が常に発生し、一方向への粉体搬送は不可能と
なる。この現象を図15を用いて説明する。
However, when a plurality of piezoelectric elements are connected to a long hollow pipe to transport powder over a long distance, the vibrations generated by the piezoelectric elements always generate symmetrical traveling waves around the piezoelectric element. , it becomes impossible to transport powder in one direction. This phenomenon will be explained using FIG. 15.

【0022】図15(B)は、長い同一中空パイプに複
数個の圧電素子によって発生するそれぞれの進行波の模
式図を示す。また、図15(C)はそれぞれの進行波を
合成した後の中空パイプに励振された進行波の振動及び
、その進行波による粉体搬送力の大きさと方向性の模式
図を示す。これらから明らかなように粉体搬送力は各圧
電素子方向に働くため、一方向への粉体搬送は不可能と
なり、図15(A)に示すごとく、各圧電素子近傍にブ
ランチ状に粉体が滞留してしまう結果となる。
FIG. 15(B) shows a schematic diagram of traveling waves generated by a plurality of piezoelectric elements in the same long hollow pipe. Moreover, FIG. 15(C) shows a schematic diagram of the vibration of the traveling wave excited in the hollow pipe after combining the respective traveling waves, and the magnitude and directionality of the powder conveying force due to the traveling wave. As is clear from these, the powder conveying force acts in the direction of each piezoelectric element, making it impossible to convey the powder in one direction. As a result, the

【0023】そこで、本発明では図1に示すごとく圧電
素子の間の中空パイプを分断し、圧電素子によって発生
する進行波が他の圧電素子が発生させる進行波と干渉し
ないように構成した。
Therefore, in the present invention, the hollow pipe between the piezoelectric elements is divided as shown in FIG. 1, so that the traveling waves generated by the piezoelectric elements do not interfere with the traveling waves generated by other piezoelectric elements.

【0024】さらに、自ら発生させる逆進行波の影響を
できるだけ小さく抑えるため、逆進行波の発生する圧電
素子近くの中空パイプを切断し、振動を吸収して、伝達
しない部材、いわゆる振動吸収部材を介在させている。
Furthermore, in order to minimize the influence of the self-generated reverse traveling waves, the hollow pipe near the piezoelectric element where the backward traveling waves are generated is cut, and a member that absorbs vibrations but does not transmit them, a so-called vibration absorbing member, is installed. I am intervening.

【0025】この振動吸収部材の作用を説明するために
図10(B)に圧電素子によって発生するそれぞれの進
行波の模式図を示す。
In order to explain the action of this vibration absorbing member, FIG. 10(B) shows a schematic diagram of each traveling wave generated by the piezoelectric element.

【0026】図10に示すように振動吸収部材5によっ
て中空パイプ2を伝ってきた進行波は減衰し、隣接した
中空パイプ2には進行波が伝わらない。
As shown in FIG. 10, the traveling wave transmitted through the hollow pipe 2 is attenuated by the vibration absorbing member 5, and the traveling wave is not transmitted to the adjacent hollow pipe 2.

【0027】そして図10(C)にそれぞの進行波を合
成した後の中空パイプ2に励振された進行波の振動を示
す。
FIG. 10C shows the vibration of the traveling wave excited in the hollow pipe 2 after combining the respective traveling waves.

【0028】逆進行波の発生する中空パイプ2を切断し
、その間に振動吸収部材を介することで逆進行波の影響
を小さく抑えることができ、図10(C)に示すような
、粉体搬送力の大きさと方向性を有することが可能とな
る。
[0028] By cutting the hollow pipe 2 where the backward traveling waves occur and interposing a vibration absorbing member between them, the influence of the backward traveling waves can be suppressed to a small level, and powder conveyance as shown in FIG. 10(C) can be achieved. It becomes possible to have the magnitude and direction of force.

