JP4095837B2 - Power plant - Google Patents

Power plant Download PDF

Info

Publication number
JP4095837B2
JP4095837B2 JP2002176565A JP2002176565A JP4095837B2 JP 4095837 B2 JP4095837 B2 JP 4095837B2 JP 2002176565 A JP2002176565 A JP 2002176565A JP 2002176565 A JP2002176565 A JP 2002176565A JP 4095837 B2 JP4095837 B2 JP 4095837B2
Authority
JP
Japan
Prior art keywords
condensate
pump
deaerator
water level
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002176565A
Other languages
Japanese (ja)
Other versions
JP2004020069A (en
Inventor
カルロス 田島
哲也 迫田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002176565A priority Critical patent/JP4095837B2/en
Publication of JP2004020069A publication Critical patent/JP2004020069A/en
Application granted granted Critical
Publication of JP4095837B2 publication Critical patent/JP4095837B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Control Of Non-Electrical Variables (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば原子力発電プラントや火力発電プラントの復水給水系統における、脱気器水位制御弁の制御方法に関するものである。
【0002】
【従来の技術】
従来より、例えば原子力発電プラントや火力発電プラントにおいては、復水給水系統が採用されている。図2は、このような従来の発電プラントにおける復水給水系統の一例を模式的に示す図であり、原子力発電プラントの場合を例示している。同図において、図示しない原子炉からの熱により蒸気発生器1で発生した蒸気は、高圧蒸気タービン2さらには低圧蒸気タービン3を駆動し、これにより発電機4にて発電が行われる。なお、火力発電の場合は原子炉の代わりにボイラーが採用される。
【0003】
これら蒸気タービンにて発電に寄与した蒸気は、復水器5にて図示しない海水と熱交換され、凝縮し復水となって復水器5内に一時貯蔵される。復水器5内に一時貯蔵された復水は、互いに並列に配設された2台の復水ポンプ6により昇圧され、さらに、前記復水ポンプ6と直列に接続され互いに並列に配設された2台の復水ブースターポンプ7によりさらに昇圧される。なお、このような復水ポンプ或いは復水ブースターポンプを総称して復水系ポンプと呼ぶ。また、これらポンプの台数は、2台に限らず3台以上としても良い。
【0004】
そして、脱気器水位制御弁10を介して加熱器11で加熱された後、脱気器12へと流入する。脱気器12へ流入した復水は、給水ポンプ13により昇圧され、加熱器14で加熱された後、蒸気発生器1へ給水される。また図示しないが、給水ポンプ13に給水ブースターポンプを直列に接続しても良い。
【0005】
また、何らかの理由で電力負荷を降下させるいわゆる負荷ランバックを行う時には、原子炉(或いはボイラー)からの余分な熱を逃がすため、蒸気発生器1からの蒸気の一部を、蒸気タービンを介さずに弁15を介して復水器5へ排出する。このとき、復水器5の温度が急激に上昇しないように、復水器5からの復水で蒸気を冷やしつつ行う。具体的には、復水系ポンプ直後の復水の一部を、弁16およびスプレーノズル(図示省略)を介して減温器17へ供給し、ここで弁15を経てきた蒸気と混合して、タービンバイパスとして復水器5に排出する。
【0006】
ところで、同図に示したように、復水ポンプ6及び復水ブースターポンプ7は、それぞれ2台ずつ互いに並列に配設されている。そして、それぞれ2台のポンプが所定の流量を50%ずつ受け持ち、予備機を持たない構成となっている。このとき、復水ポンプ6或いは復水ブースターポンプ7の2台のポンプの内、いずれか1台がトリップすると、2台分の流量を1台で賄うことになるため、そのままでは運転を継続しているポンプは過流量状態となる。
【0007】
そこで従来、電力負荷を降下させて、運転を継続しているポンプの流量を減少させる制御を行うが、それだけでは、電力負荷が降下する途中に、運転を継続しているポンプは過流量となる恐れが高く、これを防止するために、脱気器水位制御弁10を、トリップと同時に所定の弁開度まで絞る制御方法が採用されている。
【0008】
【発明が解決しようとする課題】
しかしながら、上述したような従来の構成において、脱気器水位制御弁10の弁開度の設定値は、タービンバイパススプレーした際や、復水器スピルオーバー弁(不図示)を開いた際等のポンプ過流量を考慮して、安全側に設定する必要があった。ところが、このように、脱気器水位制御弁10の弁開度を安全側に取ると、それに合わせて負荷ランバック時の負荷減少幅を大きくしなければならなくなる。
【0009】
具体的には、電力負荷を例えば30%程度になるまで降下させるといったことになる。これについては、電力負荷減少に対しての原子炉やボイラーの追従性が悪いことや、電力系統全体への悪影響(例えば電圧変動や周波数変動等)が大きくなること等があり、問題となっていた。
【0010】
本発明は、このような問題点に鑑み、復水ポンプ或いは復水ブースターポンプのいずれか1台がトリップした際に行う負荷ランバックでは、残留ポンプを保護しながら最大限の復水量を脱気器に送ることができ、電力負荷の減少幅を少なくすることが可能な脱気器水位制御弁の制御方法、及びそれを用いた発電プラントを提供することを目的とする。
【0011】
【課題を解決するための手段】
上記目的を達成するために、本発明では、複数台で構成された復水系ポンプのいずれか1台がトリップした際に行う負荷ランバックでは、まず脱気器水位制御弁を絞り込んで脱気器の圧力低下を抑制し、しかる後に、前記復水系ポンプの残留ポンプが過流量とならないように、開度に制限をかけつつ前記脱気器水位制御弁を再び開き、前記脱気器内の水位を回復させる制御方法を採用する。
【0012】
また、前記復水系ポンプは、複数台で構成された復水ポンプ及びこれに直列に接続され複数台で構成された復水ブースターポンプより成り、前記復水ポンプ及び復水ブースターポンプ各々の出口の流量に基づき、前記脱気器水位制御弁の開度に制限をかける制御方法を採用する。
【0013】
また、前記復水系ポンプ直後の復水の一部を用いてタービンバイパススプレーする際に、前記復水系ポンプの出口の流量に基づき、前記脱気器水位制御弁の開度に制限をかける制御方法を採用する。
【0014】
また、前記いずれかに記載の脱気器水位制御弁の制御方法を採用する復水給水系統を備えた発電プラントとする。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照しながら説明する。図1は、本発明に係る発電プラントにおける復水給水系統の一実施形態を模式的に示す図であり、原子力発電プラントの場合を例示している。同図においては、前記従来例と共通する部分には同一の符号を付して、詳細な説明を適宜省略する。同図に示すように、本実施形態では、脱気器12にその内部の水位を検知する水位センサー18を設けている。また、復水ブースターポンプ7の出口には流量計19を設けており、復水ポンプ6の出口には流量計20を設けている。
【0016】
さて、復水ポンプ6或いは復水ブースターポンプ7の2台のポンプの内、いずれか1台がトリップすると、電力負荷を急減させる負荷ランバックが実行される。このとき、いわゆるNPSH(Net Positive Suction Head:正味有効吸込水頭)制御が働く。ここではまず、脱気器12に冷たい復水があまり入らないように、脱気器水位制御弁10を絞り込む。これにより、脱気器12内の圧力をできるだけゆっくりと降下させ、脱気器12から給水ポンプへの押込圧力の低下を抑制する。ちなみに、通常この給水ポンプへの押込圧力は、タービンの抽気によって12気圧程度に保たれているものである。
【0017】
ところが、脱気器水位制御弁10を絞ると、脱気器12内の水位が低下するので、この水位が許容限界を下回らないように、水位センサー18からの信号に基づいて、脱気器水位制御弁10を再び開けるが、このとき、脱気器12内の水位を上げることを優先させてしまうと、復水ポンプ6或いは復水ブースターポンプ7の残る1台が過流量となるので、これを防止するため、流量計19からの信号に基づき、脱気器水位制御弁10の開度に制限をかけ、徐々に水位が回復するようにする。
【0018】
また、特に復水ポンプ6の1台がトリップした際には、流量計20からの信号に基づき、脱気器水位制御弁10の開度に制限をかけることにより、上述したタービンバイパススプレーした際や、図示しない復水器スピルオーバー弁を開いた際においても、復水ポンプ6の過流量を防止することができる。このように、流量計19からの信号に基づく制御及び流量計20からの信号に基づく制御を併用することにより、脱気器水位制御弁10の開度制御をより正確に行うことができる。
【0019】
