JPH04189215A - Powder material carrying device - Google Patents

Powder material carrying device

Info

Publication number
JPH04189215A
JPH04189215A JP2314322A JP31432290A JPH04189215A JP H04189215 A JPH04189215 A JP H04189215A JP 2314322 A JP2314322 A JP 2314322A JP 31432290 A JP31432290 A JP 31432290A JP H04189215 A JPH04189215 A JP H04189215A
Authority
JP
Japan
Prior art keywords
powder
powder conveying
vibration
generating means
hollow pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2314322A
Other languages
Japanese (ja)
Inventor
Takashi Osawa
敬士 大沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2314322A priority Critical patent/JPH04189215A/en
Publication of JPH04189215A publication Critical patent/JPH04189215A/en
Pending legal-status Critical Current

Links

Landscapes

  • Dry Development In Electrophotography (AREA)
  • Jigging Conveyors (AREA)

Abstract

PURPOSE:To reduce demand and noise, and improve the carrying efficiency by providing oscillation generating means using piezoelectric elements, in which largeness, applying time and applying time of the driving voltage are controlled so as to be different from each other, at multiple positions of the longitudinal direction of a tubular or a chute shape carrying member for carrying the powder material. CONSTITUTION:A powder carrying device consists of a hopper 1, a hollow pipe 2, multiple number of ultrasonic oscillation generating piezoelectric elements 3-1-3-n, and alternating current power sources 4-1-4-n for driving each piezoelectric element. Largeness or applying time or applying period of the voltage of the power sources 4-1-4-n of each piezoelectric element 3-l-3-n are made to be different from each other. For example, applying time and applying period of both piezoelectric elements adjacent to each other are set not to be influenced from each other. Excellent carrying property can be thereby obtained even in the case that oscillation absorption factor of an oscillation absorbing member is low.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は粉体を搬送する装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a device for conveying powder.

[従来の技術] 従来、粉体な搬送する装置として最も一般的な技術はス
クリューを用いたものであり、あらゆる粉体搬送手段に
用いられている。これは例えばパイプ内の粉体なパイプ
内部に設けられたスクリエリューを回転することによっ
て搬送するものである。
[Prior Art] Conventionally, the most common technique for conveying powder is one using a screw, which is used for all types of powder conveying means. For example, this conveys powder in a pipe by rotating a screw screw installed inside the pipe.

[発明か解決しようとする課題] しかしながら、上記従来例はパイプ内のスクリューをモ
ータによって回転させなければならないため、消費電力
が大きくなり回転音も比較的大きくなるという問題点か
あった。
[Problems to be Solved by the Invention] However, in the conventional example described above, since the screw in the pipe must be rotated by a motor, there are problems in that the power consumption is large and the rotation noise is relatively loud.

構成もスクリューという比較的複雑な部材とモータが必
要となりスペース的にも大きくなりコスト的にも高くな
ってしまう。
The configuration also requires a relatively complicated member called a screw and a motor, resulting in a large space and high cost.

また、パイプ内壁とスクリューの隙間が大きいと搬送効
率が落ちてしまい、逆にスクリューとパイプ内壁との隙
間か小さいと搬送効率は上がるが、スクリューとパイプ
内壁との摩擦によってスクリューの回転トルクが大きく
なるという問題点も有していた。
Also, if the gap between the screw and the inner wall of the pipe is large, the conveyance efficiency will decrease, and conversely, if the gap between the screw and the inner wall of the pipe is small, the conveyance efficiency will increase, but the friction between the screw and the inner wall of the pipe will increase the rotational torque of the screw. It also had the problem of becoming.

さらに、内壁とスクリューの摩擦等により粉体が劣化、
破壊、あるいは摩擦熱によって溶融してしまうことかあ
る。また、一般に粉体は帯電しやすいため、搬送中に粉
体か帯電し、スクリューに付着することか多く、ひどい
場合は搬送不良か発生するという問題点もあった。
Furthermore, the powder deteriorates due to friction between the inner wall and the screw, etc.
It may break or melt due to frictional heat. In addition, since powder is generally easily charged, the powder often becomes charged during transportation and adheres to the screw, and in severe cases, there is a problem in that transportation may be defective.

本発明は上記問題点を解決し、低消費電力1低騒音であ
って搬送効率か良い粉体搬送装置を提供することを目的
としてし\る。
The present invention aims to solve the above-mentioned problems and provide a powder conveying device that consumes less power, has less noise, and has good conveying efficiency.

