JPS5912287A - Shellfish-removing device for condenser cooling water - Google Patents
Shellfish-removing device for condenser cooling waterInfo
- Publication number
- JPS5912287A JPS5912287A JP11982382A JP11982382A JPS5912287A JP S5912287 A JPS5912287 A JP S5912287A JP 11982382 A JP11982382 A JP 11982382A JP 11982382 A JP11982382 A JP 11982382A JP S5912287 A JPS5912287 A JP S5912287A
- Authority
- JP
- Japan
- Prior art keywords
- cooling water
- blow
- condenser
- inlet
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28B—STEAM OR VAPOUR CONDENSERS
- F28B11/00—Controlling arrangements with features specially adapted for condensers
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Farming Of Fish And Shellfish (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、火力、原子カプラントの復水器冷却水系に設
置された渦流を起こしてフィルタに付着した異物をブロ
ーチする除貝装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a shell removal device installed in a condenser cooling water system of a thermal power or nuclear couplant, which generates a vortex to broach foreign matter adhering to a filter.
復水器の冷却水源としては、はとんどが海水を使用して
おり、海棲生物も一緒になって復水器へ運ばれて来る。Most of the time, seawater is used as a cooling water source for condensers, and marine organisms are also carried to the condensers.
この海棲生物が復水器冷却管に付着するとプラント性能
低下につながるため、これを防止する上での一手段とし
て渦流フィルタ式の除貝装R(以下除貝装置と呼ぶ)が
ある。一般に除貝装置は、冷却水中に含まれる異物(海
棲生物等)を除去し、異物のない冷却水を復水器へ送り
込み、ある程度フィルタに異物が付着すると、差圧を検
出し、除貝装置人口弁を洗浄開度にして渦流を起こさせ
、異物をブローするものである。ここで従来の除貝装置
制御方法及び運転方法の概略を第1図によって説明する
。If these marine organisms adhere to the condenser cooling pipe, it will lead to a decline in plant performance, so one way to prevent this is to use a vortex filter type shell removal device R (hereinafter referred to as a shell removal device). In general, shell removal equipment removes foreign objects (marine organisms, etc.) contained in the cooling water, sends the foreign object-free cooling water to the condenser, and when a certain amount of foreign objects adhere to the filter, it detects the differential pressure and removes the shells. The device's artificial valve is set to the cleaning opening to create a vortex and blow away foreign matter. Here, a conventional method of controlling and operating a shell removal device will be outlined with reference to FIG.
復水器冷却水は、取水ピットから循環水ポンプlによシ
汲上げられ、冷却水供給管7を通シ復水器2へ送水され
る。復水器2でタービン排気と熱交換後、温度上昇した
冷却水は、冷却水戻り管8を通り放水ビットへ排水され
る。この間、復水器2人口側に設けられた除貝装置3で
冷却水に含まれる異物を連続的に除去している。ここで
除貝装置3内のフィルタに異物が多量に付着するとフィ
ルタ内外の差圧を差圧検知器6により検出し、ある所要
差圧にて大口弁4を洗浄開度、ブロー弁5を全開する信
号が送られ、フィルタに付着した異物は、渦流により取
り除かれ、ブロー管9全通して放水ピットへ排出される
。The condenser cooling water is pumped up from the water intake pit by the circulating water pump l, and is sent to the condenser 2 through the cooling water supply pipe 7. After exchanging heat with the turbine exhaust in the condenser 2, the coolant whose temperature has increased passes through the coolant return pipe 8 and is drained to the water discharge bit. During this time, foreign matter contained in the cooling water is continuously removed by a shell removal device 3 provided on the condenser 2 side. When a large amount of foreign matter adheres to the filter in the shell removal device 3, the differential pressure between the inside and outside of the filter is detected by the differential pressure detector 6, and at a certain required pressure, the large opening valve 4 is cleaned and the blow valve 5 is fully opened. A signal is sent, and the foreign matter adhering to the filter is removed by the vortex flow, passed through the entire blow pipe 9, and discharged to the water discharge pit.
一般に、このブロー量は、除去性能を満足する上で、除
貝装置3人口流量(復水器冷却水量)の約10%根度必
要といわれてお9、このブロー量が少ないと異物除去性
能が著しく低下するといわれている。そのために、除貝
装置3人口流量ヲ100%とした場合、いかなる運転条
件に於いても、ブロー量が10%以上となるようにブロ
ー管9をサイジングする必要がある。しかし乍ら、この
ような計画を行なう上では次の如き問題が生じて来る。In general, it is said that this blowing amount is required to be approximately 10% of the artificial flow rate (condenser cooling water amount) of the shell removal device 3 in order to satisfy the removal performance9. is said to be significantly reduced. Therefore, when the artificial flow rate of the shell removal device 3 is 100%, it is necessary to size the blow tube 9 so that the blow amount is 10% or more under any operating conditions. However, the following problems arise when carrying out such a plan.
