JPS6223231B2 - - Google Patents
Info
- Publication number
- JPS6223231B2 JPS6223231B2 JP11112082A JP11112082A JPS6223231B2 JP S6223231 B2 JPS6223231 B2 JP S6223231B2 JP 11112082 A JP11112082 A JP 11112082A JP 11112082 A JP11112082 A JP 11112082A JP S6223231 B2 JPS6223231 B2 JP S6223231B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- supply system
- condenser
- water
- sea area
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 30
- 239000013535 sea water Substances 0.000 claims description 26
- 239000002351 wastewater Substances 0.000 claims description 17
- 238000010248 power generation Methods 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 4
- 230000001276 controlling effect Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 239000003643 water by type Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 1
- 241001474374 Blennius Species 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000003657 drainage water Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 235000015170 shellfish Nutrition 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28B—STEAM OR VAPOUR CONDENSERS
- F28B11/00—Controlling arrangements with features specially adapted for condensers
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は発電設備における排水温度制御方法、
より詳しくは蒸気発生器、タービンジエネレータ
および復水器とからなり、該復水器に浅海域から
取水した海水を供給して復水作用をなさしめ、そ
の後浅海域に排水するようにした発電設備の排水
温度制御方法に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for controlling the temperature of waste water in power generation equipment,
More specifically, it consists of a steam generator, a turbine generator, and a condenser, and the condenser is supplied with seawater taken from a shallow sea area to perform a condensing action, and then drained into the shallow sea area. The present invention relates to a method for controlling the temperature of waste water in equipment.
〔従来の技術)
一般に火力発電所とか原子力発電所における発
電設備は、従来、概ね第1図に示すような構成を
採つている。すなわち、タービン1とジエネレー
タ2とにより一体的に形成されたタービンジエネ
レータ3を有し、このタービンジエネレータ3に
は蒸気発生器4と復水器5およびポンプ6が接続
されると共に、復水器5には発電所付近の浅海域
内に設けた取水口7とポンプ8をもつ給排水系が
接続されている。したがつて蒸気発生器4から得
られた高温高圧の蒸気は、タービンジエネレータ
3に送られて仕事をしたのち復水器5に導かれ、
この復水器5においてはポンプ8で取水口7から
取水された海水と熱交換されて復水し、ポンプ6
により再度蒸気発生器4に還流される。一方、復
水器5において熱交換後昇温した海水は取水口7
から離れた浅海域の海中に放流される。[Prior Art] In general, power generation equipment in thermal power plants or nuclear power plants has conventionally adopted a configuration generally as shown in FIG. 1. That is, it has a turbine generator 3 integrally formed with a turbine 1 and a generator 2, and a steam generator 4, a condenser 5, and a pump 6 are connected to the turbine generator 3, and a condensate A water supply and drainage system having a water intake 7 and a pump 8 provided in shallow water near the power plant is connected to the vessel 5. Therefore, the high-temperature, high-pressure steam obtained from the steam generator 4 is sent to the turbine generator 3 to do work, and then guided to the condenser 5.
In this condenser 5, the pump 8 exchanges heat with the seawater taken from the water intake 7 and condenses the water.
The steam is then refluxed to the steam generator 4 again. On the other hand, the seawater heated up after heat exchange in the condenser 5 is transferred to the water intake 7.
It is released into the sea in shallow waters far away from the sea.
このように発電所においては、仕事をしたのち
の蒸気を復水させるための冷却媒体として海水を
使用しており、通常5℃〜25℃も海水温度が復水
器から排出される熱交換に排水される温度が通常
更に5℃〜10℃程度まで昇温されているので、こ
のような温水を海水中へ放流すると例えばノリの
養殖や魚貝類の育成に大きな悪影響をおよぼす問
題を惹き起す不都合があつた。
In this way, in power plants, seawater is used as a cooling medium to condense the steam after work, and the seawater temperature is normally 5℃ to 25℃ due to the heat exchanger discharged from the condenser. The temperature of the wastewater is usually further raised to about 5℃ to 10℃, so discharging such hot water into seawater is inconvenient because it can have a major negative impact on the cultivation of seaweed and fish and shellfish, for example. It was hot.