なお、図示しないが、復水ポンプ6或いは復水ブースターポンプ7からのトリップ信号を受けて、負荷ランバックを行い、流量計19及び20並びに水位センサー18からの信号に基づき、脱気器水位制御弁10の開度制御を行う制御部が設けられている。
【0020】
以上述べたように、本実施形態におけるような脱気器水位制御弁の制御方法を採用することにより、タービンバイパススプレーした場合でも復水流量を調節することができるため、復水ポンプ或いは復水ブースターポンプの過流量を防止することができる。加えて、常にポンプ性能上の最大流量(例えば定格の120%、実用的には115%)まで流すことが可能となるため、タービンバイパススプレーしないとき等には、従来の制御システムと比較して、脱気器への送水量を増やすことが出来るので、結果として電力負荷を多くとることが可能となる。
【0021】
具体的には、上記ポンプ1台トリップでの負荷ランバック時でも、電力負荷を通常時の50〜60%程度までとることができる。ちなみに、本実施形態における復水ポンプは定格の流量が3250m3 /hのものが採用され、復水ブースターポンプは定格の流量が2800m3 /hのものが採用される。そして、復水ブースターポンプ直後の流量は、通常5040t/h(比重0.991で換算)程度となっている。また、脱気器は貯水量が通常500〜600m3と比較的小型のものが採用される。勿論、これら具体的な数値には限定されるものではない。
【0022】
【発明の効果】
以上説明したように、本発明によれば、復水ポンプ或いは復水ブースターポンプのいずれか1台がトリップした際に行う負荷ランバック時に、残留ポンプを保護しながら最大限の復水量を脱気器に送ることができ、電力負荷の減少幅を少なくすることが可能な脱気器水位制御弁の制御方法、及びそれを用いた発電プラントを提供することができる。
【0023】
またこれにより、負荷ランバック時に原子炉やボイラーにかかる負担を低減することや、電力系統全体への悪影響を低減することが可能となる。
【図面の簡単な説明】
【図1】本発明に係る発電プラントにおける復水給水系統の一実施形態を模式的に示す図。
【図2】従来の発電プラントにおける復水給水系統の一例を模式的に示す図。
【符号の説明】
1 蒸気発生器
2 高圧蒸気タービン
3 低圧蒸気タービン
4 発電機
5 復水器
6 復水ポンプ
7 復水ブースターポンプ
10 脱気器水位制御弁
11 加熱器
12 脱気器
13 給水ポンプ
14 加熱器
15,16 弁
17 減温器(スプレーノズル内蔵)
18 水位センサー
19,20 流量計
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for controlling a deaerator water level control valve in, for example, a condensate water supply system of a nuclear power plant or a thermal power plant.
[0002]
[Prior art]
Conventionally, for example, in a nuclear power plant or a thermal power plant, a condensate water supply system has been adopted. FIG. 2 is a diagram schematically illustrating an example of the condensate water supply system in such a conventional power plant, and illustrates the case of a nuclear power plant. In the figure, the steam generated in the steam generator 1 by heat from a reactor (not shown) drives the high-pressure steam turbine 2 and further the low-pressure steam turbine 3, whereby the generator 4 generates power. In the case of thermal power generation, a boiler is used instead of a nuclear reactor.
[0003]
The steam that has contributed to power generation in these steam turbines is heat-exchanged with seawater (not shown) in the condenser 5, condensed, condensed into condensate, and temporarily stored in the condenser 5. The condensate temporarily stored in the condenser 5 is boosted by two condensate pumps 6 arranged in parallel with each other, and further connected in series with the condensate pump 6 and arranged in parallel with each other. The pressure is further increased by two condensate booster pumps 7. Such a condensate pump or a condensate booster pump is collectively referred to as a condensate pump. The number of these pumps is not limited to two, and may be three or more.
[0004]
Then, after being heated by the heater 11 through the deaerator water level control valve 10, it flows into the deaerator 12. The condensate that has flowed into the deaerator 12 is increased in pressure by the water supply pump 13, heated by the heater 14, and then supplied to the steam generator 1. Although not shown, a water supply booster pump may be connected in series to the water supply pump 13.
[0005]
In addition, when performing so-called load runback that lowers the power load for some reason, excess heat from the reactor (or boiler) is released, so that a part of the steam from the steam generator 1 is not passed through the steam turbine. The water is discharged to the condenser 5 through the valve 15. At this time, the steam is cooled by the condensate from the condenser 5 so that the temperature of the condenser 5 does not rise rapidly. Specifically, a part of the condensate immediately after the condensate system pump is supplied to the temperature reducer 17 via the valve 16 and the spray nozzle (not shown), where it is mixed with the steam that has passed through the valve 15, It discharges to the condenser 5 as a turbine bypass.
[0006]
By the way, as shown in the figure, two each of the condensate pump 6 and the condensate booster pump 7 are arranged in parallel with each other. Each of the two pumps takes a predetermined flow rate of 50% and does not have a spare machine. At this time, if one of the two pumps of the condensate pump 6 or the condensate booster pump 7 trips, the flow of the two will be covered by one, so the operation will continue as it is. The pump is overflowing.
[0007]