海水レベルは、干満により大きく違い、ブロー水量を、
いかなる条件でも、冷却水量の10%を確保するとなれ
ば、当然、最低海水レベル(LWL)で設計する必要が
ある。一方、満潮になれば海水レベルが上がシ、その結
果として、除貝装置ブロ一点圧力が上が9ブロー水量は
その分増加することになる。この場合、復水器への冷却
水量が逆に減少するため、プラント性能の低下及び復水
器冷却水出入口温度差が太きくなシ温排水としての環境
問題にもつながって来る。これらの相互関係な第2図、
第3図、第4図、第5図を以って説明する。The seawater level varies greatly depending on the tide, and the amount of blow water varies depending on the ebb and flow.
Under any conditions, if 10% of the amount of cooling water is to be secured, it is naturally necessary to design at the lowest seawater level (LWL). On the other hand, at high tide, the seawater level rises, and as a result, the pressure at one point in the blow of the shell removal device rises, and the amount of water blown increases accordingly. In this case, the amount of cooling water to the condenser decreases, which leads to deterioration of plant performance and environmental problems due to the temperature difference between the outlet and outlet of the condenser cooling water becoming large and resulting in hot wastewater. Figure 2 shows these mutual relationships.
This will be explained with reference to FIGS. 3, 4, and 5.
第2図は、復水器冷却水系動水勾配線図であり、カーブ
■が海水レベルがHWL時を示し、カーブ■が海水レベ
ルがLWL時を示す。循環水ポンプ1は、どちらの海水
レベルでも、揚程が同じであるため、冷却水量も変わら
ない。一方除貝装置ブロ一点の圧力は海水レベルがHW
L時■の点であp、LWL時@の点となる。ここで、除
貝装置ブロー放水端は、異物排出のために海水レベルに
左右されない高さで押えられている。従って、ブロー水
量は、ブロ一点の圧力に左右される。第3図にブロ一点
順要圧力、システム抵抗とブロー量の関係を示す。H,
は、第2図では、@の点の圧力であり、この時ブロー量
10%としてシステム抵抗を決定しブロー管をサイジン
グする。ここで海水レベルが上昇し、ブロ一点所要圧力
が仮にHRまで上がったとすれば、ブロー量は、システ
ム抵抗とのバランス点となp約15%となる。その結果
、復水器冷却水量は逆に85%筐で減少することになυ
、復水器冷却水出入口温度差は大きくなる。第4図にそ
の関係を示す。復水器冷却水量が90%とした時の復水
器出入口温度差をΔT、とした場合、復水器冷却水量が
85%に減少すれば、復水器出入口温度差はΔT、まで
上昇する。復水器冷却水温度差は、温排水としての環境
問題にもなっている沈め、この点を考慮した計画が必要
となる。また第5図は、復水器冷却水量と復水器真空度
との関係を示したものであるが、本図にて明らかなよう
に、100%の冷却水量時に於ける真空度’r、 P
I とすれば、仮に80%の冷却水量まで減少したとす
れば、真空度はP、まで下がり、その結果としてプラン
ト性能低下を来たす。FIG. 2 is a diagram of the hydraulic gradient of the condenser cooling water system, where the curve ■ indicates when the seawater level is at HWL, and the curve ■ indicates when the seawater level is at LWL. Since the pumping head of the circulating water pump 1 is the same at either seawater level, the amount of cooling water does not change. On the other hand, the pressure at one point in the shell removal equipment blower is at seawater level HW.
The point ■ at L time is p, and the point @ at LWL. Here, the blow water discharge end of the shell removal device is held down at a height that is not affected by the seawater level in order to discharge foreign matter. Therefore, the amount of blow water depends on the pressure at one blow point. Figure 3 shows the relationship between the blow pressure required at one point, the system resistance, and the blow amount. H,
In FIG. 2, is the pressure at the point @, and at this time, the blow amount is set to 10% to determine the system resistance and size the blow tube. If the seawater level rises and the required pressure at one blow point rises to HR, the blow amount will be about 15%, which is the balance point with the system resistance. As a result, the amount of condenser cooling water decreased by 85% in the casing.