【0029】これから明らかなように実効的な粉体搬送
力は一定方向に働き、図10(A)に示すごとく矢印A
方向に粉体が強力に搬送される。つまり、振動吸収部材
の位置を隣接圧電素子間の中間点よりずらすことでずら
し方向と逆方向に粉体搬送が可能となり、圧電素子に近
ければ近い程搬送力が増大する。
As is clear from this, the effective powder conveying force acts in a fixed direction, and as shown in FIG.
Powder is strongly conveyed in this direction. That is, by shifting the position of the vibration absorbing member from the midpoint between adjacent piezoelectric elements, powder can be transported in the opposite direction to the shifting direction, and the closer it is to the piezoelectric elements, the more the transport force increases.

【0030】また、中空パイプ2の振動吸収部材5と接
する端部における振動幅が圧電素子部での振動幅の1/
2以下に減衰していないと、端部での反射波の影響が大
きくなり、進行波の搬送力の減衰が大きくなり好ましく
ない。
Furthermore, the vibration width at the end of the hollow pipe 2 in contact with the vibration absorbing member 5 is 1/1 of the vibration width at the piezoelectric element portion.
If it is not attenuated to 2 or less, the influence of the reflected wave at the end becomes large, and the attenuation of the carrier force of the traveling wave becomes large, which is not preferable.

【0031】本実施例では、振動吸収部材5に防振ゴム
(NBR)を用い、該防振ゴムとシリコーン系接着剤に
より中空アクリルパイプを接続した。
In this embodiment, vibration-proofing rubber (NBR) was used as the vibration-absorbing member 5, and a hollow acrylic pipe was connected to the vibration-proofing rubber using a silicone adhesive.

【0032】そして本実施例ではさらに図1に示すよう
に二股搬送路を用いており、中空アクリルパイプ2に二
方向から中空アクリルパイプ2−1,2−2を振動吸収
部材5−1,5−2を介して接合させている。中空アク
リルパイプ2−1,2−2にはそれぞれ一個づつ圧電素
子3−1,3−2が配設されており各圧電素子により進
行波が発生し、中空アクリルパイプ接合部に伝搬するが
、振動吸収部材5−1,5−2によって互いに干渉し合
わない。したがって、中空アクリルパイプ2の圧電素子
3により搬送された粉体はそれぞれの進行波により中空
アクリルパイプ2−1,2−2に二手に別れて搬送され
、最終的にはA1,A2方向の長手方向に粉体搬送が行
われることとなる。
Further, in this embodiment, as shown in FIG. 1, a bifurcated conveyance path is used, and the hollow acrylic pipes 2-1, 2-2 are connected to the hollow acrylic pipe 2 from two directions by the vibration absorbing members 5-1, 5. -2. One piezoelectric element 3-1, 3-2 is arranged in each of the hollow acrylic pipes 2-1, 2-2, and a traveling wave is generated by each piezoelectric element and propagates to the joint of the hollow acrylic pipe. The vibration absorbing members 5-1 and 5-2 do not interfere with each other. Therefore, the powder conveyed by the piezoelectric element 3 of the hollow acrylic pipe 2 is divided into two parts and conveyed to the hollow acrylic pipes 2-1 and 2-2 by the respective traveling waves, and is finally transported along the longitudinal direction in the A1 and A2 directions. The powder will be transported in the direction.

【0033】以上のように、本実施例によれば、長さ2
mの長い距離を二方向に分けて搬送することができた。 上述したように、アクリルパイプとして外径15mm、
内径10mmのものを用い、また、粉体として平均粒径
12μm の一成分磁性トナーを用いたところ、A1,
A2方向の粉体の搬送力は250g /min であっ
た。
As described above, according to this embodiment, the length 2
It was possible to transport a long distance of m in two directions. As mentioned above, as an acrylic pipe, the outer diameter is 15 mm,
When a one-component magnetic toner with an inner diameter of 10 mm and a powder with an average particle size of 12 μm was used, A1,
The powder conveying force in the A2 direction was 250 g/min.