[課題を解決するための手段] 本発明によれば、上記目的は、 粉体を長子方向へ搬送する管状もしくは樋状粉体搬送部
材と、該部材の長子方向の複数位置に配設した振動発生
手段と、L温容振動発生手段に印加する駆動電圧の大き
さもしくは印加時間あるいは印加時期を異なるように制
御する制御手段とを備えた、 ことにより達成される。
[Means for Solving the Problems] According to the present invention, the above object is as follows: A tubular or trough-like powder conveying member that conveys powder in the longitudinal direction, and a vibrator arranged at a plurality of positions in the longitudinal direction of the member. This is achieved by comprising: a generating means; and a control means for controlling differently the magnitude, application time, or application timing of the driving voltage applied to the L temperature volume vibration generating means.

[作用] 本発明によれば、粉体搬送部材の長手方向の複数位置に
配設された振動発生手段によって該粉体搬送部材の半径
方向に振動が発生する。すると、各振動発生手段を中心
として長子方向の両方向に進行波か発生する。しかし、
各振動発生手段に与える電圧の大きさもしくは印加時間
あるいは印加時期か異なるため、進行波同士の干渉を防
ぐ。したがって、各振動発生手段から発生する進行波は
、上記振動吸収部材の取り付けられた方向とは逆方向へ
進むものたけとなり、各進行波か合成される。かくして
、粉体搬送部材内の粉体は合成された進行波の方向とは
逆方向へ搬送されることとなる。
[Operation] According to the present invention, vibrations are generated in the radial direction of the powder conveying member by the vibration generating means disposed at a plurality of positions in the longitudinal direction of the powder conveying member. Then, traveling waves are generated in both longitudinal directions centering on each vibration generating means. but,
Since the voltage applied to each vibration generating means is different in magnitude, application time, or application timing, interference between traveling waves is prevented. Therefore, the traveling waves generated from each vibration generating means travel in the direction opposite to the direction in which the vibration absorbing member is attached, and the traveling waves are combined. In this way, the powder within the powder conveying member is conveyed in a direction opposite to the direction of the combined traveling wave.

[実施例] 本発明の第一実施例ないし第三実施例を添付図面に基づ
いて説明する。
[Example] First to third embodiments of the present invention will be described based on the accompanying drawings.

〈第一実施例〉 先ず、本発明の第一実施例について第1図ないし第11
図を用いて説明する。
<First Embodiment> First, FIGS. 1 to 11 regarding the first embodiment of the present invention.
This will be explained using figures.

第1図に本発明の第一実施例を示す。この装置は本発明
による粉体搬送装置である。
FIG. 1 shows a first embodiment of the present invention. This device is a powder conveying device according to the present invention.

第1図において、lは粉体を供給するホッパーであり、
2は管状の粉体部材たるアクリルの中空パイプである。
In FIG. 1, l is a hopper that supplies powder;
2 is an acrylic hollow pipe which is a tubular powder member.

該中空パイプ2は外径I5■−1内径10mmで長子方
向に長く伸びている。
The hollow pipe 2 has an outer diameter of I5-1 and an inner diameter of 10 mm, and extends in the longitudinal direction.

該中空パイプ2の長子方向には一定間隔て振動発生手段
たる超音波振動発生用圧電素子3か配設されており交流
電源4によって交流電圧か印加される。
In the longitudinal direction of the hollow pipe 2, ultrasonic vibration generating piezoelectric elements 3 serving as vibration generating means are arranged at regular intervals, and an AC voltage is applied by an AC power source 4.

上記圧電素子3は第2図に示すごとく外径30■、内径
15■■、厚み2■■のセラミックPZTを両面から電
極で挟み込むタイプである。
The piezoelectric element 3 is of a type in which a ceramic PZT having an outer diameter of 30 cm, an inner diameter of 15 cm, and a thickness of 2 cm is sandwiched between electrodes from both sides, as shown in FIG.

電極間に電圧を印加することて第3図に示すようにセラ
ミックの伸縮力により内径及び外径方向つまりr方向に
伸び縮み振動か励起され、その振動か中空パイプ2に進
行波として伝達される。この圧電素子3によって発生し
た進行波により中空パイプ内の粉体は進行波の方向とは
逆方向(第1図中A)に搬送されることとなる。なお、
上記実施例ではピーク対ピーク電圧100V、周波数5
0KHzの交流電圧を印加している。これは圧電素子の
形状による共振モードから算出された値であり、圧電素
子の厚み及び形状を変えることで共振周波数は変化させ
つる。また、本実施例では圧電素子は一暦のみであるが
第4図に示すように多数個サンドイッチタイプ(多積層
型)にすればさらに励起振動量は大きくてき、中空パイ
プに伝わる進行波も大きくなるため粉体搬送力も増加す
る。
By applying a voltage between the electrodes, as shown in Figure 3, expansion and contraction vibrations are excited in the inner and outer diameter directions, that is, in the r direction, due to the expansion and contraction force of the ceramic, and the vibrations are transmitted to the hollow pipe 2 as traveling waves. . The traveling wave generated by the piezoelectric element 3 causes the powder in the hollow pipe to be transported in a direction opposite to the direction of the traveling wave (A in FIG. 1). In addition,
In the above example, the peak-to-peak voltage is 100V, and the frequency is 5.
An alternating current voltage of 0 KHz is applied. This is a value calculated from the resonance mode depending on the shape of the piezoelectric element, and the resonance frequency can be changed by changing the thickness and shape of the piezoelectric element. In addition, in this example, only one piezoelectric element is used, but if a large number of piezoelectric elements are used as a sandwich type (multilayer type) as shown in Fig. 4, the amount of excited vibration will be even larger, and the traveling wave transmitted to the hollow pipe will also be larger. Therefore, the powder conveying force also increases.

