JP2001342805A - Operation control method for water supply booster pump of steam power plant - Google Patents

Operation control method for water supply booster pump of steam power plant

Info

Publication number
JP2001342805A
JP2001342805A JP2000159926A JP2000159926A JP2001342805A JP 2001342805 A JP2001342805 A JP 2001342805A JP 2000159926 A JP2000159926 A JP 2000159926A JP 2000159926 A JP2000159926 A JP 2000159926A JP 2001342805 A JP2001342805 A JP 2001342805A
Authority
JP
Japan
Prior art keywords
deaerator
booster pump
npsh
water supply
effective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000159926A
Other languages
Japanese (ja)
Inventor
Hideo Tateishi
秀雄 立石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2000159926A priority Critical patent/JP2001342805A/en
Publication of JP2001342805A publication Critical patent/JP2001342805A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent functional loss of a water supply booster pump of a steam power plant at low cost and with good reliability. SOLUTION: The process value related to deaerator in the condensate supply system of the steam power plant, and a current value and a transition estimated value of effective NPSH of the water supply booster pump are computed and displayed on a central control board. When the effective NPSH and its transition estimated value of the water supply booster pump are below the sum of required NPSH of the water supply booster pump and a preset margin value, a target condensate flow obtained by computing and estimating a suitable condensate flow is displayed on the central control board, and an operator is forced to operate a deaerator water level control valve so that the effective NPSH of the water supply booster pump is not less than the sum of the required NPSH and the preset margin value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ポンプの運転制御
方法に関し、特に火力発電所や原子力発電所のようにタ
ービンで使用した蒸気を復水して蒸気発生器用給水とし
て使用する所謂蒸気発電プラントにおける給水ブースタ
ーポンプの運転制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the operation of a pump, and more particularly to a so-called steam power plant in which steam used in a turbine is condensed and used as feed water for a steam generator, such as a thermal power plant or a nuclear power plant. The present invention relates to a method for controlling the operation of a water supply booster pump.

【0002】[0002]

【従来の技術】火力発電所や原子力発電所においては、
ボイラ乃至原子炉容器(原子力ボイラとも言われる。)
で発生させた蒸気で、蒸気タービンを駆動し、その排蒸
気を復水器で凝縮して凝縮水(復水)とし、これをボイ
ラに戻して水を循環使用するのが一般である。図2に現
用の加圧水型原子力発電所の復水給水系統の一例が示さ
れている。これを概説すると、復水器1は図示しない蒸
気タービンから受け入れた蒸気を冷却水により凝縮さ
せ、水に戻す(復水)設備である。復水器1から出た復
水は、復水ポンプ3及び復水ブースターポンプ5により
昇圧される。昇圧された復水は、脱気器水位制御弁7及
び低圧給水加熱器(複数段ある。)9を経て脱気器11
に流入する。脱気器11では、低圧蒸気タービン(図示
しない。)の抽気により復水を加熱し、含まれていた気
体成分を除去する即ち脱気する。脱気された復水は下方
の脱気器タンク13に流下し、ここに一旦貯水される。
復水はこの後給水と称されるが、脱気器降水管15,給
水ブースターポンプ17及び給水ポンプ19を経て高圧
給水加熱器21に至り、更に蒸気発生器23の給水ノズ
ルに運ばれる。
2. Description of the Related Art In thermal power plants and nuclear power plants,
Boiler or reactor vessel (also called nuclear boiler)
In general, a steam turbine is driven by the steam generated in the above, and the exhaust steam is condensed in a condenser to form condensed water (condensed water), which is returned to a boiler to circulate water. FIG. 2 shows an example of a condensate water supply system of a working pressurized water nuclear power plant. In brief, the condenser 1 is a facility for condensing steam received from a steam turbine (not shown) with cooling water and returning it to water (condensation). The condensate flowing out of the condenser 1 is pressurized by the condensate pump 3 and the condensate booster pump 5. The pressurized condensate passes through a deaerator water level control valve 7 and a low-pressure feedwater heater (a plurality of stages) 9 to deaerator 11.
Flows into. In the deaerator 11, the condensate is heated by bleeding of a low-pressure steam turbine (not shown) to remove contained gas components, that is, to degas. The deaerated condensate flows down to the deaerator tank 13 below, where it is temporarily stored.
The condensed water is hereinafter referred to as water supply, and reaches the high-pressure water heater 21 through the deaerator downcomer 15, the water supply booster pump 17 and the water supply pump 19, and is further conveyed to the water supply nozzle of the steam generator 23.