Therefore, conventionally, control is performed to reduce the flow rate of the pump that continues to operate by lowering the power load, but only by that, the pump that continues operation becomes overflowed while the power load is decreasing. In order to prevent this, a control method is adopted in which the deaerator water level control valve 10 is throttled to a predetermined valve opening simultaneously with a trip.
[0008]
[Problems to be solved by the invention]
However, in the conventional configuration as described above, the set value of the opening degree of the deaerator water level control valve 10 is a pump when turbine bypass spraying or when a condenser spillover valve (not shown) is opened. It was necessary to set it on the safe side in consideration of the excessive flow rate. However, when the valve opening of the deaerator water level control valve 10 is taken to the safe side as described above, the load reduction width at the time of load runback must be increased accordingly.
[0009]
Specifically, the power load is lowered to, for example, about 30%. This is a problem because the followability of nuclear reactors and boilers to the decrease in power load is poor, and adverse effects on the entire power system (for example, voltage fluctuations and frequency fluctuations) increase. It was.
[0010]
In view of such problems, the present invention is designed to deaerate the maximum amount of condensate while protecting the residual pump in the load runback performed when either one of the condensate pump or the condensate booster pump trips. It is an object of the present invention to provide a method for controlling a deaerator water level control valve that can be sent to a generator and can reduce a reduction range of an electric power load, and a power plant using the same.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, in a load runback performed when any one of a plurality of condensate pumps trips, the deaerator water level control valve is first throttled. After that, the deaerator water level control valve is opened again while limiting the opening so that the residual pump of the condensate pump does not become an excessive flow rate, and the water level in the deaerator is reduced. Adopt control method to recover.
[0012]
The condensate system pump is composed of a condensate pump composed of a plurality of units and a condensate booster pump composed of a plurality of units connected in series to the condensate pump. A control method for limiting the opening of the deaerator water level control valve based on the flow rate is adopted.
[0013]
Further, when turbine bypass spraying is performed using a part of the condensate immediately after the condensate system pump, a control method for limiting the opening of the deaerator water level control valve based on the flow rate at the outlet of the condensate system pump Is adopted.
[0014]
Moreover, it is set as the power plant provided with the condensate water supply system which employ | adopts the control method of the deaerator water level control valve in any one of the said.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram schematically illustrating an embodiment of a condensate water supply system in a power plant according to the present invention, and illustrates a case of a nuclear power plant. In the figure, parts common to those in the conventional example are given the same reference numerals, and detailed description thereof is omitted as appropriate. As shown in the figure, in this embodiment, the deaerator 12 is provided with a water level sensor 18 for detecting the water level inside. A flow meter 19 is provided at the outlet of the condensate booster pump 7, and a flow meter 20 is provided at the outlet of the condensate pump 6.
[0016]
Now, when either one of the two pumps of the condensate pump 6 or the condensate booster pump 7 trips, a load runback is executed to rapidly reduce the power load. At this time, so-called NPSH (Net Positive Suction Head) control works. Here, first, the deaerator water level control valve 10 is narrowed so that cold condensate does not enter the deaerator 12 much. Thereby, the pressure in the deaerator 12 is lowered as slowly as possible, and a decrease in the pushing pressure from the deaerator 12 to the water supply pump is suppressed. Incidentally, the pushing pressure into the feed water pump is normally maintained at about 12 atm by the extraction of the turbine.