【0034】さらに粉体を平均粒径60μm のガラス
ビーズまたは平均粒径60μm のフェライトキャリア
または平均粒径8μm の非磁性トナーとしても、ある
いは、これらの混合体を用いても磁性トナーと同様の搬
送力を得ることが判った。
Furthermore, the powder may be used as glass beads with an average particle size of 60 μm, ferrite carrier with an average particle size of 60 μm, or non-magnetic toner with an average particle size of 8 μm, or a mixture thereof may be used to transport the powder in the same way as the magnetic toner. It turned out to be powerful.

【0035】また、A1,A2方向の粉体搬送量は圧電
素子に印加する電圧により制御可能となり、粉体の分配
搬送制御を行うことができるようになった。
Furthermore, the amount of powder conveyed in the A1 and A2 directions can be controlled by the voltage applied to the piezoelectric element, making it possible to control the distribution and conveyance of the powder.

【0036】つまり、本実施例では、同位相、同電圧の
交流電圧(電圧100V 、周波数50KHz)を連続
的に印加したが、振動吸収部材により圧電素子はそれぞ
れ独立事象になり、それぞれの電圧素子の位相、印加時
間、 印加電圧を変えても他の電圧素子への影響を与え
ずにその電圧素子の粉体搬送力を制御できる。
In other words, in this example, an AC voltage (voltage 100 V, frequency 50 KHz) of the same phase and voltage was continuously applied, but the vibration absorbing member causes each piezoelectric element to act as an independent event, and each voltage element Even if the phase, application time, and applied voltage are changed, the powder conveying force of that voltage element can be controlled without affecting other voltage elements.

【0037】また、以上の結果は、搬送部材の大きさ、
形状を変えても問題ないことを意味している。したがっ
て、多数本の搬送部材を狭い部分で集中させて接合した
場合でも、それぞれの粉体搬送のON/OFF制御及び
粉体の搬送量の制御が可能となる。
[0037] The above results also show that the size of the conveying member,
This means that there is no problem even if the shape is changed. Therefore, even when a large number of conveying members are joined together in a narrow area, ON/OFF control of each powder conveyance and control of the amount of powder conveyed are possible.

【0038】また、粉体搬送部材に用いる材質は比較的
減衰率が大きいものが良く、発生させた励振の振幅に対
して端部にて1/2以下になっていれば反射波の影響が
少なく搬送能力がすぐれていることが判った。実験によ
ればアクリル、ナイロン、POM( ポリアセタール)
、ABS、ポリプロピレン、ポリスチロール等が適して
いる。
In addition, the material used for the powder conveying member should preferably have a relatively large attenuation rate, and if the amplitude of the generated excitation is less than 1/2 at the end, the influence of reflected waves will be reduced. It was found that the conveyance capacity was excellent. According to experiments, acrylic, nylon, POM (polyacetal)
, ABS, polypropylene, polystyrene, etc. are suitable.

【0039】また振動吸収部材としてはNBR、 ウレ
タンゴム、Siゴム、EKDM、 ゲル状樹脂、Siゴ
ム系接着剤等が最適であり、ゴム硬度を小さくすること
でほぼ100%進行波の振動を吸収可能である。さらに
実験により、振動吸収率50%のときには振動吸収部材
を伝搬する進行波の振幅が1/2以下に減衰すれば隣接
する中空パイプ及び圧電素子から発生する進行波に影響
をほとんど与えずに粉体搬送が円滑に行なわれることも
判った。
[0039] Also, NBR, urethane rubber, Si rubber, EKDM, gel resin, Si rubber adhesive, etc. are most suitable as vibration absorbing members, and by reducing the hardness of the rubber, almost 100% of traveling wave vibrations can be absorbed. It is possible. Furthermore, experiments have shown that when the vibration absorption rate is 50%, if the amplitude of the traveling wave propagating through the vibration absorbing member is attenuated to 1/2 or less, the traveling wave generated from the adjacent hollow pipe and piezoelectric element is hardly affected and the It was also found that body transport was carried out smoothly.

