JPH04322271A - Powder carrying device - Google Patents

Powder carrying device

Info

Publication number
JPH04322271A
JPH04322271A JP3116639A JP11663991A JPH04322271A JP H04322271 A JPH04322271 A JP H04322271A JP 3116639 A JP3116639 A JP 3116639A JP 11663991 A JP11663991 A JP 11663991A JP H04322271 A JPH04322271 A JP H04322271A
Authority
JP
Japan
Prior art keywords
powder
vibration
pipe
powder conveying
traveling wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3116639A
Other languages
Japanese (ja)
Inventor
Takashi Osawa
敬士 大沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP3116639A priority Critical patent/JPH04322271A/en
Publication of JPH04322271A publication Critical patent/JPH04322271A/en
Pending legal-status Critical Current

Links

Landscapes

  • Dry Development In Electrophotography (AREA)

Abstract

PURPOSE:To efficiently carry powder in a long distance by low energy by generating a traveling wave to a powder carrying member connected by a vibration absorption member by giving vibration in a radius direction by a vibration generation means. CONSTITUTION:A hollow pipe 2 is formed in a longitudinal direction by giving curvature and a piezoelectric element 3 is disposed at the plural positions of the longitudinal direction of the pipe 2. Besides, the pipe 2 between the elements 3 is connected by the vibration absorption member 5. That means, the element 3 for generating the ultrasonic vibration being the vibration generation means is disposed on the acrylic pipe 2 being the tube-like powder carrying member at regular intervals and an AC voltage is impressed on it by an AC voltage power source 4. The elongating and contracting vibration is excited in the directions of an inner diameter and an outer diameter, that means, an (r) direction by the elongating and contracting force of ceramic and such vibration is transmitted to the pipe 2 as the traveling wave. Therefore, the powder in the pipe 2 is carried in a reverse direction to the direction of the traveling wave by the traveling wave.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は粉体を搬送する装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for conveying powder.

【0002】0002

【従来の技術】従来、粉体を搬送する方法として最も一
般的な技術はスクリューを用いたものであり、あらゆる
粉体搬送手段に用いられている。これは例えばパイプ内
の粉体をパイプ内部に設けられたスクリューを回転する
ことによって搬送するものである。
BACKGROUND OF THE INVENTION Conventionally, the most common technique for conveying powder is the use of a screw, which is used in all types of powder conveying means. In this method, for example, powder inside a pipe is transported by rotating a screw provided inside the pipe.

【0003】0003

【発明が解決しようとする課題】しかしながら、上記従
来例はパイプ内のスクリューをモータによって回転させ
なければならないため、消費電力が大きくなり回転音も
比較的大きくなるという問題点があった。
However, in the conventional example described above, since the screw in the pipe must be rotated by a motor, there are problems in that the power consumption is large and the rotation noise is relatively loud.

【0004】構成もスクリューという比較的複雑な部材
とモータが必要となりスペース的にも大きくなりコスト
的にも高くなってしまう。
[0004] The structure also requires a relatively complicated member such as a screw and a motor, resulting in a large space and high cost.

【0005】また、パイプ内壁とスクリューの隙間が大
きいと搬送効率が落ちてしまい、逆にスクリューとパイ
プ内壁との隙間が小さいと搬送効率は上がるが、スクリ
ューとパイプ内壁との摩擦によってスクリューの回転ト
ルクが大きくなるという問題点も有していた。
[0005] Furthermore, if the gap between the screw and the inner wall of the pipe is large, the conveyance efficiency will decrease, and conversely, if the gap between the screw and the inner wall of the pipe is small, the conveyance efficiency will increase, but the rotation of the screw will be reduced due to the friction between the screw and the inner wall of the pipe. Another problem was that the torque increased.

【0006】さらに、内壁とスクリューの摩擦等により
粉体が劣化、破壊、あるいは摩擦熱によって溶融してし
まうことがある。また、一般に粉体は帯電しやすいため
、搬送中に粉体が帯電し、スクリューに付着することが
多く、ひどい場合は搬送不良が発生するという問題点も
あった。
Furthermore, the powder may deteriorate or break due to friction between the inner wall and the screw, or may melt due to frictional heat. In addition, since powder is generally easily charged, the powder often becomes charged during transportation and adheres to the screw, and in severe cases, there is a problem that transportation failure occurs.

【0007】また、パイプの中にスクリューを通してい
るため、搬送方向を自由に変えることが非常に困難であ
り、搬送方向を変えるには一旦粉体を溜める手段が必要
になり、装置が複雑化するという問題点があった。
Furthermore, since the screw is passed through the pipe, it is very difficult to freely change the direction of conveyance, and changing the direction of conveyance requires a means to temporarily store the powder, which complicates the equipment. There was a problem.