この発明は従来のこのような欠点に鑑みなされ
たもので、復水器から排出される排水側の温度
と、浅海取水口付近の海水温度との温度差を検出
し、この温度差が環境問題を惹き起すことのない
程度、例えば2℃以上は昇温しないように制御す
るために、浅海域での海水温度よりも常に充分低
温度である深海域中の海水を取水し、この海水を
復水器の給排水系に混入して、排水温度の調整を
行なうようにしたものである。
This invention was made in view of the above-mentioned drawbacks of the conventional technology, and it detects the temperature difference between the temperature of the waste water discharged from the condenser and the seawater temperature near the shallow water intake, and this temperature difference can be considered as an environmental problem. In order to control the temperature so that it does not increase by more than 2 degrees Celsius, for example, seawater is taken from the deep sea, where the temperature is always sufficiently lower than the seawater temperature in the shallow sea, and this seawater is recycled. It is mixed into the water supply and drainage system of water appliances to adjust the temperature of the drainage water.
以下、この発明に係る蒸気復水装置の実施例に
つき、第2図および第3図を参照して詳細に説明
する。
Hereinafter, embodiments of the steam condensing device according to the present invention will be described in detail with reference to FIGS. 2 and 3.
第2図の実施例は復水器5の上流側において浅
海域から取水した海水に深海域からの海水を混入
して排水温度を調整する場合、第3図の実施例は
復水器5の下流側に深海域からの海水を混入して
同様に排水温度を調整する場合である。これらの
各図中、前記第1図と同一符号は同一または相当
部分を示しており、まず、第2図実施例では、前
記復水器5への給水系として、従来の浅海域内に
取水口7をもつポンプ8の第1の供給系aに開閉
制御バルブ9を挿入し、また一方、浅海よりも常
に充分低温度である深海域内に取水口10をもつ
ポンプ11および開閉制御バルブ12を有する第
2の供給系bを連結すると共に、復水器5の排水
側と取水口7付近の浅海域内とにそれぞれ温度検
出器13,14を配し、かつこれらの各温度検出
器13,14の温度差を検出する温度差検出器1
5を設け、この温度差検出器15の検出々力によ
り前記各開閉制御バルブ9,12を開閉制御し
て、各温度検出器13,14の検出温度差が可及
的小さく、例えば少なくとも±2℃以下に維持さ
れるようにしたものである。 The embodiment shown in FIG. 2 is used to adjust the drainage temperature by mixing seawater taken from shallow waters with seawater from deep waters on the upstream side of the condenser 5, and the embodiment shown in FIG. This is a case where seawater from the deep sea is mixed downstream and the temperature of the waste water is adjusted in the same way. In each of these figures, the same reference numerals as in the above-mentioned Fig. 1 indicate the same or corresponding parts. First, in the embodiment of Fig. 2, as a water supply system to the condenser 5, a water intake is installed in a conventional shallow sea area. An opening/closing control valve 9 is inserted into the first supply system a of a pump 8 having a pump 7, and a pump 11 having a water intake 10 and an opening/closing control valve 12 are located in the deep sea, which is always sufficiently lower in temperature than the shallow sea. In addition to connecting the second supply system b, temperature detectors 13 and 14 are arranged respectively on the discharge side of the condenser 5 and in the shallow water near the water intake 7, and Temperature difference detector 1 that detects temperature difference
5, and the opening/closing control valves 9, 12 are controlled to open and close by the detection force of the temperature difference detector 15, so that the temperature difference detected by the temperature detectors 13, 14 is as small as possible, for example at least ±2. It is designed to be maintained below ℃.
すなわち、具体的には、温度検出器13、換言
すると復水器5の排水側温度が、温度検出器1
4、換言すると取水口7付近の浅海域内海水の温
度よりも上昇したときには、両者の温度差を検出
器15により検出して、その検出々力により開閉
制御バルブ9の開度を減じて浅海域からの取水量
を少なくし、同時に開閉制御バルブ12の開度を
増してより低温である深海域からの取水量を多く
することで、復水器5への給水温度、ひいては相
対的に復水器5からの排水温度を低下させ、そし
てまた温度検出器13の温度が温度検出器14の
温度よりも下降したときには前記とは反対に作動
させ、これによつて排水が放流される浅海域内の
温度変化を可及的に少なくするように自動制御す
るのである。 That is, specifically, the temperature sensor 13, in other words, the temperature on the drain side of the condenser 5 is the same as that of the temperature sensor 1.
