JP2718858B2 - Water quality adjustment device - Google Patents

Water quality adjustment device

Info

Publication number
JP2718858B2
JP2718858B2 JP4193903A JP19390392A JP2718858B2 JP 2718858 B2 JP2718858 B2 JP 2718858B2 JP 4193903 A JP4193903 A JP 4193903A JP 19390392 A JP19390392 A JP 19390392A JP 2718858 B2 JP2718858 B2 JP 2718858B2
Authority
JP
Japan
Prior art keywords
temperature
condensate
pressure
deaerator
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4193903A
Other languages
Japanese (ja)
Other versions
JPH0634104A (en
Inventor
晃 高橋
博光 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4193903A priority Critical patent/JP2718858B2/en
Publication of JPH0634104A publication Critical patent/JPH0634104A/en
Application granted granted Critical
Publication of JP2718858B2 publication Critical patent/JP2718858B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Water Treatments (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は発電プラント等における
復水・給水系統の水質調整装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water quality control device for a condensate / water supply system in a power plant or the like.

【0002】[0002]

【従来の技術】我国の火力発電所等においては、系統内
復水・給水・ボイラ水及び蒸気の水質の調節処理を行い
系統内の腐食を最低にするとともにボイラ水管・蒸気管
及び給水ポンプ吸込みストレーナへのスケール付着防止
を図ってきた。ボイラ型式が貫流タイプの場合では、復
水・給水系統内にアンモニア(NH3 ),ヒドラジン
(N2 4 )の揮発性薬品を注入する揮発性物質処理
(以下AVT法と称する)を行い、pH値を9〜9.5
及び脱酸素となるように制御している。
2. Description of the Related Art In a thermal power plant or the like in Japan, condensate water in a system, water supply, boiler water and steam quality control processing are performed to minimize corrosion in the system, and boiler water pipes / steam pipes and a water supply pump suction. The scale adhesion to the strainer has been prevented. When the boiler type is a once-through type, a volatile substance treatment (hereinafter, referred to as an AVT method) in which volatile chemicals such as ammonia (NH 3 ) and hydrazine (N 2 H 4 ) are injected into the condensate / water supply system, pH value between 9 and 9.5
And deoxygenation.

【0003】しかしながら、上記AVT法において、よ
り高い防食効果を得るには高いアンモニア濃度(pH>
9.4)を必要とするが、これはプラント内のアンモニ
ア濃縮部(例えば、復水器の空気冷却部等)において、
アンモニアによる損傷(アンモニアアタック)が発生す
るため高濃度アンモニアによる防食対策は行えなかっ
た。
However, in the above-mentioned AVT method, a high ammonia concentration (pH>
9.4), which is required in the ammonia enrichment section of the plant (for example, in the condenser air cooling section).
Since damage by ammonia (ammonia attack) occurred, anticorrosion measures could not be taken with high-concentration ammonia.

【0004】この結果、還元剤であるヒドラジンにより
プラント内の炭素鋼より鉄が復水・給水系へ溶出し、ボ
イラ水管・蒸気管及び給水ポンプ吸込みストレーナ等に
付着し、経年的にその厚みを増すことになる。このため
この付着した鉄酸化物を適切な時に除去しなければなら
ずプラント運用計画上大きな支障となっていた。また、
この除去を行わないと給水ポンプの過負荷運転、ボイラ
ーチューブの亀裂を招く等のおそれがあった。
[0004] As a result, iron is eluted from the carbon steel in the plant into the condensate / water supply system by the hydrazine as a reducing agent, and adheres to the boiler water pipe / steam pipe, the feed water pump suction strainer, etc., and its thickness increases over time. Will increase. For this reason, the adhered iron oxide must be removed at an appropriate time, which has been a great obstacle to plant operation planning. Also,
If this removal is not performed, there is a risk that overload operation of the water supply pump and cracking of the boiler tube may be caused.