【0008】本発明は上記問題点を解決し、低消費電力
、低騒音であって搬送効率が良く、かつ、搬送方向を自
由に変えることのできる粉体搬送装置を提供することを
目的としている。
An object of the present invention is to solve the above-mentioned problems, and to provide a powder conveying device that has low power consumption, low noise, has good conveying efficiency, and can freely change the conveying direction. .

【0009】[0009]

【課題を解決するための手段】本発明によれば、上記目
的は、長手方向に曲率を有し粉体を該長手方向へ搬送す
る管状もしくは樋状粉体搬送部材と、該粉体搬送部材の
長手方向の複数位置に配設した振動発生手段と、各振動
発生手段間の粉体搬送部材を接続せしめる振動吸収部材
とを備えたことにより達成される。
[Means for Solving the Problems] According to the present invention, the above object is to provide a tubular or trough-like powder conveying member that has a curvature in the longitudinal direction and conveys powder in the longitudinal direction, and This is achieved by including vibration generating means disposed at a plurality of positions in the longitudinal direction of the vibration generating means, and a vibration absorbing member connecting the powder conveying member between the vibration generating means.

【0010】0010

【作用】本発明によれば、曲率を有する粉体搬送部材の
長手方向の複数位置に配設された振動発生手段によって
該粉体搬送部材の半径方向に振動が発生する。すると、
各振動発生手段を中心として長手方向の両方向に進行波
が発生する。しかし、各振動発生手段の片方の近傍には
振動吸収部材が取り付けられており、該振動吸収部材が
取り付けられた方向へ進む逆進行波の発生を抑えて進行
波同士の干渉を防ぐ。したがって、各振動発生手段から
発生する進行波は、上記振動吸収部材の取り付けられた
方向とは逆方向へ進むものだけとなり、各進行波が合成
される。かくして、曲率を有する粉体搬送部材内の粉体
は合成された進行波の方向とは逆方向であって、該粉体
搬送部材の曲率に沿った方向へ搬送されることとなる。
According to the present invention, vibrations are generated in the radial direction of the powder conveying member by the vibration generating means disposed at a plurality of positions in the longitudinal direction of the powder conveying member having a curvature. Then,
Traveling waves are generated in both longitudinal directions around each vibration generating means. However, a vibration absorbing member is attached near one side of each vibration generating means, and the generation of a backward traveling wave traveling in the direction in which the vibration absorbing member is attached is suppressed to prevent interference between the traveling waves. Therefore, the traveling waves generated from each vibration generating means are only those traveling in the direction opposite to the direction in which the vibration absorbing member is attached, and the traveling waves are combined. In this way, the powder in the powder conveying member having the curvature is conveyed in a direction opposite to the direction of the combined traveling wave and along the curvature of the powder conveying member.

【0011】[0011]

【実施例】本発明の第一実施例ないし第五実施例を添付
図面に基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First to fifth embodiments of the present invention will be described with reference to the accompanying drawings.

【0012】<第一実施例>先ず、本発明の第一実施例
について図1ないし図11を用いて説明する。
<First Embodiment> First, a first embodiment of the present invention will be described with reference to FIGS. 1 to 11.

【0013】図1に本発明の第一実施例を示す。この装
置は本発明を利用した粉体搬送装置である。図1(A)
は斜視図、図1(B)は上面図、図1(C)は側面図で
ある。
FIG. 1 shows a first embodiment of the present invention. This device is a powder conveying device that utilizes the present invention. Figure 1(A)
is a perspective view, FIG. 1(B) is a top view, and FIG. 1(C) is a side view.

【0014】図1において、1は粉体を供給するホッパ
ーであり、2は管状の粉体部材たるアクリルの中空パイ
プである。該中空パイプ2は外径15mm、内径10m
mで長手方向に任意に曲率を変えながら長く伸びている
。なお、該中空パイプ2は重力方向に対しては水平を保
っている。
In FIG. 1, 1 is a hopper for supplying powder, and 2 is an acrylic hollow pipe which is a tubular powder member. The hollow pipe 2 has an outer diameter of 15 mm and an inner diameter of 10 m.
m, it extends for a long time while changing the curvature arbitrarily in the longitudinal direction. Note that the hollow pipe 2 remains horizontal with respect to the direction of gravity.

【0015】該中空パイプ2の長手方向には一定間隔で
振動発生手段たる超音波振動発生用圧電素子3が配設さ
れており交流電源4によって交流電圧が印加される。
Ultrasonic vibration generating piezoelectric elements 3 serving as vibration generating means are arranged at regular intervals in the longitudinal direction of the hollow pipe 2, and an AC voltage is applied to them by an AC power source 4.

【0016】上記圧電素子3は図2に示すごとく外径3
0mm、内径15mm、厚み2mmのセラミックPZT
を両面から電極で挟み込むタイプである。
The piezoelectric element 3 has an outer diameter 3 as shown in FIG.
0mm, inner diameter 15mm, thickness 2mm ceramic PZT
It is a type that is sandwiched between electrodes from both sides.