【0003】更に詳述すると、脱気器水位制御弁7は、
脱気器タンク13の水位を、常に予め設定された値に保
持するものであり、又低圧給水加熱器9は一般にはシェ
ル・チューブ式熱交換器であり、復水をタービン抽気に
より加熱する。前述のように脱気器11でもタービン抽
気との直接接触熱交換により復水を昇温し、且つ復水中
の含有ガス成分(空気)を除去し、給水として使用でき
るようにする。高圧給水加熱器21はシェル・チューブ
式熱交換器であり、図示しない高圧タービンの抽気によ
り給水を加熱する。給水ミニマムフロー弁25は、蒸気
発生器23への給水量が低下したとき、給水ブースター
ポンプ17及び給水ポンプ19の最小流量を確保する。
給水ポンプ19による流量制御を常時適正に維持するに
は、最小流量の確保は重要である。
More specifically, the deaerator water level control valve 7 is
The water level in the deaerator tank 13 is always maintained at a preset value, and the low-pressure feed water heater 9 is generally a shell-tube heat exchanger, and heats condensate by turbine bleed. As described above, the deaerator 11 also raises the temperature of the condensed water by direct contact heat exchange with the turbine bleed air, and removes the gas component (air) contained in the condensed water so that it can be used as water supply. The high-pressure feed water heater 21 is a shell-tube heat exchanger, and heats the feed water by extracting air from a high-pressure turbine (not shown). The water supply minimum flow valve 25 secures the minimum flow rates of the water supply booster pump 17 and the water supply pump 19 when the amount of water supplied to the steam generator 23 decreases.
In order to always maintain the flow control by the water supply pump 19 properly, it is important to secure the minimum flow rate.

【0004】以上のような構成の復水給水系において、
給水ブースターポンプは常に正常に運転できるように配
置されている。即ち、通常の定格運転状態では、脱気器
11へ流入する復水の温度は160℃前後であり、脱気
器11内圧力は12Kg/cm2absであり、温度は190℃
(飽和温度)である。一方、脱気器タンク13の給水の
水面は、給水ブースターポンプ17の吸い込み口に対し
高い位置に設定され、給水ブースターポンプ17の押し
込み水頭(有効NPSH)が給水ブースターポンプの必
要NPSHを余裕を持って確保するようになっている。
有効NPSHが必要NPSH以下になると、給水ブース
ターポンプ17の吸い込み口で給水がフラッシュし、ポ
ンプ機能が失われるので、これを防止するためである。
In the condensate water supply system configured as described above,
The feedwater booster pump is arranged so that it can always operate normally. That is, in the normal rated operation state, the temperature of the condensate flowing into the deaerator 11 is around 160 ° C., the pressure in the deaerator 11 is 12 kg / cm 2 abs, and the temperature is 190 ° C.
(Saturation temperature). On the other hand, the water level of the supply water of the deaerator tank 13 is set at a position higher than the suction port of the water supply booster pump 17, and the pressure head (effective NPSH) of the water supply booster pump 17 has a margin for the necessary NPSH of the water supply booster pump. To secure.
When the effective NPSH becomes less than the required NPSH, the water supply is flushed at the suction port of the water supply booster pump 17 and the pump function is lost, so that this is prevented.

【0005】以上のような系において、通常の運転状態
では、脱気器圧力とポンプ吸い込み部の給水の飽和圧力
はほぼ等しく、何も問題はないが、落雷などにより発電
所が電力系統から切り離されると、タービン負荷は急減
する。負荷が急減すると、タービンへの流入蒸気は蒸気
加減弁により絞られ、タービン抽気圧力が瞬時に低下し
て低圧給水加熱器9及び脱気器11への加熱蒸気の供給
が無くなる。このため、脱気器11へ流入する復水の温
度が低下し、更に脱気器11での加熱が中断するため脱
気器11内の圧力が低下する。一方、蒸気発生器23は
負荷急減後も量は減少するが給水を必要とし、運転を続
ける。ところが給水ブースターポンプ17への給水は、
脱気器降水管15を流下して供給されるため、脱気器タ
ンク13から給水ブースターポンプ17の吸い込み口に
至るまで数十秒から数分の時間を要する。即ち、給水ブ
ースターポンプ17の吸い込み口には、数十秒から数分
前の脱気器タンク13の給水(脱気器タンクより温度が
高く、飽和圧力の高い給水)が流入することとなる。こ
のことは、給水ブースターポンプの有効NPSHを飽和
圧力差分だけ低下させることとなる。
In the above-described system, under normal operating conditions, the pressure of the deaerator and the saturation pressure of the supply water at the pump suction section are almost equal, and there is no problem. However, the power plant is disconnected from the power system due to lightning or the like. When this occurs, the turbine load drops sharply. When the load suddenly decreases, the steam flowing into the turbine is throttled by the steam control valve, the turbine bleed pressure instantaneously decreases, and the supply of the heating steam to the low-pressure feedwater heater 9 and the deaerator 11 is stopped. Therefore, the temperature of the condensate flowing into the deaerator 11 decreases, and the heating in the deaerator 11 is interrupted, so that the pressure in the deaerator 11 decreases. On the other hand, the amount of the steam generator 23 decreases even after the sudden decrease in the load, but the steam generator 23 needs water supply and continues to operate. However, the water supply to the water supply booster pump 17
Since it is supplied by flowing down the deaerator downcomer 15, it takes several tens seconds to several minutes from the deaerator tank 13 to the suction port of the water supply booster pump 17. That is, the water supply from the deaerator tank 13 (supply water having a higher temperature and a higher saturation pressure than the deaerator tank) from several tens of seconds to several minutes before flows into the suction port of the water supply booster pump 17. This will reduce the effective NPSH of the feedwater booster pump by the saturation pressure difference.