また、第5図のように圧電素子の円周部に電極を設けて
も良い。さらに、圧電素子の電極を細分化し、印加電圧
の極性を変えることで種々の振動モートを得ることか可
能となる。具体的には第6図の電極配列により第7図に
示す((1,1))モードと呼ばれるl軸対称型の振動
を励振することかできる。
Further, as shown in FIG. 5, electrodes may be provided around the circumference of the piezoelectric element. Furthermore, by subdividing the electrodes of the piezoelectric element and changing the polarity of the applied voltage, it is possible to obtain various vibration modes. Specifically, by using the electrode arrangement shown in FIG. 6, it is possible to excite l-axis symmetrical vibration called the ((1,1)) mode shown in FIG.

またさらに第8図に示すように電極分割を細分化すると
第9図のように((2,1))モードと呼ばれる中心軸
の平行振動を励起てきる。さらにこれらの電極に印加す
る交流電圧の位相を90°ずらずことで振動の回転モー
ドも可能となる。
Furthermore, when the electrode division is further subdivided as shown in FIG. 8, parallel vibration of the central axis called the ((2,1)) mode is excited as shown in FIG. Furthermore, by shifting the phase of the AC voltage applied to these electrodes by 90°, a rotational mode of vibration is also possible.

このように電極分割の細分化及びそれぞれの電極への印
加電圧の位相をずらすことで多くの振動モードを励起で
きる。これらの種々のモードを活用することで、さまざ
まな粉体の特性に合せた最適な励起モードを選択し、そ
れぞれの粉体に合せて十分な搬送力を得ることかてきる
In this way, many vibration modes can be excited by subdividing the electrodes and shifting the phase of the voltage applied to each electrode. By utilizing these various modes, it is possible to select the optimal excitation mode that matches the characteristics of various powders and obtain sufficient conveying force for each powder.

粉体の質量、比重、すべり性、粘着性、帯電性はさまざ
まてあり、中空パイプか同一ても、粉体の搬送性はその
粉体自身の特性に強く依存するためである。
This is because the mass, specific gravity, slipperiness, adhesion, and chargeability of powder vary, and even if the hollow pipe is the same, the transportability of powder strongly depends on the characteristics of the powder itself.

また中空パイプの材質、表面性、帯電性か変る場合でも
同様のことか言える。
The same thing can be said even if the material, surface properties, and chargeability of the hollow pipe change.

しかし、長い中空パイプに複数個の圧電素子を接続して
粉体を長い距離搬送しようどしても、圧電素子によって
発生する振動は圧電素子を中心に対称型の進行波が常に
発生し、一方向への粉体搬送は不可能となる。第15図
(B)に長い同一中空パイプに複数個の圧電素子によっ
て発生するそれぞれの進行波の模式図を示す。そして第
15図(C)にそれぞれの進行波を合成した後の中空パ
イプに励振された進行波の振動及び、その進行波による
粉体搬送力の大きさと方向性の模式図をしめす。
However, even if multiple piezoelectric elements are connected to a long hollow pipe to transport powder over a long distance, the vibrations generated by the piezoelectric elements always generate symmetrical traveling waves around the piezoelectric element, and Powder transport in this direction becomes impossible. FIG. 15(B) shows a schematic diagram of each traveling wave generated by a plurality of piezoelectric elements in the same long hollow pipe. FIG. 15(C) shows a schematic diagram of the vibration of the traveling wave excited in the hollow pipe after combining the respective traveling waves, and the magnitude and directionality of the powder conveying force due to the traveling wave.

これらの図から明らかなように粉体搬送力は各圧電素子
方向に働くため一方向への粉体搬送は不可能となり、第
15図(A)に示すごとく、各電圧素子近傍にブランチ
状に粉体か滞留してしまう結果となる。
As is clear from these figures, the powder conveyance force acts in the direction of each piezoelectric element, making it impossible to convey the powder in one direction, and as shown in Figure 15 (A), a branch-like force is generated near each piezoelectric element. This results in powder remaining.