【0040】このように中空パイプ内部にスクリュー等
搬送部材がないので粉体を劣化、破壊、溶融等すること
がなく小型、低騒音で効率良く、かつ、分岐搬送するこ
とが可能となった。
[0040] As described above, since there is no conveying member such as a screw inside the hollow pipe, it is possible to carry out branch conveyance in a small size, low noise, efficiently, and without deteriorating, destroying, or melting the powder.

【0041】〈第二実施例〉次に本発明の第二実施例を
図11及び図12に基づいて説明する。なお、第一実施
例との共通箇所には同一符号を付して説明を省略する。
<Second Embodiment> Next, a second embodiment of the present invention will be explained based on FIGS. 11 and 12. Note that the same reference numerals are given to the same parts as in the first embodiment, and the explanation thereof will be omitted.

【0042】第一実施例では各粉体搬送部材の接合部に
振動吸収部材5−1,5−2を設けて連結したが、接合
部が複雑な接合をする場合は、図11に示すように分岐
部を一体成型を用いて作り、振動吸収部材5を圧電素子
3に近づけた接合方法を用いても良い。
In the first embodiment, vibration absorbing members 5-1 and 5-2 were provided at the joints of each powder conveying member to connect them, but when the joints are complicated, it may be necessary to connect them as shown in FIG. Alternatively, a joining method may be used in which the branch portion is formed by integral molding and the vibration absorbing member 5 is brought close to the piezoelectric element 3.

【0043】しかし、中空アクリルパイプ2−1,2−
2の接合部の断面形状でそれぞれの反射波の影響を最小
限に抑えても互いの進行波の干渉で定在波が発生して分
岐搬送が難しくなる。そのため、本実施例においては、
搬送効率を向上させる手段として圧電素子3−1,3−
2の印加時期をずらして進行波をそれぞれ独立事象にす
る手法を採った。これによって、各圧電素子3−1,3
−2の影響を無くし、粉体分岐搬送能力の低下を極力抑
えることが可能となった。ちなみに本実施例では圧電素
子用電源4−1,4−2はVPP=100V 、周波数
50KHz で1sec 間隔でON/OFFの繰り返
しを行った。 そして、圧電素子用電源4はVPP=100V 、周波
数50KHz で0.5sec 間隔の繰り返しである
。これは、搬送路2から中空アクリルパイプ2−1,2
−2への粉体搬送の受け渡しを円滑に行うためであり、
二股接合部で粉体を詰まらせず、かつ、均等に分岐搬送
するためには圧電素子用電源4−1,4−2の繰り返し
周波数より高周波で整数倍が好ましい(図12参照)。
However, hollow acrylic pipes 2-1, 2-
Even if the influence of each reflected wave is minimized by the cross-sectional shape of the joint portion of 2, standing waves are generated due to interference of mutual traveling waves, making branching and conveyance difficult. Therefore, in this example,
Piezoelectric elements 3-1, 3- are used as a means to improve conveyance efficiency.
We adopted a method to make each traveling wave an independent event by shifting the application timing of 2. As a result, each piezoelectric element 3-1, 3
It has become possible to eliminate the influence of -2 and suppress the decline in powder branching and conveying ability as much as possible. Incidentally, in this embodiment, the piezoelectric element power supplies 4-1 and 4-2 were repeatedly turned on and off at 1 sec intervals at a VPP of 100 V and a frequency of 50 KHz. The power source 4 for the piezoelectric element has a VPP of 100 V, a frequency of 50 KHz, and repetition at 0.5 sec intervals. This is from the conveyance path 2 to the hollow acrylic pipes 2-1 and 2.
This is to ensure smooth transfer of powder to -2.
In order to avoid clogging the powder at the bifurcated joint and to evenly branch and convey the powder, it is preferable that the repetition frequency be an integral multiple of the repetition frequency of the piezoelectric element power supplies 4-1 and 4-2 (see FIG. 12).