【0005】上述した従来のAVT法の欠点を改善する
ため、復水・給水系へアンモニア(NH3 )と酸素(O
2 )を注入する複合中性水処理(以下、CWT法と称す
る)の実施が段階的に行われている。このCWT法によ
ると、復水・給水系内に従来の強アルカリから弱アルカ
リとし、かつ酸素を注入することによりボイラ水管・蒸
気管及び給水ポンプ吸込みストレーナへの鉄酸化物の付
着を大幅に低減することができる。
In order to improve the above-mentioned drawbacks of the conventional AVT method, ammonia (NH 3 ) and oxygen (O
2 ) Injection of complex neutral water treatment (hereinafter referred to as CWT method) is being carried out in stages. According to this CWT method, iron oxide is greatly reduced on the boiler water pipe / steam pipe and the feed water pump suction strainer by changing the conventional strong alkali to weak alkali into the condensate / water supply system and injecting oxygen. can do.

【0006】このような従来の水質調整装置を図6の系
統図を参照して説明する。同図において、復水器1に集
められたタービン排気蒸気及びヒータドレン(いずれも
図示せず)は、海水を冷却水とする循環水と熱交換され
復水化した後、復水ポンプ2により復水脱塩装置3に送
水される。この復水脱塩装置3(以下コンデミと称す
る)では、復水中の酸化鉄等の懸濁固形物や塩素イオン
等の溶解固形物を除去した後、復水昇圧ポンプ4により
低圧給水加熱器5により加熱されて脱気器6へ送水され
る。脱気器6へ送水された復水は高圧ヒータドレン(図
示せず)とともに給水ポンプ7へ送られ高圧給水加熱器
8で加熱されて節炭器9を通過し、ボイラ10へ送水さ
れる。
[0006] Such a conventional water quality adjusting device will be described with reference to the system diagram of FIG. In FIG. 1, turbine exhaust steam and heater drain (both not shown) collected in a condenser 1 are condensed by heat exchange with circulating water using seawater as cooling water, and then condensed by a condensing pump 2. The water is sent to the water desalination device 3. In this condensate desalination apparatus 3 (hereinafter referred to as condemi), after removing suspended solids such as iron oxide and dissolved solids such as chloride ions in the condensate, the condensate booster pump 4 removes the low-pressure feed water heater 5. And the water is sent to the deaerator 6. The condensed water sent to the deaerator 6 is sent to a water supply pump 7 together with a high-pressure heater drain (not shown), heated by a high-pressure water heater 8, passed through a economizer 9, and sent to a boiler 10.

【0007】一方、水質調整(酸素注入)は復水系,給
水系各々に設置されている。復水系はコンデミ3の出口
側より酸素O2 を注入し、給水系は脱気器6の出口側よ
り酸素O2 を注入している。
On the other hand, water quality adjustment (oxygen injection) is installed in each of the condensing system and the water supply system. Condensate system is the oxygen O 2 is injected from the outlet side of the Kondemi 3, the water supply system is implanting oxygen O 2 from the outlet side of the deaerator 6.

【0008】次に、水質調整の制御方法を図7の復水・
給水系への酸素注入系統図を参照して説明する。復水系
は節炭器9入口の酸素濃度13と脱気器6入口の復水流
量21及びコンデミ3入口の酸素注入量22を酸素注入
演算器23に入力して、この演算器23の出力により注
入弁24の開度を制御し復水系への酸素濃度をキープし
ている。一方、給水系は同様に節炭器9入口の酸素濃度
13と節炭器9入口の給水流量25及び脱気器6出口の
酸素注入量26とにより酸素注入演算器27を介し注入
弁28の開度を制御し給水系への酸素濃度をキープして
いる。また、CWT法によるプラント運用時は系統内の
酸素放出を防止するため脱気器ベント弁(図示しない)
は全閉としている。
Next, the control method of the water quality adjustment is shown in FIG.
A description will be given with reference to a diagram of an oxygen injection system to the water supply system. The condensate system inputs the oxygen concentration 13 at the inlet of the economizer 9, the condensate flow rate 21 at the inlet of the deaerator 6, and the oxygen injection amount 22 at the inlet of the condemi 3 to an oxygen injection calculator 23. The opening degree of the injection valve 24 is controlled to keep the oxygen concentration in the condensate system. On the other hand, in the water supply system, the oxygen concentration 13 at the inlet of the economizer 9, the feedwater flow rate 25 at the inlet of the economizer 9, and the oxygen injection amount 26 at the outlet of the deaerator 6 are also supplied to the injection valve 28 via the oxygen injection calculator 27. The opening is controlled to keep the oxygen concentration in the water supply system. When the plant is operated by the CWT method, a deaerator vent valve (not shown) is used to prevent oxygen release in the system.
Is completely closed.