, the temperature difference between the condenser cooling water inlet and outlet becomes large. Figure 4 shows the relationship. If the condenser inlet and outlet temperature difference when the condenser cooling water amount is 90% is ΔT, if the condenser cooling water amount decreases to 85%, the condenser inlet and outlet temperature difference will increase to ΔT. . Differences in condenser cooling water temperature cause thermal wastewater to sink, which is also an environmental issue, and a plan that takes this point into consideration is required. Furthermore, Fig. 5 shows the relationship between the condenser cooling water amount and the condenser vacuum degree, and as is clear from this figure, when the cooling water amount is 100%, the vacuum degree 'r P
If the amount of cooling water is reduced to 80%, the degree of vacuum will drop to P, resulting in a decline in plant performance.
本発明の目的は、プラント性能低下の問題を解消した復
水器冷却水除貝装置を提供することにある。An object of the present invention is to provide a condenser cooling water shell removal device that eliminates the problem of deterioration in plant performance.
本発明の一実施例を第6図、第7図を以って説明する。An embodiment of the present invention will be described with reference to FIGS. 6 and 7.
第6図は、ブロ一点所要圧力、システム抵抗とブロー水
量との関係を示すが、まず第1条件である除貝装置性能
を満足する上でのブロー量確保は、第3図で説明した如
く、ブロ一点所要圧力H,で行なう。ここで海水レベル
に左右されずブロー量會常に一定に保つことができれば
、前述した問題が、全て解消されることになる。従って
海水レベルが上昇し、ブロ一点所要圧力がHzになった
場合でも、Hlの場合と同じブロー量にするためには、
ブローラインのシステム抵抗tのから■に増加させる必
要がある。その手段として、I(、とH,との差圧分を
ブロー弁を絞ることでシステム抵抗を■か■に増加させ
ることが可能である。第7図は、第6図で説明した内容
を具体的に説明するための復水器冷却水系統図である。Figure 6 shows the relationship between the pressure required at one blow point, the system resistance, and the amount of water blown.First of all, the amount of blowing required to satisfy the first condition, the performance of the shell removal device, is determined as explained in Figure 3. , at the required pressure H at one blow point. If the blow amount could be kept constant regardless of the seawater level, all of the above-mentioned problems would be solved. Therefore, even if the seawater level rises and the required pressure at one blow point becomes Hz, in order to achieve the same blow amount as in the case of Hl,
It is necessary to increase the system resistance of the blow line from t to . As a means of this, it is possible to increase the system resistance by a large amount by throttling the blow valve to compensate for the pressure difference between I(, and H). Figure 7 shows the content explained in Figure 6. It is a condenser cooling water system diagram for concretely explaining.
除貝装置の基本的な制御方法及び運転方法は、第1図で
説明した内容と同じであるが、新たに、復水器冷却水出
入口温度を検出して、その温度差によシ除貝装置ブロー
弁をコントロールする機能を追加したものである。今、
循環水ポンプ1によυ汲上げられた冷却水が、冷却水供
給管7を通シ、正規に復水器2に送られているとする。The basic control method and operation method of the shell removal device are the same as those explained in Fig. 1, but a new method is to detect the temperature of the condenser cooling water inlet and outlet, and to remove shells based on the temperature difference. It has an added function to control the blow valve of the device. now,
It is assumed that the cooling water pumped up by the circulating water pump 1 is normally sent to the condenser 2 through the cooling water supply pipe 7.
ここで、除貝装置3内のフィルタに異物が多量に付着し
、差圧検知器6が動作した場合、その信号は、大口弁4
及びブロー弁5に送られ、大口弁4は渦流を起こさせる
洗浄開度、ブロー弁5は全開となる。Here, if a large amount of foreign matter adheres to the filter in the shell removal device 3 and the differential pressure detector 6 operates, the signal will be transmitted to the large mouth valve 4.
The water is then sent to the blow valve 5, and the large mouth valve 4 is opened at a washing opening to generate a vortex flow, and the blow valve 5 is fully opened.