【0044】以上のような条件で実験を行った結果、粉
体として一成分磁性トナーを用いたときの粉体搬送力は
A1,A2ともに等しく200g /min であった
As a result of an experiment conducted under the above conditions, when a one-component magnetic toner was used as the powder, the powder conveyance force was the same for both A1 and A2, 200 g/min.

【0045】また本実施例においても、電源4,4−1
,4−2のVPP、印加時間、周期を変えることで分岐
搬送量の制御が可能となる。
[0045] Also in this embodiment, the power supplies 4, 4-1
, 4-2, the amount of branched conveyance can be controlled by changing the VPP, application time, and period.

【0046】本実施例では4−1,4−2のタイミング
が互いに干渉し合わないように設定したがある程度重な
り合いが生じても十分搬送力は確保できる。
In this embodiment, the timings 4-1 and 4-2 are set so as not to interfere with each other, but even if they overlap to some extent, a sufficient conveying force can be ensured.

【0047】〈第三実施例〉次に、本発明の第三実施例
を図13に基づいて説明する。なお、第一実施例との共
通箇所には同一符号を付して説明を省略する。
<Third Embodiment> Next, a third embodiment of the present invention will be described based on FIG. 13. Note that the same reference numerals are given to the same parts as in the first embodiment, and the explanation thereof will be omitted.

【0048】図13に第三実施例を示す。本実施例は、
中空パイプ2の代わりに溝状の搬送部材6を用いたもの
で圧電素子の進行波は搬送部材6の形状に係わりなく伝
達するため第一実施例と全く同様の搬送原理により粉体
の分岐搬送が可能である。
FIG. 13 shows a third embodiment. In this example,
A groove-shaped conveying member 6 is used instead of the hollow pipe 2, and since the traveling wave of the piezoelectric element is transmitted regardless of the shape of the conveying member 6, the powder can be conveyed in branches using the same conveying principle as in the first embodiment. is possible.

【0049】本実施例によれば、中空パイプでなく上部
が開放されているためこの開口部より別粉体の供給が容
易となる。
According to this embodiment, since the pipe is not a hollow pipe but has an open top, it is easy to supply another powder through this opening.

【0050】〈第四実施例〉次に、本発明の第四実施例
を図14に基づいて説明する。なお、第一実施例との共
通箇所には同一符号を付して説明を省略する。
<Fourth Embodiment> Next, a fourth embodiment of the present invention will be described based on FIG. 14. Note that the same reference numerals are given to the same parts as in the first embodiment, and the explanation thereof will be omitted.

【0051】図14に第四実施例を示す。本実施例は、
圧電素子3を中空パイプ2の下部に固定したものである
FIG. 14 shows a fourth embodiment. In this example,
A piezoelectric element 3 is fixed to the lower part of a hollow pipe 2.

【0052】本実施例によれば、積層圧電素子等の板状
の圧電素子を振動させ、中空パイプの一部を振動させて
進行波を発生させ粉体の搬送を行うので、第一ないし第
三実施例と同様に十分な分岐搬送力が得られる。このよ
うな構成により簡易コンパクトに粉体分岐搬送が実現で
き、パイプの交換、コスト等にも有利である。
According to this embodiment, a plate-shaped piezoelectric element such as a laminated piezoelectric element is vibrated, and a part of the hollow pipe is vibrated to generate a traveling wave to transport the powder. As in the third embodiment, sufficient branching conveying force can be obtained. With such a configuration, branched powder conveyance can be realized in a simple and compact manner, and it is also advantageous in terms of pipe replacement, cost, etc.