【0017】電極間に電圧を印加することで図3に示す
ようにセラミックの伸縮力により内径及び外径方向つま
りr方向に伸び縮み振動が励起され、その振動が中空パ
イプ2に進行波として伝達される。この圧電素子3によ
って発生した進行波により中空パイプ内の粉体は進行波
の方向とは逆方向(図1中矢印A方向)に搬送されるこ
ととなる。なお、上記実施例ではピーク対ピーク電圧1
00V、周波数50KHzの交流電圧を印加している。 これは圧電素子の形状による共振モードから算出された
値であり、圧電素子の厚み及び形状を変えることで共振
周波数は変化させうる。また、本実施例では圧電素子は
一層のみであるが図4に示すように多数個サンドイッチ
タイプ(多積層型)にすればさらに励起振動量は大きく
でき、中空パイプに伝わる進行波も大きくなるため粉体
搬送力も増加する。また、図5のように圧電素子の円周
部に電極を設けても良い。さらに、圧電素子の電極を細
分化し、印加電圧の極性を変えることで種々の振動モー
ドを得ることが可能となる。具体的には図6の電極配列
により図7に示す((1,1)) モードと呼ばれる1
軸対称型の振動を励振することができる。
By applying a voltage between the electrodes, as shown in FIG. 3, the expansion and contraction force of the ceramic excites expansion and contraction vibrations in the inner and outer diameter directions, that is, in the r direction, and the vibrations are transmitted to the hollow pipe 2 as traveling waves. be done. The powder in the hollow pipe is transported by the traveling wave generated by the piezoelectric element 3 in a direction opposite to the direction of the traveling wave (direction of arrow A in FIG. 1). In addition, in the above embodiment, the peak-to-peak voltage 1
An alternating current voltage of 00 V and a frequency of 50 KHz is applied. This is a value calculated from the resonance mode depending on the shape of the piezoelectric element, and the resonance frequency can be changed by changing the thickness and shape of the piezoelectric element. In addition, in this example, the piezoelectric element is only one layer, but if a multiple sandwich type (multilayer type) is used as shown in Fig. 4, the amount of excited vibration can be further increased, and the traveling wave transmitted to the hollow pipe will also be larger. The powder conveying force also increases. Further, as shown in FIG. 5, electrodes may be provided around the circumference of the piezoelectric element. Furthermore, by subdividing the electrodes of the piezoelectric element and changing the polarity of the applied voltage, it is possible to obtain various vibration modes. Specifically, the electrode arrangement shown in FIG. 6 is used to create a 1 mode called the ((1,1)) mode shown in FIG.
Axisymmetric vibration can be excited.

【0018】また、図8に示すように電極分割を細分化
すると図9のように((2,1))モードと呼ばれる中
心軸の平行振動を励起できる。さらにこれらの電極に印
加する交流電圧の位相を90°ずらすことで振動の回転
モードも可能となる。
Furthermore, if the electrode division is subdivided as shown in FIG. 8, parallel vibration of the central axis called the ((2,1)) mode can be excited as shown in FIG. Furthermore, by shifting the phase of the AC voltage applied to these electrodes by 90 degrees, a rotational mode of vibration is also possible.

【0019】このように電極分割の細分化及びそれぞれ
の電極への印加電圧の位相をずらすことで多くの振動モ
ードを励起でき、これらの種々のモードを活用すること
で、さまざまな粉体の特性に合せた最適な励起モードを
選択し、それぞれの粉体に合せて十分な搬送力を得るこ
とができる。
[0019] In this way, many vibration modes can be excited by subdividing the electrodes and shifting the phase of the voltage applied to each electrode, and by utilizing these various modes, it is possible to control the characteristics of various powders. By selecting the most suitable excitation mode for each powder, you can obtain sufficient transport force for each powder.

【0020】これは、粉体の質量、比重、すべり性、粘
着性、帯電性はさまざまであり、中空パイプが同一でも
、粉体の搬送性はその粉体自身の特性に強く依存するた
めである。また、中空パイプの材質、表面性、帯電性が
変る場合でも同様のことが言える。
[0020] This is because the mass, specific gravity, slipperiness, adhesion, and chargeability of powder vary, and even if the hollow pipe is the same, the transportability of powder strongly depends on the characteristics of the powder itself. be. The same thing can be said even if the material, surface properties, and chargeability of the hollow pipe are changed.

【0021】さらに、圧電素子によって励起された進行
波は中空パイプの内壁面で振動しながら進むために、中
空パイプが任意に曲率を変えてもなんら問題なく、伝搬
することが可能である。
Furthermore, since the traveling wave excited by the piezoelectric element propagates while vibrating on the inner wall surface of the hollow pipe, it can propagate without any problem even if the curvature of the hollow pipe is arbitrarily changed.