【0006】以上のようにして、有効NPSHが低下し
て必要NPSH以下になると、前述のように給水ブース
ターポンプ17の機能が喪失し、蒸気発生器23への給
水が中断される。即ち、蒸気発生器23はトリップする
から、運転再開には長い時間を要し、又配電網の維持に
種々問題を生ずる。このような問題の発生の可能性は従
来から知られており、大凡次のような対策が取られてき
た。 1.プラント計測装置により負荷急減を自動的に検出す
る。 2.脱気器水位制御弁7の開度を予め設定した値まで絞
り、脱気器11への復水流入量を制限し、脱気器圧力の
降下率を制限する。 3.他の目的で取り付けられている脱気器圧力制御弁
(図2では図示省略)を全開とし、プラント保持蒸気を
脱気器11へ流入させ、脱気器圧力の降下率を制限す
る。 4.給水ポンプミニマムフロー弁25を全開として脱気
器タンク13から給水ブースターポンプ17へ流入する
給水量を増加させ、脱気器降水管15での時間遅れを短
縮する。このようにして、負荷急減時の給水ブースター
ポンプ17の有効NPSHが確保される。
[0006] As described above, when the effective NPSH decreases and falls below the required NPSH, the function of the water supply booster pump 17 is lost as described above, and the water supply to the steam generator 23 is interrupted. That is, since the steam generator 23 trips, it takes a long time to restart the operation, and various problems occur in maintaining the power distribution network. The possibility of occurrence of such a problem has been known, and the following countermeasures have been taken. 1. The load drop is automatically detected by the plant measurement device. 2. The degree of opening of the deaerator water level control valve 7 is reduced to a preset value, the amount of condensate flowing into the deaerator 11 is limited, and the rate of decrease of the deaerator pressure is limited. 3. The deaerator pressure control valve (not shown in FIG. 2) attached for other purposes is fully opened to allow the steam retained in the plant to flow into the deaerator 11 to limit the rate of decrease in the deaerator pressure. 4. By fully opening the water supply pump minimum flow valve 25, the amount of water flowing into the water supply booster pump 17 from the deaerator tank 13 is increased, and the time delay in the deaerator downcomer 15 is reduced. In this way, the effective NPSH of the water supply booster pump 17 at the time of a sudden decrease in load is secured.

【0007】[0007]