【0009】上記したような系統構成にてCWT法によ
る運用を行った場合の脱気器器内における流入する復水
及びコンデミ出口で注入溶解した酸素の挙動を図8及び
図9により説明する。
The behavior of the condensate flowing into the deaerator and the oxygen injected and dissolved at the outlet of the condemimeter when the CWT method is used in the above system configuration will be described with reference to FIGS.

【0010】図8において、高負荷時酸素を含んだ復水
は脱気器器内の分配トレイ,脱気トレイを落下する間に
加熱蒸気と接触し酸素を放出して貯水タンクに溜められ
る。ここで放出された酸素は、脱気器上部に不凝縮ガス
として滞留し高濃度状態となっている。これは脱気器内
部の蒸気の上昇流と器内圧力に影響される。
In FIG. 8, the condensate containing oxygen under high load is contacted with the heated steam while falling down the distribution tray and the deaeration tray in the deaerator to release oxygen and is stored in the water storage tank. The oxygen released here stays as an uncondensable gas in the upper part of the deaerator and is in a high concentration state. This is affected by the upward flow of steam inside the deaerator and the pressure inside the chamber.

【0011】ところで、酸素の溶解度は温度の影響を大
きく受け、温度が下がる程溶解度が上昇することは一般
的に知られている。したがって、その後の負荷降下に伴
い脱気器器内の圧力が低下すると、脱気器上部に滞留し
ていた高濃度の酸素が脱気トレイ部まで拡がり、かつ復
水温度も低下しているため脱気器器内が熱バランス的に
平衡状態(復水がその負荷の飽和温度となるまで)とな
るまで給水中に溶け込ので、図9に示すように、酸素
濃度の高いピーク値を示すことになる。
It is generally known that the solubility of oxygen is greatly affected by the temperature, and the solubility increases as the temperature decreases. Therefore, when the pressure in the deaerator decreases due to a subsequent load drop, the high-concentration oxygen that had accumulated at the top of the deaerator spreads to the deaeration tray, and the condensate temperature also decreases. since deaerator vessel is thermally balanced equilibrium state (condensate until the saturation temperature of that load) melt write No in water until, as shown in FIG. 9, the high peak value of the oxygen concentration Will show.

【0012】[0012]

【発明が解決しようとする課題】CWT法では、上記し
たように、負荷降下時、脱気器上部に滞留していた高濃
度の酸素が器内圧力低下に伴い拡散、体積膨脹しかつ流
入復水温度の低下とともに給水中に溶け込み、高いピー
ク値を示し、しかも長い場合は数時間継続する。これは
給水系統内の停滞部において酸素濃度が高くなり、その
部分での腐食発生の要因となる。このため酸素濃度が高
いピーク値を示した場合、その都度手動にて脱気器ベン
ト弁を開操作し酸素を大気放出しなくてはならず、日々
の負荷変化が激しいプラント運用では非常に繁雑になる
という問題がある。
In the CWT method, as described above, when the load drops, the high-concentration oxygen that has accumulated in the upper part of the deaerator diffuses, expands in volume, and recovers inflow due to a decrease in the internal pressure. As the water temperature decreases, it dissolves in the feed water, shows a high peak value, and lasts several hours if it is long. This increases the oxygen concentration in a stagnant portion in the water supply system, and causes corrosion to occur in that portion. For this reason, when the oxygen concentration shows a high peak value, it is necessary to manually open the deaerator vent valve each time to release oxygen to the atmosphere, which is very complicated in plant operation where daily load changes are severe. Problem.