【0022】しかしながら、圧電素子を複数設けた場合
、互いの進行波が干渉するという問題を生ずる。そこで
、長い同一中空パイプに複数個の圧電素子を接続して粉
体を長い距離搬送する場合には、図1に示すごとく圧電
素子の間の中空パイプを分断し、各圧電素子によって発
生する進行波が他の圧電素子が発生させる進行波と干渉
しないように振動吸収部材5を介在させれば良い。
However, when a plurality of piezoelectric elements are provided, a problem arises in that their traveling waves interfere with each other. Therefore, when connecting multiple piezoelectric elements to the same long hollow pipe to transport powder over a long distance, the hollow pipe between the piezoelectric elements is divided as shown in Figure 1, and the movement generated by each piezoelectric element is The vibration absorbing member 5 may be interposed so that the waves do not interfere with traveling waves generated by other piezoelectric elements.

【0023】この振動吸収部材の作用を説明するために
図10(B)に圧電素子によって発生するそれぞれの進
行波の模式図を示す。
In order to explain the action of this vibration absorbing member, FIG. 10(B) shows a schematic diagram of each traveling wave generated by the piezoelectric element.

【0024】図10に示すように振動吸収部材5によっ
て中空パイプ2を伝ってきた進行波は減衰し、隣接した
中空パイプ2には進行波が伝わらない。
As shown in FIG. 10, the traveling wave transmitted through the hollow pipe 2 is attenuated by the vibration absorbing member 5, and the traveling wave is not transmitted to the adjacent hollow pipe 2.

【0025】そして図10(C)にそれぞの進行波を合
成した後の中空パイプ2に励振された進行波の振動を示
す。
FIG. 10C shows the vibration of the traveling wave excited in the hollow pipe 2 after combining the respective traveling waves.

【0026】逆進行波の発生する中空パイプ2を切断し
、その間に振動吸収部材を介することで逆進行波の影響
を小さく抑えることができ、図10(C)に示すような
、粉体搬送力の大きさと方向性を有することが可能とな
る。
[0026] By cutting the hollow pipe 2 in which the backward traveling waves occur and interposing a vibration absorbing member between them, the influence of the backward traveling waves can be suppressed to a small level, and powder conveyance as shown in FIG. 10(C) can be achieved. It becomes possible to have the magnitude and direction of force.

【0027】ここでは簡単に説明するため、一直線に配
列した場合で説明したが、曲率を有しても何ら変わるこ
とはない。
[0027] Here, for the sake of simplicity, the case where they are arranged in a straight line has been explained, but there is no difference even if they have a curvature.

【0028】これから明らかなように実効的な粉体搬送
力は一定方向に働き、図10(A)に示すごとく矢印A
方向に粉体が強力に搬送される。つまり、振動吸収部材
の位置を隣接圧電素子間の中間点よりずらすことでずら
し方向と逆方向に粉体搬送が可能となり、圧電素子に近
ければ近い程搬送力が増大する。
As is clear from this, the effective powder conveying force acts in a fixed direction, and as shown in FIG.
Powder is strongly conveyed in this direction. That is, by shifting the position of the vibration absorbing member from the midpoint between adjacent piezoelectric elements, powder can be transported in the opposite direction to the shifting direction, and the closer it is to the piezoelectric elements, the more the transport force increases.

【0029】また、中空パイプ2の振動吸収部材5と接
する端部における振動幅が圧電素子部での振動幅の1/
2以下に減衰していないと、端部での反射波の影響が大
きくなり、進行波の搬送力の減衰が大きくなり好ましく
ない。
Furthermore, the vibration width at the end of the hollow pipe 2 in contact with the vibration absorbing member 5 is 1/1 of the vibration width at the piezoelectric element portion.
If it is not attenuated to 2 or less, the influence of the reflected wave at the end becomes large, and the attenuation of the carrier force of the traveling wave becomes large, which is not preferable.

【0030】そして、振動吸収部材5は図11に示すよ
うに防振ゴム(NBR)5Bとシリコーン系接着剤5A
により中空アクリルパイプを接続した。
The vibration absorbing member 5 is made of vibration isolating rubber (NBR) 5B and silicone adhesive 5A as shown in FIG.
A hollow acrylic pipe was connected.

【0031】これにより、長さ2mの長い距離を粉体が
詰まることなくスムーズに搬送することができた。粉体
として一成分磁性トナー平均粒径12μmを用いたとこ
ろ粉体の搬送力は500g/minであった。
[0031] As a result, the powder could be smoothly conveyed over a long distance of 2 m without clogging. When one-component magnetic toner having an average particle size of 12 μm was used as powder, the powder conveying force was 500 g/min.