【発明が解決しようとする課題】而して、前述のように
従来、取られていた給水ブースターポンプ17の有効N
PSHの確保の対策は、専ら負荷急減に対応したもので
ある。換言すれば、その対策で使用される設定値は、負
荷急減時の考え得る全ての状況を想定して決定されてお
り、その対策の有効性を確保するには、それらの全ての
状況についてシミュレーションを実施してその結果の妥
当性を確認しておく必要がある。そして、そのシミュレ
ーションは、 a.負荷急減前のプラント負荷、 b.負荷急減前の脱気器水位制御弁の開度、 c.脱気器加熱蒸気制御弁の運用 d.給水ポンプミニマムフロー弁の運用方法、 e.負荷急減前後の給水量、 等のパラメータをそれぞれ変更して実施する必要があ
り、そのケースの数は100を越えることもあるから、
多大の費用と時間を必要とする。そのシミュレーション
の結果の一例を図3に示す。又、前述のシミュレーショ
ンのケースは、全ての状態を想定したものではあるが、
人智には限りがあり、予想していない状況が生ずる虞も
ある。そのような場合には、予期しない結果を生ずるこ
とも否定できない。そして、前述の従来の対策では、負
荷急減時の給水ブースターポンプのNPSH確保対策制
御が動作したことは判るが、プラント運転員には有効N
PSHの値は表示されず、有効NPSHの確実な確保が
実感できず、不安感が発生する。更には、従来の給水ブ
ースターポンプのNPSH確保対策制御は必要NPSH
を直接制御するのではなく、前述の各対策を実施した結
果として有効NPSHの最低値が余裕を持って必要NP
SH以上にあるようにしようとするもので、適切な制御
であると完全には断定しがたい。又、前述の対策では、
負荷急減時に脱気器水位制御弁の弁開度を絞るのは有効
NPSHの確保には効果的であるが、一定開度とするた
め脱気器タンク貯水量の低下が大きすぎるという面もあ
る。従って、本発明の課題は、大きなシミュレーション
費用を要せず、又運転中にも有効NPSHの実際値が確
認できて信頼性に対する不安感を生じない蒸気発電プラ
ントの給水ブースターポンプの運転制御方法を提供する
ことである。
However, as described above, the effective N of the water supply booster pump 17 conventionally used is
The measures for securing PSH are exclusively for responding to a sudden decrease in load. In other words, the set values used in the countermeasures are determined by assuming all conceivable situations when the load suddenly drops, and in order to ensure the effectiveness of the countermeasures, simulations must be performed for all those situations. And confirm the validity of the results. And the simulation is: a. Plant load before load drop, b. Opening of the deaerator water level control valve before the load drops, c. Operation of the deaerator heating steam control valve d. Operation method of feed water pump minimum flow valve, e. It is necessary to change the parameters such as the amount of water supply before and after the load suddenly decreases, etc., and the number of cases may exceed 100.
It requires a great deal of money and time. FIG. 3 shows an example of the result of the simulation. In addition, although the above simulation case assumes all states,
People are limited, and unexpected situations may occur. In such a case, it cannot be denied that an unexpected result is produced. In the above-described conventional countermeasures, it can be understood that the NPSH securing countermeasure control of the feed water booster pump at the time of a sudden decrease in the load has been activated, but it is effective for plant operators.
Since the value of PSH is not displayed, it is not possible to reliably secure the effective NPSH, and anxiety occurs. Furthermore, NPSH securing countermeasure control of the conventional water supply booster pump is necessary.
Is not directly controlled, but as a result of implementing each of the above measures, the minimum value of the effective NPSH is
It is intended to be above SH, and it is difficult to completely determine that the control is appropriate. Also, in the above measures,
Reducing the valve opening of the deaerator water level control valve when the load suddenly decreases is effective in ensuring effective NPSH, but the constant decrease in the deaerator tank water storage amount is too large in some cases. . Therefore, an object of the present invention is to provide a method for controlling the operation of a feed water booster pump of a steam power plant which does not require a large simulation cost and which can confirm the actual value of the effective NPSH during operation and does not cause anxiety about reliability. To provide.

【0008】[0008]

【課題を解決するための手段】上述の課題を解決するた
め、本発明によれば、火力発電所や原子力発電所などの
蒸気発電プラントの復水給水系統に組み入れられている
給水ブースターポンプの運転に際しては、脱気器圧力、
前記脱気器に入る復水の流量と温度、前記脱気器から出
る給水流量、脱気器タンク内貯水の水位と温度、及び給
水ブースターポンプ吸い込み給水温度を含むプロセス値
により、該給水ブースターポンプの有効NPSH及びそ
の所定時間先の有効NPSHの推移を演算予測して中央
制御盤に表示すると共に、該給水ブースターポンプの有
効NPSH及びその推移予測値が該給水ブースターポン
プの必要NPSHと予め設定した余裕値の和を下回る場
合、適切な復水流量を演算予測して得られた目標復水流
量を中央制御盤に表示し、運転員に脱気器水位制御弁を
手動操作させて該給水ブースターポンプの有効NPSH
を前記必要NPSHと予め設定の余裕値の和以上になる
ようにする。又、該給水ブースターポンプの有効NPS
Hの低下が予想される負荷急減時には、繰り返し演算に
より該給水ブースターポンプの必要NPSHと予め設定
した余裕値の和を下回らない有効NPSHとなる目標復
水流量値を求め、該目標復水流量値のデータを脱気器水
位調整弁制御装置へ入力し、該給水ブースターポンプの
有効NPSHを所定範囲に維持する。
According to the present invention, there is provided, in accordance with the present invention, the operation of a feed water booster pump incorporated in a condensate water supply system of a steam power plant such as a thermal power plant or a nuclear power plant. At the time, deaerator pressure,
The feedwater booster pump is determined by process values including the condensate flow rate and temperature entering the deaerator, the feedwater flow rate exiting the deaerator, the water level and temperature of the water stored in the deaerator tank, and the feedwater booster pump suction feedwater temperature. The effective NPSH of the water supply booster pump and the transition of the effective NPSH of the predetermined time ahead are calculated and displayed on the central control panel, and the effective NPSH of the water supply booster pump and the predicted value thereof are set in advance as the required NPSH of the water supply booster pump. If it is less than the sum of the allowance values, the target condensate flow rate obtained by calculating and predicting the appropriate condensate flow rate is displayed on the central control panel, and the operator is allowed to manually operate the deaerator water level control valve so that the water supply booster Effective NPSH of the pump
Is set to be equal to or more than the sum of the required NPSH and a preset margin value. Also, the effective NPS of the water supply booster pump
When the load is expected to decrease sharply, a target condensate flow rate value that is an effective NPSH that does not fall below the sum of the required NPSH of the feed water booster pump and a preset margin value is obtained by repeated calculation. Is input to the deaerator water level control valve controller to maintain the effective NPSH of the feedwater booster pump in a predetermined range.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施形態を説明す
る。尚、本実施形態において、運転が制御される給水ブ
ースターポンプは、前述の図2に示した加圧水型原子力
発電所の復水給水系に設けられたものであるが、その他
の火力発電所の復水給水系にある給水ブースターポンプ
の運転にも適用可能であることは勿論である。本実施形
態においては、給水ブースターポンプの有効NPSHを
計算する有効NPSH演算制御装置(以下演算制御装置
と略す。)を使用するが、次のようなパラメータを演算
の入力として使用する。 i.復水流量Gc(Kg/sec) ii .脱気器流入復水温度Tc(℃) iii.脱気器降水管給水流量Gf(Kg/sec) iv.脱気器圧力Pd(Kg/m2abs) v.脱気器タンク貯水温度Td(℃) vi.給水ブースターポンプ吸い込み部の給水温度Tf
(℃) vii.脱気器タンク貯水水位Ld(m) そして、これらのパラメータは、流量、温度、圧力並び
に水位等通常の物理量であるので、通常の検出器を適所
に配設することにより信頼性良く検出できる。又、制御
の信頼性を高位に保つべく、冗長系を構成するようにそ
れぞれの検出器を複数設けても良い。
Embodiments of the present invention will be described below. In this embodiment, the feedwater booster pump whose operation is controlled is provided in the condensate water supply system of the pressurized water nuclear power plant shown in FIG. It is needless to say that the present invention is applicable to the operation of the water supply booster pump in the water supply system. In the present embodiment, an effective NPSH calculation control device (hereinafter abbreviated as calculation control device) for calculating the effective NPSH of the water supply booster pump is used, but the following parameters are used as inputs for the calculation. i. Condensate flow rate Gc (Kg / sec) ii. Deaerator inflow condensate temperature Tc (° C.) iii. Deaerator downcomer feedwater flow rate Gf (Kg / sec) iv. Deaerator pressure Pd (Kg / m 2 abs) v. Deaerator tank storage temperature Td (° C) vi. Feed water temperature Tf of feed water booster pump suction part
(° C) vii. Deaerator tank storage water level Ld (m) Since these parameters are ordinary physical quantities such as flow rate, temperature, pressure and water level, they can be detected with high reliability by arranging ordinary detectors in appropriate places. Further, in order to maintain high control reliability, a plurality of detectors may be provided so as to constitute a redundant system.