【0013】本発明は上記問題を解決するためになされ
たもので、その目的はプラント負荷変化時に発生する脱
気器器内での高濃度酸素の給水への拡散・溶け込みを防
止し、安定した水質調整が可能な水質調整装置を提供す
ることにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to prevent high-concentration oxygen from diffusing and dissolving into feedwater in a deaerator, which is generated when a load on a plant changes, to achieve a stable operation. An object of the present invention is to provide a water quality adjusting device capable of adjusting water quality.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するため
に、本発明の請求項1は、発電プラント等における復水
・給水系の水質調整装置において、酸素を注入した復水
が流入する脱気器に取り付けられこの脱気器内に滞留し
た高濃度の酸素を排出する自動調節弁と、前記脱気器器
内圧力を検出する圧力検出器と、この圧力の時間変化率
を演算する圧力変化率演算器と、前記脱気器へ流入する
復水の温度を検出する温度検出器と、前記プラントの負
相当の復水温度および負荷が変化したときの復水温度
の変化の遅れ特性から前記自動調節弁の開温度値を出力
する設定値演算器と、この設定値演算器と前記圧力変化
率演算器から信号を受けて前記自動調節弁に開閉信号を
出力する開閉演算器とを備えたことを特徴とする。本発
明の請求項2は、発電プラント等における復水・給水系
の水質調整装置において、酸素を注入した復水が流入す
る脱気器に取り付けられこの脱気器内に滞留した高濃度
の酸素を排出する自動調節弁と、前記脱気器器内圧力を
検出する圧力検出器と、この圧力の時間変化率を演算す
る圧力変化率演算器と、前記脱気器へ流入する復水の温
度を検出する温度検出器と、この温度の時間変化率を演
算する温度変化率演算器と、前記圧力変化率演算器と前
記温度変化率演算器から信号を受けて前記自動調節弁に
開閉信号を出力する開閉演算器とを備えたことを特徴と
する。
To achieve the above object, according to the Invention The claim 1 of the present invention is a water conditioning apparatus condensate-water supply system in a power plant or the like, the condensate was injected oxygen flows de Which is attached to the porcelain and stays in this deaerator
An automatic control valve for discharging high-concentration oxygen, a pressure detector for detecting the pressure in the deaerator, and a time change rate of the pressure.
, A temperature detector for detecting the temperature of the condensate flowing into the deaerator , a condensate temperature corresponding to the load of the plant, and a condensate temperature when the load changes.
Output the open temperature value of the automatic control valve from the delay characteristics of the change
Set value calculator, the set value calculator and the pressure change
Receiving a signal from the rate calculator to send an open / close signal to the automatic control valve.
And a switching arithmetic and logic unit for outputting . Departure
A second aspect of the invention is a condensate and water supply system in a power plant or the like.
Condensate flows into the water quality control device
High concentration that is attached to the deaerator
An automatic control valve for discharging oxygen, and the pressure inside the deaerator
Calculate the pressure detector to be detected and the time rate of change of this pressure.
Pressure change rate calculator, and the temperature of the condensate flowing into the deaerator.
Temperature detector that detects the temperature and the rate of change of this temperature over time.
Calculating the temperature change rate calculator, and the pressure change rate calculator.
Receives a signal from the temperature change rate calculator and sends it to the automatic control valve.
A switching operation unit for outputting a switching signal.
I do.