そこで本発明では第1図に示すごとく圧電素子の間の中
空パイプを分断し、圧電素子によって発生する進行波が
他の圧電素子か発生させる進行波と干渉しないように構
成した。
Therefore, in the present invention, the hollow pipe between the piezoelectric elements is divided as shown in FIG. 1, so that the traveling waves generated by the piezoelectric elements do not interfere with the traveling waves generated by other piezoelectric elements.

さらに自ら発生させる逆進行波の影響をできるたけ小さ
く抑えるため、逆進行波の発生する圧電素子近くの中空
パイプを切断し、振動を吸収し、伝達しない部材、いわ
ゆる振動吸収部材を介在させている。この振動吸収部材
の作用を説明するために第10図(B)に圧電素子によ
って発生するそれぞれの進行波の模式図を示す。
Furthermore, in order to minimize the effect of the backward waves that it generates, the hollow pipe near the piezoelectric element that generates the backward waves is cut, and a so-called vibration absorbing member, which absorbs vibrations and does not transmit them, is inserted. . In order to explain the action of this vibration absorbing member, FIG. 10(B) shows a schematic diagram of each traveling wave generated by the piezoelectric element.

第10図に示すように振動吸収部材5によって中空パイ
プ2を伝ってきた進行波は減衰し、隣接した中空パイプ
2には進行波が伝わらない。
As shown in FIG. 10, the traveling wave transmitted through the hollow pipe 2 is attenuated by the vibration absorbing member 5, and the traveling wave is not transmitted to the adjacent hollow pipe 2.

そして第10図(C)にそれぞの進行波を合成した後の
中空パイプ2に励振された進行波の振動を示す。なお、
この例では各電源への印加時間及び印加時期は全て同じ
にしである。
FIG. 10(C) shows the vibration of the traveling wave excited in the hollow pipe 2 after combining the respective traveling waves. In addition,
In this example, the application time and application timing to each power source are all the same.

本実施例によれば、逆進行波の発生する中空パイプ2を
切断し、その間に振動吸収部材を介することて逆進行波
の影響を小さく抑えることかでき、第10図(C)に示
すような、粉体搬送力の大きさと方向性を有することか
可能となる。
According to this embodiment, by cutting the hollow pipe 2 in which reverse traveling waves occur and inserting a vibration absorbing member between them, the influence of the backward traveling waves can be suppressed to a small level, as shown in FIG. 10(C). It is possible to have a specific magnitude and directionality of the powder conveying force.

これから明らかなように実効的な粉体搬送力は一定方向
に働き、第10図(A)に示すごとく矢印A方向に粉体
が強力に搬送される。つまり、振動吸収部材の位置を隣
接圧電素子間のφ間点よりずらすことでずらし方向と逆
方向に粉体搬送が可能となり、圧電素子に近ければ近い
程搬送力か増大する。
As is clear from this, the effective powder conveying force acts in a fixed direction, and the powder is strongly conveyed in the direction of arrow A as shown in FIG. 10(A). That is, by shifting the position of the vibration absorbing member from the point between φ between adjacent piezoelectric elements, powder can be conveyed in the opposite direction to the direction of displacement, and the closer it is to the piezoelectric elements, the greater the conveying force becomes.

ところで、中空パイプ2の振動吸収部材5と接する端部
における振動幅か圧電素子部での振動幅のh以下に減衰
していないと、端部での反射波の影響か大きくなり、進
行波の搬送力の減衰が大きくなり好ましくない。実験の
結果、粉体搬送部材に用いる材質は比較的減衰率が大き
いものが良く発生させた励振の振幅に対して端部にて局
以下になっていれば反射波の影響か少なく搬送能力かす
ぐれていることかわかった。実験によればアクリル、ナ
イロンPOM(ポリアセタール) ABSポリプロピレ
ン、ポリスチロール等が適している。本実施例ては振動
吸収部材に防振ゴム(NBR)を用い、該防振ゴムをシ
リコン系接着剤により中空パイプを接続している。
By the way, if the vibration width at the end of the hollow pipe 2 in contact with the vibration absorbing member 5 is not attenuated to less than h of the vibration width at the piezoelectric element part, the influence of the reflected wave at the end will be large, and the traveling wave will be This is not preferable because the conveying force will be attenuated greatly. As a result of the experiment, the material used for the powder conveying member has a relatively high attenuation rate, and if the amplitude of the generated excitation is less than the amplitude at the end, it is likely that the influence of reflected waves is small and the conveying capacity is low. I found it to be excellent. According to experiments, acrylic, nylon POM (polyacetal), ABS polypropylene, polystyrene, etc. are suitable. In this embodiment, vibration isolating rubber (NBR) is used as the vibration absorbing member, and the vibration isolating rubber is connected to a hollow pipe using a silicon adhesive.