【0010】上述の演算制御装置の作用を説明する。 1)脱気器圧力Pdより給水の飽和温度及び比重量を常
時算出する。脱気器内の給水は飽和状態にあるから、蒸
気表のデータなどを記憶させておくことにより、給水の
飽和温度を演算で、温度から給水の比重量を算出する。 2)脱気器降水管の給水流量信号Gfより単位流量が流
れる度にその時間と脱気器圧力Pd1、給水の飽和温度
Td1、比重量Rd1を記録する。なお、単位流量とは、
脱気器降水管の内容積をN分割した量であり、N番前に
記録したデータ脱気器圧力PdN、飽和温度TdN、比重
量RdNがそのときの給水ブースターポンプの吸い込み
口のデータとなる。 3)前記データより現時点の給水ブースターポンプの必
要NPSHを次式から計算する。 有効NPSH = (Pds−Hk×Rk−Pss)/Rs………(1) ここで Pds=Pd0 :脱気器器内圧(飽和圧力) Pss=PdN :ポンプ吸い込み部流体の飽和圧
力 Pk =ΣRdN/N:脱気器降水管内流体の平均比重
量 Rs =RdN :ポンプ吸い込み部流体の比重量 Hk :脱気器タンク水面とポンプ吸い
込み部の高低差 4)脱気器タンク水位Ldより脱気器タンク内貯水容積
を演算し、次いで脱気器タンク内給水の比重量Rdより
脱気器タンク内復水量Wdを演算する。 5)総熱量計算により脱気器圧力の推移を予測する。但
し、ここでは復水流量Gc及び脱気器降水管給水流量G
fは変化しないものとする。現時点の脱気器及び脱気器
タンク内水総熱量は、 Qd = Wd × Td 単位時間t秒後の総熱量は Qdt=(Qd−Gc×Tc×t−Gf×Td×t)/(Wd+Gc×t−G
f×t) そして、単位時間t秒後の脱気器タンク内給水温度(飽
和温度)は、 Tdt=Qdt/(Wd+Gc×t−Gf×t) 次の単位時間t秒後の総熱量は、 Qdt1=(Qd+Gc×Tc×t×2−Gf×Td×t×2)/(Wd+
Gc×t2−Gf×t2) 次の単位時間t秒後の脱気器タンク内給水温度(飽和温
度)は、 Tdt1=Qdt1/(Wd+Gc×t×2−Gf×t×
2) 上記式の演算を繰り返して、脱気器タンク内給水温度の
推移を演算する。更に、給水温度より蒸気表の計算式よ
り脱気器圧力の推移を計算する。 6)前記脱気器圧力の推移と、前記2項及び3項の演算
を組み合わせて、給水ブースターポンプの有効NPSH
の推移を予測する。 7)前述のようにして得た有効NPSHの推移予測値
が、給水ブースターポンプの必要NPSHと予め設定し
た余裕値の和を下回った場合は、実復水流量より低い復
水流量を用いて前記5項及び6項の計算を繰り返し、最
低有効NPSHが必要NPSHと予め設定した余裕値の
和となる復水流量(目標復水流量)を算出する。尚、最
初に列記したプラント入力で演算に使用されていないデ
ータである脱気器タンク貯水温度及び給水ブースターポ
ンプ吸い込み部給水温度は、前記1項及び2項の演算結
果を比較し、装置が正常に作動しているか否かを確認す
る。以上のような演算に基づくシミュレーションの結果
の一例を図1に示す。
The operation of the arithmetic and control unit will be described. 1) The feed water saturation temperature and specific weight are constantly calculated from the deaerator pressure Pd. Since the feedwater in the deaerator is in a saturated state, the saturation temperature of the feedwater is calculated by storing data of a steam table and the like, and the specific weight of the feedwater is calculated from the temperature. 2) Water flow rate signal that time every time the unit flow rate flows from the Gf and deaerator pressure Pd 1 deaerator downcomers, saturation temperature Td 1 of the feed water, to record the specific weight Rd 1. The unit flow rate is
This is the amount obtained by dividing the internal volume of the deaerator downcomer by N. The data recorded before the Nth deaerator pressure Pd N , saturation temperature Td N , and specific weight Rd N correspond to the inlet of the feedwater booster pump at that time. Data. 3) From the above data, the required NPSH of the feedwater booster pump at the present time is calculated from the following equation. Effective NPSH = (Pds−Hk × Rk−Pss) / Rs (1) where Pds = Pd 0 : deaerator internal pressure (saturation pressure) Pss = Pd N : saturation pressure of pump suction part fluid Pk = ΣRd N / N: average specific weight of the fluid in the deaerator downcomer Rs = Rd N : specific weight of the fluid at the pump suction section Hk: height difference between the deaerator tank water surface and the pump suction section 4) From the deaerator tank water level Ld The water storage volume in the deaerator tank is calculated, and then the condensate water amount Wd in the deaerator tank is calculated from the specific weight Rd of the water supply in the deaerator tank. 5) The transition of the deaerator pressure is predicted by calculating the total calorific value. However, here, the condensate flow rate Gc and the deaerator downcomer down pipe feed water flow rate G
f does not change. The total heat quantity of water in the deaerator and deaerator tank at the present time is: Qd = Wd × Td The total heat quantity after unit time t seconds is Qd t = (Qd−Gc × Tc × t−Gf × Td × t) / ( Wd + Gc × t−G
f × t) Then, the deaerator tank water temperature (saturation temperature after the unit time t seconds) is, Td t = Qd t / ( Wd + Gc × t-Gf × t) total heat after the next unit time t seconds Is: Qd t1 = (Qd + Gc × Tc × t × 2-Gf × Td × t × 2) / (Wd +
Gc × t2−Gf × t2) The water supply temperature (saturation temperature) in the deaerator tank after the next unit time t seconds is: Td t1 = Qd t1 / (Wd + Gc × t × 2−Gf × t ×
2) The calculation of the above equation is repeated to calculate the transition of the supply water temperature in the deaerator tank. Furthermore, the transition of the deaerator pressure is calculated from the supply water temperature and the calculation formula of the steam table. 6) The effective NPSH of the feedwater booster pump is calculated by combining the transition of the deaerator pressure and the calculation of the above-mentioned items 2 and 3.
Predict the transition of. 7) If the predicted transition value of the effective NPSH obtained as described above is less than the sum of the required NPSH of the water supply booster pump and a preset margin value, the condensate flow rate lower than the actual condensate flow rate is used. The calculation of the terms 5 and 6 is repeated to calculate a condensate flow rate (target condensate flow rate) in which the minimum effective NPSH is the sum of the required NPSH and a preset margin value. The deaerator tank water storage temperature and the water supply booster pump suction part water supply temperature, which are the data not used in the calculation at the first plant input, are compared with the calculation results in the above items 1 and 2, and the apparatus is operated normally. Check if it works. FIG. 1 shows an example of a result of a simulation based on the above calculation.