【0015】[0015]

【作用】負荷降下に伴い脱気器器内圧力が低下し、脱気
器器内に滞留していた酸素の体積膨脹による圧力低下率
をとらえ、所定の圧力低下率以上となった場合、脱気器
ベント弁の自動調節弁を開動作させ、脱気器上部に滞留
している高濃度酸素を大気中へ放出し、給水系への溶け
込みを減少させ、給水中の酸素濃度を適正に保つ。ま
た、負荷相当の復水温度プラスバイアス温度以上となっ
たならば脱気器ベント弁の自動調節弁を開動作させて給
水中の酸素濃度を適正に保つ。
[Action] The pressure in the deaerator decreases as the load decreases, and the rate of pressure decrease due to the volume expansion of oxygen remaining in the deaerator is detected. Open the automatic control valve of the ventilator vent valve to release the high-concentration oxygen remaining in the upper part of the deaerator into the atmosphere, reduce its dissolution into the water supply system, and maintain the oxygen concentration in the water supply properly. . Further, when the temperature becomes equal to or higher than the condensate temperature plus the bias temperature corresponding to the load, the automatic control valve of the deaerator vent valve is opened to maintain the oxygen concentration in the supply water properly.

【0016】[0016]

【実施例】以下、本発明の実施例を図を参照して説明す
る。図1は本発明の一実施例の発電プラントにおける復
水・給水系統の水質調整装置の系統図である。なお、既
に説明した図6と同一部分には同一符号を付してその説
明は省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a system diagram of a water quality adjusting device of a condensate / water supply system in a power plant according to one embodiment of the present invention. The same parts as those in FIG. 6 described above are denoted by the same reference numerals, and description thereof will be omitted.

【0017】図1において、脱気器6へ流入する復水の
温度を検出する復水温度検出器12の検出信号と、脱気
器6の圧力を検出する圧力検出器13の検出信号を変化
率演算器14を介し開閉演算器17へ入力する。開閉演
算器17では、負荷信号16により設定値α,βの信号
を演算する設定値演算器15からの信号α,βにより脱
気器6に充満した酸素を排出する調節弁11を開閉させ
る信号を出力する。
In FIG. 1, the detection signal of a condensate temperature detector 12 for detecting the temperature of the condensate flowing into the deaerator 6 and the detection signal of a pressure detector 13 for detecting the pressure of the deaerator 6 change. It is input to the open / close calculator 17 via the rate calculator 14. In the opening / closing operation unit 17, a signal for opening and closing the control valve 11 for discharging the oxygen filled in the deaerator 6 based on the signals α and β from the setting value operation unit 15 that calculates the signals of the setting values α and β based on the load signal 16. Is output.

【0018】設定値演算器15の詳細ブロックを図2に
示す。同図において、負荷信号16により予めヒートバ
ランスによって定められている脱気器へ流入する負荷相
当の復水温度のヒートバランスグラフ20からリセット
用信号βを出力する。また、バイアスグラフ21には負
荷信号16により復水温度遅れを負荷によって考慮した
バイアス値がインプットされており、そのバイアス信号
とβ信号を加算器22で加算して弁開動作用設定温度信
号αを出力する。
FIG. 2 shows a detailed block diagram of the set value calculator 15. In the figure, a reset signal β is output from the heat balance graph 20 of the condensate temperature corresponding to the load flowing into the deaerator previously determined by the heat balance by the load signal 16. Further, a bias value in consideration of the condensate temperature delay by the load is input to the bias graph 21 by the load signal 16, and the bias signal and the β signal are added by the adder 22 to obtain the set temperature signal α for valve opening operation. Output.

【0019】開閉演算器17の詳細ブロックを図3に示
す。同図において、復水温度検出器12の温度信号Tが
バイアス値を加味した設定温度値α℃以上となった場合
に、自己保持回路をもちながら調節弁11を開動作させ
る。その後、負荷安定に伴い復水温度信号Tはヒートバ
ランスベースの設定温度値β℃以下になるまで調節弁1
1の開状態を継続し、脱気器6内に充満した酸素が給水
への溶け込む前に排出させる。
FIG. 3 shows a detailed block diagram of the switching operation unit 17. In the figure, when the temperature signal T of the condensate temperature detector 12 becomes equal to or higher than the set temperature value α ° C. in consideration of the bias value, the control valve 11 is opened while using the self-holding circuit. Thereafter, as the load stabilizes, the condensate temperature signal T becomes lower than the set temperature value β ° C. of the heat balance base.
The open state of 1 is continued, and oxygen filled in the deaerator 6 is discharged before dissolving in the water supply.