【0053】[0053]

【発明の効果】以上説明したように、本発明によれば、
振動吸収部材で接続された粉体搬送部材に、振動発生手
段によって半径方向への振動を与えて進行波を発生させ
るので、少ないエネルギーで効率良く粉体を長距離搬送
することができる。また、粉体が劣化、破損、溶融する
ことなく静かに、かつ、円滑に多分岐搬送することがで
きる。
[Effects of the Invention] As explained above, according to the present invention,
Since a traveling wave is generated by applying vibration in the radial direction by the vibration generating means to the powder conveying member connected by the vibration absorbing member, the powder can be efficiently conveyed over a long distance with less energy. Further, the powder can be quietly and smoothly transported in multiple branches without deterioration, damage, or melting.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の第一実施例装置の概略構成を示す斜視
図である。
FIG. 1 is a perspective view showing a schematic configuration of a device according to a first embodiment of the present invention.

【図2】図1装置の振動発生手段の概略構成を示す斜視
図である。
FIG. 2 is a perspective view showing a schematic configuration of vibration generating means of the device shown in FIG. 1;

【図3】図1装置の粉体搬送部材の外壁の変化を示す図
である。
FIG. 3 is a diagram showing changes in the outer wall of the powder conveying member of the apparatus in FIG. 1;

【図4】図2の手段を積層した場合の概略構成を示す斜
視図である。
FIG. 4 is a perspective view showing a schematic configuration when the means of FIG. 2 are stacked.

【図5】図2の手段の円周部に電極を設けた場合の概略
構成を示す斜視図である。
5 is a perspective view showing a schematic configuration of the means shown in FIG. 2 in which electrodes are provided around the circumference; FIG.

【図6】図2の手段の((1,1))モードの電極配列
を示す図である。
FIG. 6 is a diagram showing a ((1,1)) mode electrode arrangement of the means of FIG. 2;

【図7】図6に示す配列の場合における粉体搬送部材の
外壁の変化を示す図である。
7 is a diagram showing changes in the outer wall of the powder conveying member in the case of the arrangement shown in FIG. 6. FIG.

【図8】図2の手段の((2,1))モードの電極配列
を示す図である。
8 is a diagram showing a ((2,1)) mode electrode arrangement of the means of FIG. 2; FIG.

【図9】図8の配列の場合における粉体搬送部材の外壁
の変化を示す図である。
9 is a diagram showing changes in the outer wall of the powder conveying member in the case of the arrangement shown in FIG. 8. FIG.

【図10】(A)は図1装置の粉体搬送部材内部におけ
る粉体の様子を示す図、(B)は図1装置における粉体
搬送部材内に発生する進行波を説明する図、(C)は(
B)の各進行波を合成した後の進行波を説明する図であ
る。
10: (A) is a diagram showing the state of powder inside the powder conveying member of the apparatus shown in FIG. 1; (B) is a diagram illustrating traveling waves generated within the powder conveying member of the apparatus shown in FIG. 1; C) is (
It is a figure explaining the traveling wave after combining each traveling wave of B).

【図11】本発明の第二実施例装置の概略構成を示す図
である。
FIG. 11 is a diagram showing a schematic configuration of a device according to a second embodiment of the present invention.

【図12】図11装置における各圧電素子の印加時期及
び粉体搬送量を示す図である。
FIG. 12 is a diagram showing the application timing and powder conveyance amount of each piezoelectric element in the device shown in FIG. 11;

【図13】本発明の第三実施例装置の概略構成を示す図
である。
FIG. 13 is a diagram showing a schematic configuration of a device according to a third embodiment of the present invention.

【図14】本発明の第四実施例装置の概略構成を示す図
である。
FIG. 14 is a diagram showing a schematic configuration of a device according to a fourth embodiment of the present invention.

【図15】(A)は振動吸収部材を用いずに粉体搬送部
材に複数個の圧電素子を接続した場合の該粉体搬送部材
内部における粉体の様子を示す図、(B)は(A)の粉
体搬送部材内に発生するそれぞれの進行波を説明する図
、(C)は(B)のそれぞれの進行波を合成した後の粉
体搬送部材に励振された進行波の振動及びその進行波に
よる粉体搬送力の大きさと方向性を説明する図である。
FIG. 15(A) is a diagram showing the state of powder inside the powder conveying member when a plurality of piezoelectric elements are connected to the powder conveying member without using a vibration absorbing member, and (B) is a diagram showing the state of powder inside the powder conveying member. A) is a diagram illustrating each traveling wave generated in the powder conveying member, and (C) is a diagram illustrating the vibration of the traveling wave excited in the powder conveying member after combining the respective traveling waves in (B), and It is a figure explaining the magnitude|size and directionality of the powder conveyance force by the traveling wave.