この際、ブロー量が必要量より多くなり、復水器冷却水
値が減少した場合、復水器熱負荷が一定であれば、復水
器冷却水出口温度が上昇する。そこで、復水器冷却水入
口側に設けられfc、温度検出器10及び、出口側に設
けられた温度検出器11によp、復水器冷却水出入口温
度全検知し、その信号を温度差調整器12に送る。温度
差調整器12は、規定温度差より大きい場合、ブロー弁
5を絞りコントロールする信号が送られる。ここで、予
め温度差調整器12の規定温度差を必要ブロー量lO%
を考慮した復水器冷却水量で、復水器温排水の条件とし
て定められた復水器冷却水出入口温度差に設定しておけ
ば、いかなる海水レベルになった場合でも、常に必要復
水器冷却水量を確保することができ、温排水としての環
境問題対策にも大きく貢献することが可能となる。At this time, if the blow amount becomes larger than the required amount and the condenser cooling water value decreases, the condenser cooling water outlet temperature will rise if the condenser heat load is constant. Therefore, the temperature detector 10 provided on the condenser cooling water inlet side and the temperature detector 11 provided on the outlet side detect the entire temperature of the condenser cooling water inlet and outlet, and the signal is used to detect the temperature difference. It is sent to regulator 12. When the temperature difference is larger than a specified temperature difference, a signal is sent to the temperature difference regulator 12 to throttle and control the blow valve 5. Here, the specified temperature difference of the temperature difference regulator 12 is set in advance to the required blow amount lO%.
If the condenser cooling water amount is set to the condenser cooling water inlet/outlet temperature difference determined as the condenser temperature drainage condition, no matter what the seawater level is, the required condenser will always be maintained. It is possible to secure the amount of cooling water, and it will also be possible to greatly contribute to countermeasures against environmental problems in the form of heated wastewater.
第1図は、従来の除貝装置付復水器冷却水系統図、第2
図は、復水器冷却水系の圧力分布を示した動水勾配線図
、第3図は、除貝装置ブロ一点圧力とブロー値の関係を
システム抵抗として示した説明図、第4図は、復水器冷
却水量と、出入口温差
度との関係図、第5図は、復水器冷却水量と復水ム
器真空度との関係図、第6図は、本発明の装置によるブ
ロー水値とブロ一点所要圧力、システム抵抗との関係図
、第7図は、本発明の一実施例でおる復水器冷却水除貝
装置を示す全体系統図である。
2・・・復水器、3・・・除貝装置、4・・・人口弁、
5・・・ブロー弁、6・・・差圧検出器、7・・・冷却
水供給管、9・・・ブロー管、10.11・・・温度検
出器、12・・・温めに図
θ s 10 15Figure 1 is a conventional condenser cooling water system diagram with a shell removal device;
The figure is a hydraulic gradient diagram showing the pressure distribution of the condenser cooling water system, Figure 3 is an explanatory diagram showing the relationship between pressure at one point of the shell removal equipment blow and blow value as system resistance, Figure 4 is: Figure 5 is a diagram showing the relationship between the amount of cooling water in the condenser and the temperature difference between the inlet and outlet. Figure 5 is a diagram showing the relationship between the amount of cooling water in the condenser and the degree of vacuum in the condenser chamber. Figure 6 is the value of blown water by the device of the present invention. FIG. 7 is an overall system diagram showing a condenser cooling water shell removal device according to an embodiment of the present invention. 2... Condenser, 3... Shell removal device, 4... Population valve,
5... Blow valve, 6... Differential pressure detector, 7... Cooling water supply pipe, 9... Blow pipe, 10.11... Temperature detector, 12... Diagram θ for warming s 10 15
Claims (1)
た渦流を起こしてフィルタに付着した異物を除去する除
貝装置において、 復水器冷却水出入口温度、またはこれら温度差に基づい
て除貝装置から冷却水の一部を排出するブロー弁を所要
開度にコントロールするようにしたことを特徴とする復
水器冷却水除貝装置。[Claims] In a shell removal device that is installed in a condenser cooling water system of a 1° thermal power nuclear couplant and removes foreign matter adhering to a filter by creating a vortex, the condenser cooling water inlet and outlet temperatures, or these temperatures. A condenser cooling water shell removal device characterized in that a blow valve for discharging a portion of cooling water from the shell removal device is controlled to a required opening degree based on the difference.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11982382A JPS5912287A (en) | 1982-07-12 | 1982-07-12 | Shellfish-removing device for condenser cooling water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11982382A JPS5912287A (en) | 1982-07-12 | 1982-07-12 | Shellfish-removing device for condenser cooling water |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5912287A true JPS5912287A (en) | 1984-01-21 |
Family
ID=14771129
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11982382A Pending JPS5912287A (en) | 1982-07-12 | 1982-07-12 | Shellfish-removing device for condenser cooling water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5912287A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2051031A1 (en) * | 2007-10-19 | 2009-04-22 | Envi Con & Plant Engineering GmbH | Cooling water system for power plants and industrial assemblies |