[0017]
However, when the deaerator water level control valve 10 is throttled, the water level in the deaerator 12 decreases, so the deaerator water level is determined based on the signal from the water level sensor 18 so that the water level does not fall below the allowable limit. The control valve 10 is opened again. If priority is given to raising the water level in the deaerator 12 at this time, the remaining one of the condensate pump 6 or the condensate booster pump 7 will be overflowed. In order to prevent this, the opening of the deaerator water level control valve 10 is limited based on the signal from the flow meter 19 so that the water level gradually recovers.
[0018]
In particular, when one of the condensate pumps 6 is tripped, the above-described turbine bypass spraying is performed by limiting the opening of the deaerator water level control valve 10 based on the signal from the flow meter 20. Even when a condenser spillover valve (not shown) is opened, an excessive flow rate of the condenser pump 6 can be prevented. As described above, by using the control based on the signal from the flow meter 19 and the control based on the signal from the flow meter 20 together, the opening degree control of the deaerator water level control valve 10 can be performed more accurately.
[0019]
In addition, although not shown in figure, it receives the trip signal from the condensate pump 6 or the condensate booster pump 7, performs load runback, and controls the deaerator water level based on the signals from the flow meters 19 and 20 and the water level sensor 18. A control unit that controls the opening degree of the valve 10 is provided.
[0020]
As described above, by adopting the control method of the deaerator water level control valve as in the present embodiment, the condensate flow rate can be adjusted even when turbine bypass spraying is performed. Overflow of the booster pump can be prevented. In addition, it is always possible to flow up to the maximum flow rate in terms of pump performance (for example, 120% of the rating, and practically 115%). Since the amount of water supplied to the deaerator can be increased, it is possible to increase the power load as a result.
[0021]
Specifically, even at the time of load runback with one pump trip, the power load can be about 50 to 60% of the normal time. Incidentally, condensate pump in the present embodiment is employed as the flow rate of the rating of 3250m 3 / h, condensate booster pump is employed as the flow rate of the rating of 2800 m 3 / h. The flow rate immediately after the condensate booster pump is normally about 5040 t / h (converted with a specific gravity of 0.991). A deaerator having a relatively small water storage amount of usually 500 to 600 m 3 is employed. Of course, it is not limited to these specific numerical values.
[0022]
【The invention's effect】
As described above, according to the present invention, the maximum amount of condensate can be deaerated while protecting the residual pump at the time of load runback when either one of the condensate pump or the condensate booster pump trips. It is possible to provide a control method for a deaerator water level control valve that can be sent to a generator and can reduce the reduction range of the power load, and a power plant using the same.
[0023]
In addition, this makes it possible to reduce the burden on the nuclear reactor and the boiler during load runback, and to reduce adverse effects on the entire power system.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing an embodiment of a condensate water supply system in a power plant according to the present invention.
FIG. 2 is a diagram schematically showing an example of a condensate water supply system in a conventional power plant.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Steam generator 2 High pressure steam turbine 3 Low pressure steam turbine 4 Generator 5 Condenser 6 Condensate pump 7 Condensate booster pump 10 Deaerator water level control valve 11 Heater 12 Deaerator 13 Feed water pump 14 Heater 15, 16 Valve 17 Reducer (built-in spray nozzle)
18 Water level sensor 19, 20 Flow meter