【0011】以上のような演算結果に基づき、給水ブー
スターポンプの現時点の有効NPSH及び有効NPSH
の推移予測値を図示しない中央制御盤上に表示する。そ
して、給水ブースターポンプの有効NPSHが必要NP
SHと予め設定した余裕値との和を下回る場合は、脱気
器水位制御弁の開度を調整して脱気器に流入する復水量
を絞り、目標復水流量を中央制御盤上に表示し運転員に
脱気器水位制御弁の手動調整を指示する。又,上記目標
復水流量を脱気器水位制御弁制御装置に入力し、負荷急
減信号により脱気器水位制御弁の制御を復水流量制御に
切り替える。この場合は、運転員は、この装置の正常動
作を監視確認するのみで足りる。
Based on the above calculation results, the current effective NPSH and effective NPSH of the feed water booster pump
Is displayed on a central control panel (not shown). And the effective NPSH of the water supply booster pump is required NP
If the value is less than the sum of SH and the preset margin value, adjust the opening of the deaerator water level control valve to reduce the amount of condensate flowing into the deaerator and display the target condensate flow rate on the central control panel. Instruct the operator to manually adjust the deaerator water level control valve. Further, the target condensate flow rate is input to the deaerator water level control valve control device, and the control of the deaerator water level control valve is switched to the condensate flow rate control in response to a sudden load decrease signal. In this case, the operator need only monitor and confirm the normal operation of the device.