WO2012134525A1 (en) * | 2011-03-30 | 2012-10-04 | Crystal Lagoons Corporation Llc | Method and system for the sustainable cooling of industrial processes |
US9920498B2 (en) | 2013-11-05 | 2018-03-20 | Crystal Lagoons (Curacao) B.V. | Floating lake system and methods of treating water within a floating lake |
US9957693B2 (en) | 2014-11-12 | 2018-05-01 | Crystal Lagoons (Curacao) B.V. | Suctioning device for large artificial water bodies |
US10364585B2 (en) | 2013-12-12 | 2019-07-30 | Crystal Lagoons (Curacao) B.V. | System and method for maintaining water quality in large water bodies |
US11453603B2 (en) | 2019-06-28 | 2022-09-27 | Crystal Lagoons Technologies, Inc. | Low cost and sanitary efficient method that creates two different treatment zones in large water bodies to facilitate direct contact recreational activities |
-
1982
- 1982-07-12 JP JP11982382A patent/JPS5912287A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2051031A1 (en) * | 2007-10-19 | 2009-04-22 | Envi Con & Plant Engineering GmbH | Cooling water system for power plants and industrial assemblies |
WO2012134525A1 (en) * | 2011-03-30 | 2012-10-04 | Crystal Lagoons Corporation Llc | Method and system for the sustainable cooling of industrial processes |
KR20130135327A (en) * | 2011-03-30 | 2013-12-10 | 크리스탈 라군스 (큐라소) 비.브이. | Method and system for the sustainable cooling of industrial processes |
CN104925994A (en) * | 2011-03-30 | 2015-09-23 | 水晶池(库拉索)有限责任公司 | Method and system for the sustainable cooling of industrial processes |
EA026221B1 (en) * | 2011-03-30 | 2017-03-31 | Кристал Лагунс (Кюрасао) Б.В. | Method and system for the sustainable cooling of industrial processes |
EA030600B1 (en) * | 2011-03-30 | 2018-08-31 | Кристал Лагунс (Кюрасао) Б.В. | System for the sustainable cooling of industrial processes |
US9920498B2 (en) | 2013-11-05 | 2018-03-20 | Crystal Lagoons (Curacao) B.V. | Floating lake system and methods of treating water within a floating lake |
US10017908B2 (en) | 2013-11-05 | 2018-07-10 | Crystal Lagoons (Curacao) B.V. | Floating lake system and methods of treating water within a floating lake |
US10364585B2 (en) | 2013-12-12 | 2019-07-30 | Crystal Lagoons (Curacao) B.V. | System and method for maintaining water quality in large water bodies |
US9957693B2 (en) | 2014-11-12 | 2018-05-01 | Crystal Lagoons (Curacao) B.V. | Suctioning device for large artificial water bodies |
US11453603B2 (en) | 2019-06-28 | 2022-09-27 | Crystal Lagoons Technologies, Inc. | Low cost and sanitary efficient method that creates two different treatment zones in large water bodies to facilitate direct contact recreational activities |
US11649180B2 (en) | 2019-06-28 | 2023-05-16 | Crystal Lagoons Technologies, Inc. | Low cost and sanitary efficient system that creates two different treatment zones in large water bodies to facilitate direct contact recreational activities |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4345438A (en) | Deaerator level control | |
JPS5912287A (en) | Shellfish-removing device for condenser cooling water | |
JP4599200B2 (en) | Water pipe venting device | |
CN207435085U (en) | Minimize positive pressure distillation seawater desalination system | |
CN206709048U (en) | A kind of used heat sewage recovering system of waste heat boiler | |
JP2630882B2 (en) | Condensate recovery equipment | |
JPS599493A (en) | Foreign substance removing device for condenser | |
JPH0545076A (en) | Condenser water circulating device | |
JPS57184896A (en) | Foreign matter clearing device of heat exchanger | |
JPS6269095A (en) | Control unit for controlling flow amount of cooling water of condenser | |
JPS6223231B2 (en) | ||
SU1072644A1 (en) | Nuclear water-moderated water-cooled power plant | |
JPS60101204A (en) | Cleanup method in thermal power plant | |
GB2083178A (en) | Deaerator level control | |
JPH07217802A (en) | Waste heat recovery boiler | |
JPH06249586A (en) | Controller for circulating water system equipment | |
JPH10237451A (en) | Heat recovery apparatus of coke dry-quenching apparatus | |
JP2718858B2 (en) | Water quality adjustment device | |
JPH0719410A (en) | Drain recovery device | |
SU1163015A1 (en) | Regenerative and supply-line plant of extraction steam turbine | |
KR200309549Y1 (en) | Heat exchange system using DIP waste water | |
JPH09105312A (en) | Circulation water line | |
JPS6235033B2 (en) | ||
JPH0498070A (en) | Cooling device for feed water from deaerator | |
JPH09195713A (en) | Moisture content separation heater |