Claims (1)

複数台で構成された復水ポンプ及びこれに直列に接続され複数台で構成された復水ブースターポンプより成る復水系ポンプのいずれか1台がトリップした際に行う負荷ランバック時、前記復水系ポンプ直後の復水の一部を用いてタービンバイパススプレーする際に、まず脱気器水位制御弁を絞り込んで脱気器の圧力低下を抑制し、しかる後に、脱気器の水位及び前記復水ポンプ及び前記復水ブースターポンプそれぞれの出口流量に基づき、前記脱気器の水位が低くなりすぎないように且つ前記復水系ポンプの残留ポンプが過流量とならないように、開度に制限をかけつつ前記脱気器水位制御弁を再び開き、前記脱気器内の水位を回復させる脱気器水位制御弁の制御方法を採用する復水給水系統を備えたことを特徴とする発電プラント。 During load runback to one any of the condensate system pumps the condensate pump and this constituted consisting condensate booster pump composed of a plurality of connected in series performed when tripped by a plurality, wherein the condensate system When performing turbine bypass spraying using a portion of the condensate immediately after the pump , the deaerator water level control valve is first throttled to suppress the pressure drop of the deaerator , and then the deaerator water level and the condensate are reduced. Based on the outlet flow rates of the pump and the condensate booster pump , while restricting the opening degree so that the water level of the deaerator does not become too low and the residual pump of the condensate pump does not become an excessive flow rate. the open deaerator water level control valve again, power plant, characterized in that it comprises a condensate water system employing the control method of the deaerator water level control valve that restored the water level in the deaerator.
JP2002176565A 2002-06-18 2002-06-18 Power plant Expired - Lifetime JP4095837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002176565A JP4095837B2 (en) 2002-06-18 2002-06-18 Power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002176565A JP4095837B2 (en) 2002-06-18 2002-06-18 Power plant