【0012】[0012]

【発明の効果】以上説明したように、本発明によれば、
蒸気発電プラントの復水給水系の脱気器関連のプロセス
値を検出して給水ブースターポンプの有効NPSHの現
在値及び有効NPSHの推移予測値を表示し、これに基
づき脱気器水位制御弁を手動調整又は自動調整するの
で、信頼性良く給水ブースターポンプ乃至は復水給水系
を運転することができる。又、本発明の運転方法を実施
するに際し、従来必要とした事前シミュレーションをし
なくても信頼性が確保でき、運転コストを大幅に削減す
ることができる。
As described above, according to the present invention,
The process value related to the deaerator in the condensate water supply system of the steam power plant is detected, and the current value of the effective NPSH of the water supply booster pump and the predicted transition value of the effective NPSH are displayed. Since the manual adjustment or the automatic adjustment is performed, the water supply booster pump or the condensate water supply system can be operated with high reliability. Further, when the operation method of the present invention is carried out, reliability can be secured without performing the prior simulation required conventionally, and the operation cost can be greatly reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態における運転制御結果を示す
グラフである。
FIG. 1 is a graph showing operation control results according to an embodiment of the present invention.

【図2】本発明方法が適用される蒸気発電プラントの一
例を部分的に示す系統図である。
FIG. 2 is a system diagram partially showing an example of a steam power plant to which the method of the present invention is applied.

【図3】従来の制御装置による運転制御結果を示すグラ
フである。
FIG. 3 is a graph showing an operation control result by a conventional control device.

【符号の説明】[Explanation of symbols]

1 復水器 3 復水ポンプ 5 復水ブースターポンプ 7 脱気器水位制御弁 9 低圧給水加熱器 11 脱気器 13 脱気器タンク 15 脱気器降水管 17 給水ブースターポンプ 19 給水ポンプ 21 高圧給水加熱器 23 蒸気発生器 DESCRIPTION OF SYMBOLS 1 Condenser 3 Condensate pump 5 Condensate booster pump 7 Deaerator water level control valve 9 Low pressure water heater 11 Deaerator 13 Deaerator tank 15 Deaerator downcomer 17 Water supply booster pump 19 Water pump 21 High pressure water Heater 23 Steam generator