【0020】さらに、本実施例では酸素を排出させる機
能を圧力によってももたせており、脱気器6の圧力変化
率演算器14の出力信号Pが所定の圧力変化率γ1 以上
に一度達すると、前記の温度信号と同様に調節弁11を
開動作させる。また、圧力変化率がγ2 以下になったら
閉動作させる。
Further, in this embodiment, the function of discharging oxygen is also provided by pressure, and when the output signal P of the pressure change rate calculator 14 of the deaerator 6 reaches a predetermined pressure change rate γ 1 or more once. , Ru regulation valve 11 similar to the temperature signal of the to opening operation. Further, the rate of pressure change causes the closing operation When turned gamma 2 or less.

【0021】上記した調節弁11の開閉動作により、負
荷降下に伴って体積の膨脹する酸素を負荷降下による圧
力低下率によってとらえ大気へ排出したり、温度の低下
に伴って酸素の給水への溶け込みが増大する前に高濃度
酸素を排出することが可能となる。
By the opening and closing operation of the control valve 11, the oxygen whose volume expands with the load drop is caught by the pressure drop rate due to the load drop and is discharged to the atmosphere, and as the temperature drops, the oxygen dissolves into the water supply. High oxygen can be exhausted before the pressure increases.

【0022】図4は本発明の他の実施例の系統図であ
り、本実施例が図1の実施例と相違する構成は、設定値
演算器15を省略し、復水温度検出器12の温度信号を
温度変化率演算器18を介して開閉演算器17aへ入力
するようにした構成である。その他の構成は同一である
ので、同一部分には同一符号を付してその説明は省略す
る。
FIG. 4 is a system diagram of another embodiment of the present invention. In this embodiment, the configuration different from the embodiment of FIG. The configuration is such that the temperature signal is input to the opening / closing calculator 17a via the temperature change rate calculator 18. Since other configurations are the same, the same portions are denoted by the same reference numerals and description thereof will be omitted.

【0023】図5は図4の開閉演算器17aのブロック
図である。同図において、温度変化率演算器18の温度
信号Tは所定の温度変化率δ1 以上に一度達すると、調
節弁11を開動作させ、温度変化率がδ2 以下になった
ら閉動作させる。
FIG. 5 is a block diagram of the switching operator 17a of FIG. In the figure, once the temperature signal T of the temperature change rate calculator 18 reaches a predetermined temperature change rate δ 1 or more, the control valve 11 is opened, and when the temperature change rate becomes δ 2 or less, the control valve 11 is closed.

【0024】また、酸素を排出させる機能を圧力によっ
てももたせており、脱気器6の圧力変化率演算器14の
圧力信号Pが所定の圧力変化率γ1 以上に一度達する
と、前記温度信号と同様に調節弁11を開動作させ、圧
力変化率がγ2 以下になったら閉動作させる。
Further, oxygen is also imparted by the pressure the function of discharging, the pressure signal P of the pressure change rate arithmetic unit 14 of the deaerator 6 reaches once one or more predetermined pressure change rate gamma, the temperature signal Similarly, the control valve 11 is opened, and when the pressure change rate becomes γ 2 or less, the control valve 11 is closed.

【0025】上記した調節弁11の開閉動作により、負
荷降下に伴って体積の膨脹する酸素を負荷降下による圧
力低下率によってとらえ大気へ排出したり、温度の低下
に伴って酸素の給水への溶け込みが増大する以前に高濃
度酸素を排出することが可能であり、その効果も図1の
実施例と同様である。
By the above-mentioned opening and closing operation of the control valve 11, oxygen whose volume expands with the load drop is detected by the pressure drop rate due to the load drop and discharged to the atmosphere, and as the temperature drops, the oxygen dissolves into the water supply. It is possible to discharge high-concentration oxygen before the pressure increases, and the effect is the same as that of the embodiment of FIG.