また振動吸収部材としてはNBR、ウレタンゴム、Si
ゴムEKDM、ゲル状樹脂、Siゴム系接着剤等が最適
であり、ゴム硬度を小さくすることでほぼ100%進行
波の振動を吸収可能である。さらに実験により、振動吸
収率50%のときには振動吸収部材を伝搬する進行波の
振幅か局以下に減衰すれば粉体搬送か行なわれることも
判った。
In addition, vibration absorbing members include NBR, urethane rubber, and Si.
Rubber EKDM, gel-like resin, Si rubber adhesive, etc. are optimal, and by reducing the hardness of the rubber, it is possible to absorb almost 100% of the traveling wave vibration. Furthermore, it has been found through experiments that when the vibration absorption rate is 50%, if the amplitude of the traveling wave propagating through the vibration absorbing member is attenuated below the amplitude, the powder can be conveyed.

本実施例はアクリル中空パイプを用いているか、この構
成は粉体搬送部材であるアクリル中空パイプの一部に与
えられた振動の振幅がその部材、つまりアクリル中空パ
イプ自身の振動の吸収により減衰されている。本発明は
励振された粉体搬送部材の振幅が、搬送方向端部におい
て減衰しているよう構成し、進行波を発生させ、粉体な
搬送させるものであるが、本実施例のことき構成にても
効果かありかつ簡易、安価にて実現できる。
In this example, an acrylic hollow pipe is used, and this structure is such that the amplitude of vibrations applied to a part of the acrylic hollow pipe, which is a powder conveying member, is attenuated by the vibration absorption of that member, that is, the acrylic hollow pipe itself. ing. The present invention is configured such that the amplitude of the excited powder conveying member is attenuated at the end in the conveying direction, generating a traveling wave and conveying the powder. It is effective and can be realized easily and inexpensively.

構成は減衰の大きな材質を用いる他にも減衰の小さい材
質、たとえば金属パイプの一部に減衰の大きな材質をは
りつける、あるいは金属パイプ自身の形状を溝をつける
等はどこして減衰を大きくすることか挙げられる。
In addition to using materials with high attenuation, the structure can also be made using materials with low attenuation, such as attaching a material with high attenuation to a part of the metal pipe, or adding grooves to the shape of the metal pipe itself to increase the attenuation. There are several examples.

以上のように、各電源への印加時間及び印加時期を同し
にした場合は、適切な振動吸収部材を選択しなければ良
好な搬送性か得られないことか判った。そこで、次に、
さらに確実な搬送性を得るため、第11図に示すように
各圧電素子に印加される電源の印加時間及び印加時期を
各隣接する圧電素子同士で影響し合わないようにした。
As described above, it has been found that when the application time and application timing to each power source are made the same, good conveyance performance cannot be obtained unless an appropriate vibration absorbing member is selected. So, next,
In order to further ensure reliable conveyance, as shown in FIG. 11, the application time and application timing of the power applied to each piezoelectric element were made so that adjacent piezoelectric elements did not influence each other.

その結果、振動吸収部材の振動吸収率が50%以下の場
合でも良好な搬送性が得られることが判った。以下にこ
の例について説明する。
As a result, it was found that good conveyance performance could be obtained even when the vibration absorption rate of the vibration absorption member was 50% or less. This example will be explained below.

本実施例ではビーク=ピーク電圧100v、周波数50
KHzで1秒間隔で0N10FFの繰り返しを行なった
。これにより長さ2mの長い距離を粉体が詰まることな
くスムーズに搬送することができた。粉体として一成分
磁性トナー平均粒径12ル■を用い、この粉体の搬送力
は500g/■inであった。また、印加時間が数秒間
隔まではほとんど搬送力に差は生じなかったが、印加時
間の間隔が10秒以上になると、停止状態の隣接した圧
電素子の有る搬送部材、中空パイプへ移動できる粉体量
が飽和して逆に搬送量か減少してしまう結果となる。
In this example, the peak voltage is 100V, and the frequency is 50V.
0N10FF was repeated at 1 second intervals at KHz. As a result, the powder could be transported smoothly over a long distance of 2 meters without clogging. One-component magnetic toner having an average particle size of 12 mm was used as powder, and the conveying force of this powder was 500 g/inch. In addition, there was almost no difference in the conveying force when the application time was up to several seconds apart, but when the application time interval became 10 seconds or more, powder that could be moved to the conveying member or hollow pipe with adjacent piezoelectric elements that were in a stopped state This results in the amount being saturated and the amount of conveyance decreasing.

さらに、粉体をガラスピーズ平均粒径60絡■及びフェ
ライトキャリア平均粒径60.層及び非磁性トナー平均
粒径8鉢■の粉体及びこれらの混合体を用いても印加時
間に応じて、磁性トナーと同様の搬送力を得ることが判
った。
Furthermore, the powder was mixed with glass beads having an average particle size of 60 mm and ferrite carrier having an average particle size of 60 mm. It has been found that even when using a layer, a non-magnetic toner powder with an average particle size of 8 cm, and a mixture thereof, a conveying force similar to that of the magnetic toner can be obtained depending on the application time.