【0032】さらに粉体をガラスビーズ平均粒径60μ
m 及びフェライトキャリア平均粒径60μm 及び非
磁性トナー平均粒径8μm の粉体及びこれらの混合体
を用いても磁性トナーと同様の搬送力を得ることが判っ
た。
[0032] Further, the powder was made into glass beads with an average particle size of 60 μm.
It has been found that a conveying force similar to that of the magnetic toner can be obtained even when using powders with a ferrite carrier average particle size of 60 μm and a non-magnetic toner average particle size of 8 μm, and a mixture thereof.

【0033】このとき粉体搬送量は圧電素子に印加する
電圧に比例して変化し、粉体搬送量の制御が可能となっ
た。
At this time, the amount of powder conveyed changed in proportion to the voltage applied to the piezoelectric element, making it possible to control the amount of powder conveyed.

【0034】ちなみに本実施例では、同位相、同電圧の
交流電圧(ピーク対ピーク電圧100V、周波数50K
Hz)を連続的に印加したが、振動吸収部材により圧電
素子はそれぞれ独立事象になり、それぞれの電圧素子の
位相、印加時間、 印加電圧を変えても他の電圧素子へ
の影響を与えずにその電圧素子の粉体搬送力を制御でき
る。
Incidentally, in this embodiment, AC voltages of the same phase and voltage (peak-to-peak voltage 100V, frequency 50K) are used.
Hz) was applied continuously, but each piezoelectric element became an independent event due to the vibration absorbing member, and even if the phase, application time, and applied voltage of each voltage element were changed, the other voltage elements were not affected. The powder conveying force of the voltage element can be controlled.

【0035】また、粉体搬送部材に用いる材質は比較的
減衰率が大きいものが良く発生させた励振の振幅に対し
て端部にて1/2以下になっていれば反射波の影響が少
なく搬送能力がすぐれていることが判った。実験によれ
ばアクリル、ナイロン、POM(ポリアセタール)、A
BS、 ポリプロピレン、ポリスチロール等が適してい
る。
[0035] Furthermore, if the material used for the powder conveying member has a relatively large attenuation coefficient, and the amplitude of the generated excitation is less than 1/2 at the end, the influence of reflected waves will be reduced. It was found that the conveyance ability was excellent. According to experiments, acrylic, nylon, POM (polyacetal), A
BS, polypropylene, polystyrene, etc. are suitable.

【0036】また振動吸収部材としてはNBR、ウレタ
ンゴム、Siゴム、EKDM、 ゲル状樹脂、Siゴム
系接着剤等が最適であり、ゴム硬度を小さくすることで
ほぼ100 %進行波の振動を吸収可能である。さらに
実験により、振動吸収率50%のときには振動吸収部材
を伝搬する進行波の振幅が1/2以下に減衰すれば隣接
する中空パイプ及び圧電素子から発生する進行波に影響
をほとんど与えずに粉体搬送がスムーズに行なわれるこ
とも判った。
[0036] Also, NBR, urethane rubber, Si rubber, EKDM, gel resin, Si rubber adhesive, etc. are most suitable as vibration absorbing members, and by reducing the hardness of the rubber, almost 100% of traveling wave vibrations can be absorbed. It is possible. Furthermore, experiments have shown that when the vibration absorption rate is 50%, if the amplitude of the traveling wave propagating through the vibration absorbing member is attenuated to 1/2 or less, the traveling wave generated from the adjacent hollow pipe and piezoelectric element will be hardly affected and the It was also found that body transport was carried out smoothly.

【0037】このように中空パイプ内部にスクリュー等
搬送部材がないので粉体を劣化、破壊、溶融等すること
がなく効率良く、かつ、任意に曲率を変化させる長い中
空パイプ内にて搬送することが可能となった。
As described above, since there is no conveying member such as a screw inside the hollow pipe, the powder can be efficiently conveyed without deterioration, destruction, melting, etc. in a long hollow pipe whose curvature can be arbitrarily changed. became possible.

【0038】<第二実施例>次に本発明の第二実施例を
図12に基づいて説明する。なお、第一実施例との共通
箇所には同一符号を付して説明を省略する。
<Second Embodiment> Next, a second embodiment of the present invention will be described based on FIG. 12. Note that the same reference numerals are given to the same parts as in the first embodiment, and the explanation thereof will be omitted.

【0039】本実施例は、圧電素子を図12に示すよう
に中空パイプに対して斜めに設置したところが第一実施
例と異なる。本実施例によっても第一実施例と同様の効
果を奏することができる。
This embodiment differs from the first embodiment in that the piezoelectric element is installed obliquely to the hollow pipe as shown in FIG. This embodiment can also achieve the same effects as the first embodiment.

【0040】また、中空パイプの内径が変化する場合は
、粉体搬送の負荷抵抗が変わるため、圧電素子間の距離
及び印加電圧を変化させることで最適搬送性を維持する
ことができる。このように、本実施例によっても第一実
施例と同様な効果を奏することができる。
[0040] Furthermore, when the inner diameter of the hollow pipe changes, the load resistance for conveying the powder changes, so optimal conveyance can be maintained by changing the distance between the piezoelectric elements and the applied voltage. In this way, this embodiment can also achieve the same effects as the first embodiment.