【0026】[0026]

【発明の効果】以上説明したように、本発明によれば、
発電プラントにおける復水・給水系の水質調整を、複合
中性水処理することによるプラント負荷変化時に発生す
る節炭器入口での酸素濃度上昇の要因となる脱気器器内
での高濃度酸素の拡散、溶け込みを防止することにより
安定した水質調整が可能となる。
As described above, according to the present invention,
High-concentration oxygen in the deaerator, which causes an increase in the oxygen concentration at the inlet of the economizer, which occurs when the load on the condensate and water supply system is adjusted in the power plant by changing the load on the plant due to combined neutral water treatment By preventing the diffusion and penetration of water, stable water quality adjustment becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の系統図。FIG. 1 is a system diagram of an embodiment of the present invention.

【図2】図1の設定値演算器の機能ブロック図。FIG. 2 is a functional block diagram of a set value calculator of FIG. 1;

【図3】図1の開閉演算器の機能ブロック図。FIG. 3 is a functional block diagram of the open / close arithmetic unit of FIG. 1;

【図4】本発明の他の実施例の系統図。FIG. 4 is a system diagram of another embodiment of the present invention.

【図5】図4の開閉演算器の機能ブロック図。FIG. 5 is a functional block diagram of the opening / closing arithmetic unit in FIG. 4;

【図6】従来の復水・給水系の系統図。FIG. 6 is a system diagram of a conventional condensate / water supply system.

【図7】図6の復水・給水系への酸素注入系統図。FIG. 7 is a diagram of an oxygen injection system to the condensate / water supply system of FIG. 6;

【図8】図6の脱気器内部構成図。8 is an internal configuration diagram of the deaerator of FIG.

【図9】図6の酸素挙動グラフを示す図。FIG. 9 is a view showing an oxygen behavior graph of FIG. 6;

【符号の説明】[Explanation of symbols]

1…復水器、2…復水ポンプ、3…復水脱塩装置、4…
復水昇圧ポンプ、5…低圧給水加熱器、6…脱気器、7
…給水ポンプ、8…高圧給水加熱器、9…節炭器、10
…ボイラ、11…調節弁、12…復水温度検出器、13
…圧力検出器、14…圧力変化率演算器、15…設定値
演算器、16…負荷信号、17,17a…開閉演算器、
18…温度変化率演算器。
1. Condenser, 2. Condensate pump, 3. Condensate desalination unit, 4.
Condensing pressure booster pump, 5 ... Low pressure feed water heater, 6 ... Deaerator, 7
... water feed pump, 8 ... high pressure feed water heater, 9 ... coal saving device, 10
... boiler, 11 ... control valve, 12 ... condensate temperature detector, 13
... pressure detector, 14 ... pressure change rate calculator, 15 ... set value calculator, 16 ... load signal, 17, 17a ... switching calculator,
18: Temperature change rate calculator.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 発電プラント等における復水・給水系の
水質調整装置において、酸素を注入した復水が流入する
脱気器に取り付けられこの脱気器内に滞留した高濃度の
酸素を排出する自動調節弁と、前記脱気器器内圧力を検
出する圧力検出器と、この圧力の時間変化率を演算する
圧力変化率演算器と、前記脱気器へ流入する復水の温度
を検出する温度検出器と、前記プラントの負荷相当の復
水温度および負荷が変化したときの復水温度の変化の遅
れ特性から前記自動調節弁の開温度値を出力する設定値
演算器と、この設定値演算器と前記圧力変化率演算器か
ら信号を受けて前記自動調節弁に開閉信号を出力する開
閉演算器とを備えたことを特徴とする水質調整装置。
1. A condensate in which oxygen is injected flows into a water quality control device of a condensate / water supply system in a power plant or the like.
The high-concentration gas attached to the deaerator
An automatic control valve for discharging oxygen, a pressure detector for detecting the pressure in the deaerator, and calculating a time change rate of the pressure
A pressure change rate arithmetic unit, wherein a temperature detector for detecting the temperature of the condensate flowing into the deaerator condensate load equivalent of the plant
Slow change in condensate temperature when water temperature and load change
Set value for outputting the open temperature value of the automatic control valve from the characteristics
A computing unit, the set value computing unit and the pressure change rate computing unit.
Output the open / close signal to the automatic control valve in response to the
A water quality adjustment device comprising a closed computing unit .
【請求項2】 発電プラント等における復水・給水系の2. A condensate and water supply system for a power plant or the like.
水質調整装置において、酸素を注入した復水が流入するCondensate infused with oxygen flows into the water quality control device
脱気器に取り付けられこの脱気器内に滞留した高濃度のThe high-concentration gas attached to the deaerator
酸素を排出する自動調節弁と、前記脱気器器内圧力を検Automatic control valve for discharging oxygen and pressure inside the deaerator
出する圧力検出器と、この圧力の時間変化率を演算するCalculate the pressure detector that emits and the time rate of change of this pressure
圧力変化率演算器と、前記脱気器へ流入する復水の温度A pressure change rate calculator and a temperature of the condensate flowing into the deaerator.
を検出する温度検出器と、この温度の時間変化率を演算Detects temperature and calculates the rate of change of this temperature over time
する温度変化率演算器と、前記圧力変化率演算器と前記Temperature change rate calculator, the pressure change rate calculator,
温度変化率演算器から信号を受けて前記自動調節弁に開Receives a signal from the temperature change rate calculator and opens the automatic control valve.
閉信号を出力する開閉演算器とを備えたことを特徴とすA switching operation unit for outputting a closing signal.
る水質調整装置。Water quality control device.
JP4193903A 1992-07-21 1992-07-21 Water quality adjustment device Expired - Lifetime JP2718858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4193903A JP2718858B2 (en) 1992-07-21 1992-07-21 Water quality adjustment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4193903A JP2718858B2 (en) 1992-07-21 1992-07-21 Water quality adjustment device