【符号の説明】[Explanation of symbols]

2  粉体搬送部材(中空パイプ) 3  振動発生手段(圧電素子) 5  振動吸収部材 2 Powder conveyance member (hollow pipe) 3 Vibration generating means (piezoelectric element) 5 Vibration absorbing member

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数方向に分岐して形成され、粉体を各
分岐方向に搬送する管状もしくは樋状の粉体搬送部材と
、該粉体搬送部材の分岐の前後にそれぞれ少なくとも一
つ以上配設された振動発生手段と、各振動発生手段間の
粉体搬送部材を接続せしめる振動吸収部材とを備えたこ
とを特徴とする粉体搬送装置。
1. A powder conveying member in the form of a tube or gutter which is formed by branching in a plurality of directions and conveys powder in each branching direction, and at least one or more disposed before and after the branching of the powder conveying member. What is claimed is: 1. A powder conveying device comprising: vibration generating means; and a vibration absorbing member connecting powder conveying members between the vibration generating means.
【請求項2】 振動発生手段は圧電素子を用いることと
する請求項1に記載の粉体搬送装置。
2. The powder conveying device according to claim 1, wherein the vibration generating means uses a piezoelectric element.
【請求項3】 各振動発生手段に印加する電圧の大きさ
、時間、時期が異なるように制御して進行波の干渉を抑
える制御手段を有することとする請求項2に記載の粉体
搬送装置。
3. The powder conveying apparatus according to claim 2, further comprising a control means for suppressing interference of traveling waves by controlling the magnitude, time, and timing of the voltage applied to each vibration generating means to be different. .
JP3166216A 1991-06-12 1991-06-12 Powder conveyor Pending JPH04365070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3166216A JPH04365070A (en) 1991-06-12 1991-06-12 Powder conveyor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3166216A JPH04365070A (en) 1991-06-12 1991-06-12 Powder conveyor

Publications (1)

Publication Number Publication Date
JPH04365070A true JPH04365070A (en) 1992-12-17

Family

ID=15827260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3166216A Pending JPH04365070A (en) 1991-06-12 1991-06-12 Powder conveyor

Country Status (1)

Country Link
JP (1) JPH04365070A (en)

Similar Documents

Publication Publication Date Title
Kiziroglou et al. Acoustic power delivery to pipeline monitoring wireless sensors
US5270484A (en) Powder conveying device
JPH04365070A (en) Powder conveyor
JP2722407B2 (en) Powder transfer method
JP2829938B2 (en) Powder transfer method
JPH04322271A (en) Powder carrying device
JPS6022478A (en) Stator of surface wave linear motor
JPH04189215A (en) Powder material carrying device
JP2994673B2 (en) Method for transporting granular objects and developing method using the same
JPH10327590A (en) Surface acoustic wave actuator
JPH04164659A (en) Toner jet recorder
JPS61124412A (en) Conveying device
JPH02193835A (en) Sheet feed device
TW201036894A (en) Pneumatic action system for parts to be conveyed and parts conveyor apparatus
JPH07157043A (en) Powder carrier devicer
JPH07257724A (en) Piezoelectric driving type conveying device
JPH04204570A (en) Carrying method for charged particle and developing using the method
JPS61166429A (en) Ultrasonic conveyer
JPH0331590A (en) Wave transport pipe
JP2003290719A (en) Large capacity ultrasonic wave composite vibrator
JPH11301832A (en) Floating device
JPH01110070A (en) Driving method for supersonic motor
JPH04257461A (en) Toner-jet recorder
JPS63213480A (en) Ultrasonic motor
JP2005119839A (en) Object floating device