【0041】<第三実施例>次に、本発明の第三実施例
を図13及び図14を用いて説明する。なお、第一実施
例との共通箇所には同一符号を付して説明を省略する。
<Third Embodiment> Next, a third embodiment of the present invention will be described with reference to FIGS. 13 and 14. Note that the same reference numerals are given to the same parts as in the first embodiment, and the explanation thereof will be omitted.

【0042】本実施例は図13に示すように中空パイプ
2の代りに溝状の歪曲搬送部材2を用いたところが第一
実施例と異なる。本実施例においても搬送部材にはアク
リルを適用している。
This embodiment differs from the first embodiment in that a groove-shaped distorted conveying member 2 is used instead of the hollow pipe 2, as shown in FIG. In this embodiment as well, acrylic is used for the conveying member.

【0043】搬送原理は第一実施例と同様で交流電源4
から圧電素子3に電圧を印加しそれぞれの圧電素子の進
行波が相互干渉しないように振動防止部材5を用いるこ
とで長い溝内の粉体を搬送するものである。
The transport principle is the same as that of the first embodiment, and the AC power supply 4
The powder is conveyed in the long groove by applying a voltage to the piezoelectric elements 3 and using a vibration prevention member 5 to prevent the traveling waves of the respective piezoelectric elements from interfering with each other.

【0044】これは中空パイプではなく上部が開放され
ているためこの溝開口部より粉体の補給等が簡単に行な
える利点をもつ。
[0044] Since this is not a hollow pipe but has an open top, it has the advantage that powder can be easily replenished through the groove opening.

【0045】また、図14に示すように歪曲粉体搬送部
材2を樋状にしても同様の効果を奏することができる。
Further, as shown in FIG. 14, the same effect can be achieved even if the distorted powder conveying member 2 is shaped like a gutter.

【0046】<第四実施例>次に、本発明の第四実施例
を図15を用いて説明する。なお、第一実施例との共通
箇所には同一符号を付して説明を省略する。
<Fourth Embodiment> Next, a fourth embodiment of the present invention will be described using FIG. 15. Note that the same reference numerals are given to the same parts as in the first embodiment, and the explanation thereof will be omitted.

【0047】本実施例は図15に示すように圧電素子3
を歪曲中空パイプ2の下部に固定したところが第一実施
例と異なる。これは積層圧電素子等の板状の圧電素子を
振動させ中空パイプの一部を圧電素子により叩くことで
進行波を一部から発生させ粉体の搬送を行う方法であり
他の実施例と同様に十分な搬送力が発生する。また振動
防止部材5は中空パイプの軸直角方向に挿入しているが
、中空パイプの軸に対し、角度を設けても良いし非対称
にしても良い。円筒パイプの一部から進行波が発生する
場合は反射波の影響を考えて振動防止部材5の形状を変
えることも良い。
In this embodiment, as shown in FIG.
This embodiment differs from the first embodiment in that it is fixed to the lower part of the distorted hollow pipe 2. This is a method in which a plate-shaped piezoelectric element such as a laminated piezoelectric element is vibrated and a part of the hollow pipe is struck by the piezoelectric element to generate a traveling wave from a part and transport the powder, and is similar to the other embodiments. Sufficient conveying force is generated. Furthermore, although the vibration preventing member 5 is inserted in the direction perpendicular to the axis of the hollow pipe, it may be provided at an angle or may be asymmetrical with respect to the axis of the hollow pipe. When traveling waves are generated from a part of the cylindrical pipe, the shape of the vibration prevention member 5 may be changed in consideration of the influence of reflected waves.

【0048】このような構成にすれば簡易コンパクトに
粉体搬送が実現できパイプの交換、コスト等に有利であ
る。
[0048] With such a configuration, it is possible to realize powder conveyance in a simple and compact manner, which is advantageous in terms of pipe replacement, cost, etc.

【0049】<第五実施例>次に、本発明の第五実施例
を図16に基づいて説明する。なお、第一実施例との共
通箇所には同一符号を付して説明を省略する。
<Fifth Embodiment> Next, a fifth embodiment of the present invention will be described based on FIG. 16. Note that the same reference numerals are given to the same parts as in the first embodiment, and the explanation thereof will be omitted.

【0050】本実施例は、図16に示すように、中空パ
イプを螺旋状に巻く手段を用いたところが第一実施例と
異なる。
This embodiment differs from the first embodiment in that, as shown in FIG. 16, a method of spirally winding a hollow pipe is used.