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 蒸気発電プラントの脱気器圧力、前記脱
気器に入る復水の流量と温度、前記脱気器から出る給水
流量、及び脱気器タンク内貯水の水位を含むプロセス値
により、該給水ブースターポンプの有効NPSH及びそ
の所定時間先の有効NPSHの推移を演算予測して中央
制御盤に表示すると共に、該給水ブースターポンプの有
効NPSH及びその推移予測値が該給水ブースターポン
プの必要NPSHと予め設定した余裕値の和を下回る場
合、適切な復水流量を演算予測して得られた目標復水流
量を中央制御盤に表示し、運転員に脱気器水位制御弁を
操作させて該給水ブースターポンプの有効NPSHを前
記必要NPSHと予め設定の余裕値の和以上になるよう
に運転することを特徴とする蒸気発電プラントの給水ブ
ースターポンプの運転制御方法。
1. Process values including deaerator pressure of a steam power plant, condensate flow and temperature entering the deaerator, feedwater flow exiting the deaerator, and water level in the deaerator tank. The effective NPSH of the feed water booster pump and the transition of the effective NPSH at a predetermined time ahead are calculated and predicted and displayed on the central control panel, and the effective NPSH of the feed water booster pump and the predicted transition value thereof are required for the feed water booster pump. If it is less than the sum of the NPSH and the preset margin value, the target condensate flow rate obtained by calculating and predicting the appropriate condensate flow rate is displayed on the central control panel, and the operator operates the deaerator water level control valve. Operating the effective NPSH of the feed water booster pump so as to be equal to or more than the sum of the required NPSH and a preset margin value. Roll control method.
【請求項2】 蒸気発電プラントの脱気器圧力、前記脱
気器に入る復水の流量と温度、前記脱気器から出る給水
流量、及び脱気器タンク内貯水の水位を含むプロセス値
により、該給水ブースターポンプの有効NPSH及びそ
の所定時間先の有効NPSHの推移を演算予測して中央
制御盤に表示すると共に、該給水ブースターポンプの有
効NPSHの低下が予想される負荷急減時には、繰り返
し演算により該給水ブースターポンプの必要NPSHと
予め設定した余裕値の和を下回らない有効NPSHとな
る目標復水流量値を求め、該目標復水流量値のデータを
脱気器水位調整弁制御装置へ入力し、該給水ブースター
ポンプの有効NPSHを所定範囲に維持することを特徴
とする蒸気発電プラントの給水ブースターポンプの運転
制御方法。
2. Process values including the deaerator pressure of the steam power plant, the condensate flow and temperature entering the deaerator, the feedwater flow exiting the deaerator, and the level of water stored in the deaerator tank. The effective NPSH of the feed water booster pump and the transition of the effective NPSH at a predetermined time ahead are calculated and predicted and displayed on the central control panel, and when the load suddenly decreases, the decrease of the effective NPSH of the feed water booster pump is repeatedly calculated. To obtain a target condensate flow rate value which is an effective NPSH not less than the sum of the required NPSH of the feed water booster pump and a preset margin value, and inputs the data of the target condensate flow rate value to the deaerator water level adjusting valve control device. And controlling the effective NPSH of the feed water booster pump within a predetermined range.
JP2000159926A 2000-05-30 2000-05-30 Operation control method for water supply booster pump of steam power plant Withdrawn JP2001342805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000159926A JP2001342805A (en) 2000-05-30 2000-05-30 Operation control method for water supply booster pump of steam power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000159926A JP2001342805A (en) 2000-05-30 2000-05-30 Operation control method for water supply booster pump of steam power plant

Publications (1)

Publication Number Publication Date
JP2001342805A true JP2001342805A (en) 2001-12-14

Family

ID=18664193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000159926A Withdrawn JP2001342805A (en) 2000-05-30 2000-05-30 Operation control method for water supply booster pump of steam power plant

Country Status (1)

Country Link
JP (1) JP2001342805A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019143899A (en) * 2018-02-21 2019-08-29 三菱日立パワーシステムズ株式会社 Water supply system cleanup device and method
CN114646051A (en) * 2022-03-17 2022-06-21 国网湖南省电力有限公司 Automatic control method and system for water supply of wet-state operation boiler of supercritical thermal power generating unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019143899A (en) * 2018-02-21 2019-08-29 三菱日立パワーシステムズ株式会社 Water supply system cleanup device and method
JP7039781B2 (en) 2018-02-21 2022-03-23 三菱重工業株式会社 Water supply system cleanup equipment and methods
CN114646051A (en) * 2022-03-17 2022-06-21 国网湖南省电力有限公司 Automatic control method and system for water supply of wet-state operation boiler of supercritical thermal power generating unit

Similar Documents

Publication Publication Date Title
JP4253128B2 (en) Method and apparatus for cooling a low-pressure stage of a steam turbine
JP2010223579A (en) Single loop temperature regulation control mechanism
JPS5830560B2 (en) Water supply control equipment for nuclear reactor power plants
JP5783458B2 (en) Increased output operation method in steam power plant
JP2001342805A (en) Operation control method for water supply booster pump of steam power plant
JPH10292902A (en) Main steam temperature controller
JPH11311402A (en) Steam plant
KR102042653B1 (en) Apparatus for regulating flow rate of heat exchanger
CN110645560B (en) Method and system for preventing cavitation of water feeding pump of nuclear power station
JP4095837B2 (en) Power plant
JPH05296401A (en) Exhaust heat recoverying boiler system and its main steam temperature controller
JP2519282B2 (en) Deaerator water level control system
JPH09210301A (en) Emergency protective apparatus for fluidized bed boiler
JP2005139963A (en) Method and device for controlling degree of vacuum of air cooling type steam condensing device
JP2718858B2 (en) Water quality adjustment device
JPH09126409A (en) Method and device for temperature control of feed-water heater
JPS6246107A (en) Water-level controller
JPH01248098A (en) Operating device for small and short ranged load following of boiling water nuclear reactor
JPH0694208A (en) Water level controller for deaerator
JP2002267106A (en) Deaeration system for power plant
GB2083178A (en) Deaerator level control
JPH11326570A (en) Pressurizer pressure controller of nuclear fusion reactor plant cooling equipment
JPS62255704A (en) Drain controller for feedwater heater
JPH0223929Y2 (en)
JPH02176302A (en) Drain water level controller

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060508

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070606

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070607

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070807