さらに、このシーケンスを用いることで各圧電素子が独
立事象に近づくため、中空パイプの振動吸収部材と接す
る端部における振動幅か圧電素子部での振動幅のH以下
に減衰していなくても搬送力かある程度保持できること
が判った。
Furthermore, by using this sequence, each piezoelectric element approaches an independent event, so even if the vibration width at the end of the hollow pipe in contact with the vibration absorbing member or the vibration width at the piezoelectric element part is not attenuated to H or less, the conveyance It turns out that it can hold a certain amount of power.

このように中空パイプ内部にスクリューなど搬送部材か
ないので粉体を劣化、破壊、溶融等することなく効率良
く搬送することが可能となった。
In this way, since there is no conveying member such as a screw inside the hollow pipe, it has become possible to efficiently convey the powder without degrading, destroying, melting, etc.

本実施例では隣接する圧電素子に印加する電圧の0N1
0FFタイミングか互いに干渉し合わないように設定し
たか、ある程度型なり合いが生じても十分搬送力は確保
てきる。
In this embodiment, the voltage applied to adjacent piezoelectric elements is 0N1.
The 0FF timing is set so that they do not interfere with each other, or even if there is a certain amount of misalignment, a sufficient conveying force can be ensured.

〈第二実施例〉 次に、本発明の第二実施例を第12図を用いて説明する
。なお、第一実施例との共通箇所には同一符号を付して
説明を省略する。   。
<Second Embodiment> Next, a second embodiment of the present invention will be described using FIG. 12. Note that the same reference numerals are given to the same parts as in the first embodiment, and the explanation thereof will be omitted. .

第一実施例では圧電素子に印加する電圧のON/ OF
F印加時間を変えることで隣接する圧電素子同士の影響
を防止したが、第12図に示すように搬送方向に従って
各圧電素子に印加する電圧を順次大きくすることでさら
に各進行波が干渉し合っても搬送方向に次第に強く進行
波を励起することで搬送力を増大させることも可能であ
る。
In the first embodiment, ON/OFF of the voltage applied to the piezoelectric element
By changing the F application time, we prevented the influence of adjacent piezoelectric elements, but by increasing the voltage applied to each piezoelectric element in sequence according to the transport direction, as shown in Figure 12, we could further prevent the traveling waves from interfering with each other. However, it is also possible to increase the transport force by exciting the traveling wave gradually in the transport direction.

く第三実施例) 次に、本発明の第三実施例について第13図及び第14
図を用いて説明する。なお、第一実施例との共通箇所に
は同一符号を付して説明を省略する。
(Third Embodiment) Next, FIGS. 13 and 14 show a third embodiment of the present invention.
This will be explained using figures. Note that the same reference numerals are given to the same parts as in the first embodiment, and the explanation thereof will be omitted.

本実施例は振動吸収部材を介して接続している粉体部材
の大きさ、形状がそれぞれ変わる場合てもそれぞれ圧電
素子に印加するタイミング、大きさを変えることでその
粉体搬送部材に適した粉体搬送力を得るものである。
In this example, even if the size and shape of the powder members connected via the vibration absorbing member change, the timing and size of the voltage applied to the piezoelectric elements can be changed to suit the powder conveying member. This is to obtain powder conveying power.

第13図が第三実施例の模式図てあり、粉体搬送中空パ
イプの形状か異なる例である。2−1か中空丸パイプで
径か大きく、2−2か中空丸パイプて径か小さく、2−
3か中空角パイプである。それぞれの端面の形状が異な
るため、接続部での粉体搬送性のマツチング、粉体の詰
まり防止、及び隣接するパイプへの進行波の影響を避け
るために、第14図に示すようにそれぞれの圧電素子に
印加する電圧の大きさを変化させ、かつ、タイミングも
ずらした。その結果、スムーズな粉体搬送が可能となっ
た。
FIG. 13 is a schematic diagram of the third embodiment, and is an example in which the shape of the powder conveying hollow pipe is different. 2-1 is a hollow round pipe with a large diameter, 2-2 is a hollow round pipe with a small diameter, 2-
3. It is a hollow square pipe. Since the shape of each end face is different, in order to match the powder transportability at the connection part, prevent powder clogging, and avoid the influence of traveling waves on adjacent pipes, each end is The magnitude of the voltage applied to the piezoelectric element was changed, and the timing was also shifted. As a result, smooth powder transportation has become possible.