【0051】本発明による粉体搬送は粉体と中空パイプ
内壁の摩擦抵抗を利用した進行波搬送であるため、重力
方向に対しては、ある程度傾きが大きくなると摩擦力が
低下して搬送できなくなることがある。
Powder transport according to the present invention is traveling wave transport that utilizes the frictional resistance between the powder and the inner wall of the hollow pipe, so if the inclination increases to a certain extent with respect to the direction of gravity, the frictional force decreases and transport becomes impossible. Sometimes.

【0052】しかしながら、本実施例によれば、摩擦力
が維持され、重力に逆らって重力方向上流側に粉体を容
易に搬送することができる。
However, according to this embodiment, the frictional force is maintained and the powder can be easily transported upstream in the direction of gravity against gravity.

【0053】[0053]

【発明の効果】以上説明したように、本発明によれば、
振動吸収部材で接続された粉体搬送部材に、振動発生手
段によって半径方向への振動を与えて進行波を発生させ
るので、少ないエネルギーで効率良く粉体を長距離搬送
することができる。また、粉体が劣化、破損、溶融する
ことなく静かに、かつ、円滑に搬送することができる。 さらに、搬送方向を自由に設定できる。
[Effects of the Invention] As explained above, according to the present invention,
Since a traveling wave is generated by applying vibration in the radial direction by the vibration generating means to the powder conveying member connected by the vibration absorbing member, the powder can be efficiently conveyed over a long distance with less energy. Further, the powder can be transported quietly and smoothly without deterioration, damage, or melting. Furthermore, the conveyance direction can be freely set.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】(A)は本発明の第一実施例装置の概略構成を
示す斜視図、(B)は(A)の上面図、(C)は(A)
の側面図である。
FIG. 1: (A) is a perspective view showing a schematic configuration of a device according to a first embodiment of the present invention, (B) is a top view of (A), and (C) is a top view of (A).
FIG.

【図2】図1装置の振動発生手段の概略構成を示す斜視
図である。
FIG. 2 is a perspective view showing a schematic configuration of vibration generating means of the device shown in FIG. 1;

【図3】図1装置の粉体搬送部材の外壁の変化を示す図
である。
FIG. 3 is a diagram showing changes in the outer wall of the powder conveying member of the apparatus in FIG. 1;

【図4】図2の手段を積層した場合の概略構成を示す斜
視図である。
FIG. 4 is a perspective view showing a schematic configuration when the means of FIG. 2 are stacked.

【図5】図2の手段の円周部に電極を設けた場合の概略
構成を示す斜視図である。
5 is a perspective view showing a schematic configuration of the means shown in FIG. 2 in which electrodes are provided around the circumference; FIG.

【図6】図2の手段の((1,1))モードの電極配列
を示す図である。
FIG. 6 is a diagram showing a ((1,1)) mode electrode arrangement of the means of FIG. 2;

【図7】図6に示す配列の場合における粉体搬送部材の
外壁の変化を示す図である。
7 is a diagram showing changes in the outer wall of the powder conveying member in the case of the arrangement shown in FIG. 6. FIG.

【図8】図2の手段の((2,1))モードの電極配列
を示す図である。
8 is a diagram showing a ((2,1)) mode electrode arrangement of the means of FIG. 2; FIG.

【図9】図8の配列の場合における粉体搬送部材の外壁
の変化を示す図である。
9 is a diagram showing changes in the outer wall of the powder conveying member in the case of the arrangement shown in FIG. 8. FIG.

【図10】(A)は図1装置の粉体搬送部材内部におけ
る粉体の様子を示す図、(B)は図1装置における粉体
搬送部材内に発生する進行波を説明する図、(C)は(
B) の各進行波を合成した後の進行波を説明する図で
ある。
10: (A) is a diagram showing the state of powder inside the powder conveying member of the apparatus shown in FIG. 1; (B) is a diagram illustrating traveling waves generated within the powder conveying member of the apparatus shown in FIG. 1; C) is (
B) It is a figure explaining the traveling wave after combining each traveling wave.

【図11】図1装置の振動吸収部材の概略構成を示す図
である。
11 is a diagram showing a schematic configuration of a vibration absorbing member of the device shown in FIG. 1. FIG.

【図12】本発明の第二実施例装置の概略構成を示す図
である。
FIG. 12 is a diagram showing a schematic configuration of a device according to a second embodiment of the present invention.

【図13】本発明の第三実施例装置の概略構成を示す図
である。
FIG. 13 is a diagram showing a schematic configuration of a device according to a third embodiment of the present invention.

【図14】図13装置の粉体搬送部材を樋状に形成した
場合を示す図である。
FIG. 14 is a diagram showing a case where the powder conveying member of the apparatus shown in FIG. 13 is formed into a gutter shape.

【図15】本発明の第四実施例装置の概略構成を示す図
である。
FIG. 15 is a diagram showing a schematic configuration of a device according to a fourth embodiment of the present invention.