Publications (2)

Publication Number Publication Date
JP2004020069A JP2004020069A (en) 2004-01-22
JP4095837B2 true JP4095837B2 (en) 2008-06-04

Family

ID=31174833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002176565A Expired - Lifetime JP4095837B2 (en) 2002-06-18 2002-06-18 Power plant

Country Status (1)

Country Link
JP (1) JP4095837B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5982192B2 (en) * 2012-06-21 2016-08-31 株式会社東芝 Condensate water supply control device and condensate water supply cycle system
CN109739273B (en) * 2019-01-07 2021-10-12 阜阳华润电力有限公司 Power plant water system and power plant water system control method

Also Published As

Publication number Publication date
JP2004020069A (en) 2004-01-22

Similar Documents

Publication Publication Date Title
JPH06201891A (en) Device and method of controlling nuclear reactor
JP2006242083A (en) Reheat system for power generation plant
JP5787709B2 (en) HTGR steam power generation system
JPH056081B2 (en)
US4832898A (en) Variable delay reactor protection system
JP4095837B2 (en) Power plant
JP2001108201A (en) Multiple pressure waste heat boiler
JP5448883B2 (en) Once-through exhaust heat recovery boiler
JP2009180526A (en) Fuel pool water supply system
JPH044481B2 (en)
JP2685204B2 (en) Water supply pump control method and apparatus
JP4031872B2 (en) Water supply control method in a power plant using a drum boiler
JP4449620B2 (en) Nuclear power plant and operation method thereof
JP2523511B2 (en) Steam generator output controller
JP2839195B2 (en) Waste heat recovery boiler water supply control device
JPH0658161B2 (en) Waste heat recovery boiler
KR102253055B1 (en) Hydro Power Generation using surplus water of circulation water pump
JPH09210301A (en) Emergency protective apparatus for fluidized bed boiler
JP2679980B2 (en) Control device for water supply drain pump up system
JPS62106207A (en) Feedwater supply system in steam turbine plant
JP6678606B2 (en) Valve closing speed control device, boiling water nuclear power plant, and method of operating boiling water nuclear power plant
JPH10246795A (en) Water feeding and condensing facility in nuclear reactor
JPS6217121B2 (en)
JPS5819606A (en) Controller for liquid level of drain tank of moisture separator for steam generating plant
JPS588905A (en) Method of controlling feedwater for steam generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071112

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080310

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4095837

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term