[発明の効果] 以上説明したように、本発明によれば、振動吸収部材で
接続された粉体搬送部材に、振動発生手段によって半径
方向への振動を与えて進行波を発生させるのて、少ない
エネルギーて効率良く粉体を長距離搬送することかてき
る。また、粉体か劣化、破損、溶融することなく静かに
、かつ、円滑に搬送することができる。さらに、各振動
発生手段に印加する電圧の大きさ及び印加時間あるいは
印加時期を変えることによって、確実に搬送性を向上さ
せることかてきる。
[Effects of the Invention] As explained above, according to the present invention, a traveling wave is generated by applying vibration in the radial direction to the powder conveying member connected by the vibration absorbing member by the vibration generating means. Powder can be transported over long distances efficiently with less energy. In addition, the powder can be transported quietly and smoothly without deterioration, damage, or melting. Furthermore, by changing the magnitude and application time or application timing of the voltage applied to each vibration generating means, it is possible to reliably improve conveyance performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第一実施例装置あ概略構成を示す斜視
図、第2図は第1図装置の振動発生手段の概略構成を示
す斜視図、第3図は第1図装置の粉体搬送部材の外壁の
変化を示す図、第4図は第2図の手段を積層した場合の
概略構成を示す斜視図、第5図は第2図の手段の円周部
に電極を設けた場合の概略構成を示す斜視図、第6図は
第2図の手段の((1,1))モードの電極配列を示す
図、第7図は第6図に示す配列の場合における粉体搬送
部材の外壁の変化を示す図、第8図は第2図の手段の(
(2,1))モードの電極配列を示す図、第9図は第8
図の配列の場合における粉体搬送部材の外壁の変化を示
す図、第10図(A)は第1図装置の粉体搬送部材内部
における粉体の様子を示す図、第10図(B)は第1図
装置における粉体搬送部材内に発生する進行波を説明す
る図、第10図(C)は第10図(B)の各進行波を合
成した後の進行波を説明する図、第11図は第1図装置
における各振動発生手段に与える電圧のタイミングを示
すタイミングチャート、第12図は本発明の第二実施例
装置における各振動発生手段に与える電圧のタイミング
を示すタイミングチャート、第13図は本発明の第三実
施例装置の概略構成を示す図、第14図は第13図装置
の各振動発生手段に与える電圧の大きさ及びタイミング
を示すタイミングチャート、第15図(A)は第1図装
置に振動吸収部材を取り付けなかった場合における粉体
搬送部材内部の粉体の状態を示す図、第15図(B)は
第15図装置における粉体搬送部材内に発生する進行波
を説明する図、第15図(C)は第15図(B)の各進
行波を合成した後の進行波を説明する図である。
FIG. 1 is a perspective view showing a schematic configuration of a device according to a first embodiment of the present invention, FIG. 2 is a perspective view showing a schematic configuration of a vibration generating means of the device shown in FIG. 1, and FIG. Fig. 4 is a perspective view showing a schematic configuration when the means shown in Fig. 2 are laminated, and Fig. 5 is a diagram showing changes in the outer wall of the body conveying member. Fig. 5 shows electrodes provided on the circumference of the means shown in Fig. 2. FIG. 6 is a diagram showing the ((1,1)) mode electrode arrangement of the means in FIG. 2, and FIG. 7 is a diagram showing the powder conveyance in the case of the arrangement shown in FIG. 6. A diagram showing changes in the outer wall of the member, FIG. 8 is a diagram showing changes in the outer wall of the member (
(2,1)) mode, Figure 9 shows the electrode arrangement of the 8th mode.
Figure 10 (A) is a diagram showing changes in the outer wall of the powder conveying member in the case of the arrangement shown in the figure, Figure 10 (A) is a diagram showing the state of powder inside the powder conveying member of the apparatus shown in Figure 1, Figure 10 (B) is 1 is a diagram illustrating the traveling waves generated in the powder conveying member in the apparatus, FIG. 10(C) is a diagram illustrating the traveling waves after combining the traveling waves in FIG. 10(B), 11 is a timing chart showing the timing of voltage applied to each vibration generating means in the apparatus shown in FIG. 1; FIG. 12 is a timing chart showing the timing of voltage applied to each vibration generating means in the second embodiment of the apparatus of the present invention; FIG. 13 is a diagram showing a schematic configuration of a device according to a third embodiment of the present invention, FIG. 14 is a timing chart showing the magnitude and timing of voltage applied to each vibration generating means of the device in FIG. 13, and FIG. ) is a diagram showing the state of powder inside the powder conveying member when no vibration absorbing member is attached to the apparatus in Figure 1, and Figure 15 (B) is a diagram showing the state of powder inside the powder conveying member in the apparatus shown in Figure 15. FIG. 15(C) is a diagram illustrating a traveling wave after combining the traveling waves in FIG. 15(B).