【図16】本発明の第五実施例装置の概略構成を示す図
である。
FIG. 16 is a diagram showing a schematic configuration of a device according to a fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

2  粉体搬送部材(中空パイプ) 3  振動発生手段(圧電素子) 5  振動吸収部材 2 Powder conveyance member (hollow pipe) 3 Vibration generating means (piezoelectric element) 5 Vibration absorbing member

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 長手方向に曲率を有し粉体を該長手方向
へ搬送する管状もしくは樋状粉体搬送部材と、該粉体搬
送部材の長手方向の複数位置に配設した振動発生手段と
、各振動発生手段間の粉体搬送部材を接続せしめる振動
吸収部材とを備えたことを特徴とする粉体搬送装置。
1. A tubular or trough-like powder conveying member having a curvature in a longitudinal direction and conveying powder in the longitudinal direction; and vibration generating means disposed at a plurality of positions in the longitudinal direction of the powder conveying member. , and a vibration absorbing member connecting the powder conveying members between the respective vibration generating means.
【請求項2】 振動発生手段により励振された粉体搬送
部材の振幅が該粉体搬送部材と振動吸収部材との接続部
において1/2以下となるように粉体搬送部材を構成す
ることとする請求項1に記載の粉体搬送装置。
2. The powder conveying member is configured so that the amplitude of the powder conveying member excited by the vibration generating means is 1/2 or less at the connection portion between the powder conveying member and the vibration absorbing member. The powder conveying device according to claim 1.
【請求項3】 粉体搬送部材を伝搬する進行波の振幅が
1/2以下になる振動吸収部材を用いることとする請求
項1または請求項2に記載の粉体搬送装置。
3. The powder conveying device according to claim 1, wherein a vibration absorbing member is used in which the amplitude of the traveling wave propagating through the powder conveying member is 1/2 or less.
【請求項4】 振動発生手段は圧電素子を用いることと
する請求項1ないし請求項3のうちの一に記載の粉体搬
送装置。
4. The powder conveying device according to claim 1, wherein the vibration generating means uses a piezoelectric element.
【請求項5】 粉体搬送部材は中空パイプを用いること
とする請求項1ないし請求項4のうちの一に記載の粉体
搬送装置。
5. The powder conveying device according to claim 1, wherein the powder conveying member is a hollow pipe.
【請求項6】 振動吸収部材は樹脂またはゴム系接着剤
を用いることとする請求項1ないし請求項5のうちの一
に記載の粉体搬送装置。
6. The powder conveying device according to claim 1, wherein the vibration absorbing member uses a resin or a rubber adhesive.
JP3116639A 1991-04-22 1991-04-22 Powder carrying device Pending JPH04322271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3116639A JPH04322271A (en) 1991-04-22 1991-04-22 Powder carrying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3116639A JPH04322271A (en) 1991-04-22 1991-04-22 Powder carrying device

Publications (1)

Publication Number Publication Date
JPH04322271A true JPH04322271A (en) 1992-11-12

Family

ID=14692186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3116639A Pending JPH04322271A (en) 1991-04-22 1991-04-22 Powder carrying device

Country Status (1)

Country Link
JP (1) JPH04322271A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180091680A (en) * 2017-02-06 2018-08-16 신포니아 테크놀로지 가부시끼가이샤 Apparatus for conveying work

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180091680A (en) * 2017-02-06 2018-08-16 신포니아 테크놀로지 가부시끼가이샤 Apparatus for conveying work

Similar Documents

Publication Publication Date Title
US5270484A (en) Powder conveying device
EP0469881B1 (en) Vibration driven actuator
CN101828041A (en) Fluid transfer device and fuel cell with the same
JPH04322271A (en) Powder carrying device
JP2829938B2 (en) Powder transfer method
JP2722407B2 (en) Powder transfer method
JPH02237481A (en) Oscillatory wave motor
JPH04189215A (en) Powder material carrying device
JPH04365070A (en) Powder conveyor
JP2994673B2 (en) Method for transporting granular objects and developing method using the same
JPH02193835A (en) Sheet feed device
Ishii et al. A low-wear driving method of ultrasonic motors
JPS61124275A (en) Supersonic wave motor apparatus
JPH07157043A (en) Powder carrier devicer
JPH04204570A (en) Carrying method for charged particle and developing using the method
JPS62193569A (en) Ultrasonic motor
JPS59204479A (en) Surface wave motor utilizing supersonic wave vibration
JPH07257724A (en) Piezoelectric driving type conveying device
JPH01110070A (en) Driving method for supersonic motor
JPH10329925A (en) Powder feeding device
JPH08115548A (en) Tape guide mechanism
JPS61166429A (en) Ultrasonic conveyer
JPH0628635A (en) Magnetic head
JPH0323143A (en) Sheet feed device
JPS63294270A (en) Driving method for ultrasonic wave motor