Publications (2)

Publication Number Publication Date
JPH0634104A JPH0634104A (en) 1994-02-08
JP2718858B2 true JP2718858B2 (en) 1998-02-25

Family

ID=16315662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4193903A Expired - Lifetime JP2718858B2 (en) 1992-07-21 1992-07-21 Water quality adjustment device

Country Status (1)

Country Link
JP (1) JP2718858B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008057888A (en) * 2006-08-31 2008-03-13 Mitsubishi Heavy Ind Ltd Water treatment method for steam plant

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01162192A (en) * 1987-12-18 1989-06-26 Hitachi Ltd Controlling of dissolved oxygen

Also Published As

Publication number Publication date
JPH0634104A (en) 1994-02-08

Similar Documents

Publication Publication Date Title
US4345438A (en) Deaerator level control
JP2718858B2 (en) Water quality adjustment device
JP2672729B2 (en) Water quality adjustment device
JPS6145157B2 (en)
JP3199851B2 (en) Water quality adjustment device
JP3572461B2 (en) Apparatus and method for preventing corrosion of boiler device
JP2004198006A (en) Iron ion crystallization restricting system and superheated steam plant
JPS5912287A (en) Shellfish-removing device for condenser cooling water
GB2083178A (en) Deaerator level control
JP2002098306A (en) Boiler equipment, and its operation method
JPH08152103A (en) Saturated drain apparatus
JP3067053B2 (en) Condenser
Ball Control of two-phase evaporating flows
JPH05115866A (en) Water quality control device
JPH09195713A (en) Moisture content separation heater
JPS5818510A (en) Feed water temperature controller for hot-water power generation equipment
JPH0223929Y2 (en)
JPH0337084B2 (en)
JPH06221779A (en) Power generating plant
JP2019190803A (en) Drain recovery system
JPS6364710B2 (en)
JPH0663607B2 (en) Turbine plant with feedwater heater drain injection device
JP2001342805A (en) Operation control method for water supply booster pump of steam power plant
JPS5851195B2 (en) condensate equipment
JPH0949606A (en) Variable pressure once-through boiler