Claims (7)

【特許請求の範囲】[Claims] (1)粉体を長手方向へ搬送する管状もしくは樋状粉体
搬送部材と、該部材の長手方向の複数位置に配設した振
動発生手段と、上記各振動発生手段に印加する駆動電圧
の大きさもしくは印加時間あるいは印加時期を異なるよ
うに制御する制御手段とを備えた、 ことを特徴とする粉体搬送装置。
(1) A tubular or trough-like powder conveying member that conveys powder in the longitudinal direction, vibration generating means arranged at multiple positions in the longitudinal direction of the member, and the magnitude of the driving voltage applied to each of the vibration generating means. 1. A powder conveying device comprising: control means for controlling application time or application timing differently.
(2)複数の振動発生手段の間の粉体搬送部材を振動吸
収部材を介して接続することとする請求項(1)に記載
の粉体搬送装置。
(2) The powder conveying device according to claim (1), wherein the powder conveying members between the plurality of vibration generating means are connected via a vibration absorbing member.
(3)振動発生手段により励振された粉体搬送部材の振
幅が該粉体搬送部材の進行波の進行方向端部において減
衰して小さくなるように該粉体搬送部材を構成すること
とする請求項(1)または請求項(2)に記載の粉体搬
送装置。
(3) A claim in which the powder conveying member is configured such that the amplitude of the powder conveying member excited by the vibration generating means is attenuated and becomes smaller at an end in the traveling direction of the traveling wave of the powder conveying member. The powder conveying device according to claim (1) or claim (2).
(4)粉体搬送部材を伝搬する進行波の振幅が零かまた
は小さくなる振動吸収部材を用いることとする請求項(
1)または請求項(2)に記載の粉体搬送装置。
(4) A claim in which a vibration absorbing member is used in which the amplitude of the traveling wave propagating through the powder conveying member is zero or small (
1) or the powder conveying device according to claim (2).
(5)振動発生手段は圧電素子を用いることとする請求
項(1)または請求項(2)に記載の粉体搬送装置。
(5) The powder conveying device according to claim (1) or claim (2), wherein the vibration generating means uses a piezoelectric element.
(6)粉体搬送部材は中空パイプであることとする請求
項(1)または請求項(2)に記載の粉体搬送装置。
(6) The powder conveying device according to claim (1) or (2), wherein the powder conveying member is a hollow pipe.
(7)振動吸収部材は樹脂またはゴム系接着剤であるこ
ととする請求項(1)または請求項(2)に記載の粉体
搬送装置。
(7) The powder conveying device according to claim (1) or claim (2), wherein the vibration absorbing member is a resin or rubber adhesive.
JP2314322A 1990-11-21 1990-11-21 Powder material carrying device Pending JPH04189215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2314322A JPH04189215A (en) 1990-11-21 1990-11-21 Powder material carrying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2314322A JPH04189215A (en) 1990-11-21 1990-11-21 Powder material carrying device

Publications (1)

Publication Number Publication Date
JPH04189215A true JPH04189215A (en) 1992-07-07

Family

ID=18051950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2314322A Pending JPH04189215A (en) 1990-11-21 1990-11-21 Powder material carrying device

Country Status (1)

Country Link
JP (1) JPH04189215A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06166412A (en) * 1992-11-30 1994-06-14 Yuyama Seisakusho:Kk Powder processing method and device thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06166412A (en) * 1992-11-30 1994-06-14 Yuyama Seisakusho:Kk Powder processing method and device thereof

Similar Documents

Publication Publication Date Title
US4400641A (en) Piezoelectric motor with two part rotor
US5270484A (en) Powder conveying device
EP0469881B1 (en) Vibration driven actuator
US7764005B2 (en) Traveling wave grids with agitated surface using piezoelectric effect and acoustic traveling waves
JPH04189215A (en) Powder material carrying device
CN108282106B (en) Eccentric rotary piezoelectric ceramic motor
JP2829938B2 (en) Powder transfer method
JP2722407B2 (en) Powder transfer method
US5726515A (en) Vibration driven motor
JPH04322271A (en) Powder carrying device
JP2994673B2 (en) Method for transporting granular objects and developing method using the same
JPH04365070A (en) Powder conveyor
JPH0985172A (en) Ultrasonic vibrator transducer and ultrasonic motor using same
WO2011162085A1 (en) Power transmission element and power transmission device
Ishii et al. A low-wear driving method of ultrasonic motors
JPH07157043A (en) Powder carrier devicer
JPH04204570A (en) Carrying method for charged particle and developing using the method
JPH01110070A (en) Driving method for supersonic motor
JP2605355B2 (en) Driving method of ultrasonic motor and vibrator for ultrasonic motor
JPH11194595A (en) Powder carrying device and developing device
JPH07194154A (en) Ultrasonic motor and torsional oscillation generating device
JPS59204479A (en) Surface wave motor utilizing supersonic wave vibration
JPH04355677A (en) Ultrasonic wave actuator for conveyer and conveyer thereof
JPH04257461A (en) Toner-jet recorder
JPH0669303B2 (en) Ultrasonic motor oscillator