4. In other words, when the temperature of the seawater in the shallow area near the water intake 7 rises, the temperature difference between the two is detected by the detector 15, and the opening degree of the opening/closing control valve 9 is reduced by the detection force, and the temperature of the seawater in the shallow area is reduced. By reducing the amount of water taken from the deep sea area and at the same time increasing the opening degree of the opening/closing control valve 12 to increase the amount of water taken from the deep sea where the temperature is lower, the temperature of the water supplied to the condenser 5 and, as a result, the relative condensate The temperature of the waste water from the vessel 5 is lowered, and when the temperature of the temperature sensor 13 falls below the temperature of the temperature sensor 14, it is operated in the opposite manner to the above, thereby reducing the temperature in the shallow water area where the waste water is discharged. It automatically controls temperature changes to minimize them.
次に第3図は、例えば夏期と冬期のように比較
的大きな周期により海水温度が変化する場合に好
適な他の実施例によるものであつて、加減バルブ
9aを有する第1の供給系aの復水器5より上流
側に加減バルブ12aを有する第2の供給系bの
分岐管b′を、また、その下流側に開閉制御弁16
を有する第2の供給系bの分岐管b″をそれぞれ
連結して構成されている。そして、夏期と冬期の
ように比較的大きな周期により海水温度が変化す
る場合あらかじめ加減バルブ9a,12aを操作
し、復水器5に流入する海水流量すなわち取水側
温度と排水側温度とがほぼ一定となるように第1
の供給系aへ第2の供給系bの分岐管b′からの流
入量が設定される。そして、温度検出器13によ
る排水側温度が、温度検出器14による取水口付
近の海水温度よりも上昇したときには、温度差検
出器15の検出々力により開閉制御バルブ16の
開度を制御して、第2の供給系bの分岐管b″よ
り低温である深海域から取水された海水を排水中
に混入させ、この混入によつて排水温度を低下さ
せ、同様に排水が放流される浅海域内の温度変化
を可及的に少なくするように自動制御するのであ
る。 Next, FIG. 3 shows another embodiment suitable for the case where the seawater temperature changes in a relatively large period, such as in summer and winter, and shows a first supply system a having a regulating valve 9a. A branch pipe b' of the second supply system b having a control valve 12a on the upstream side of the condenser 5, and an on-off control valve 16 on the downstream side thereof.
The branch pipes b'' of the second supply system b having The first temperature is set so that the flow rate of seawater flowing into the condenser 5, that is, the temperature on the intake side and the temperature on the discharge side are almost constant.
The amount of inflow from the branch pipe b' of the second supply system b to the supply system a is set. When the temperature on the drainage side measured by the temperature sensor 13 rises higher than the seawater temperature near the water intake measured by the temperature sensor 14, the opening degree of the opening/closing control valve 16 is controlled by the detected force of the temperature difference detector 15. , the seawater taken from the deep sea area, which is colder than the branch pipe b'' of the second supply system b, is mixed into the wastewater, and this mixing lowers the wastewater temperature, and the wastewater is also discharged into the shallow sea area. This automatically controls temperature changes to minimize them as much as possible.
以上詳述したようにこの発明によれば、浅海域
からの取水を給水して復水を行ないかつこの給水
を浅海域に排出する発電設備において、より低温
である深海域からの供給系を併設させると共に、
復水器排水側の温度と浅海域取水口付近の温度と
の温度差を検出する検出器を設け、この温度差検
出器の検出々力により深海域からの供給系に配し
た開閉制御弁を制御して、深海域から取水された
より低温の給水量を調整し浅海域中に放流される
排水温度を、この浅海域取水口付近の海水温度に
可及的に均しくさせることができ、従つて排水放
流に伴なう環境問題を自動的に解消し得られる特
長があり、また夏期などにおいては、復水器によ
り多くの低温海水を供給することで、復水性能を
増加させ得られ、これによつて二次的に復水器内
の真空度を向上させ、発電効率を高め得るなどの
利点も併有するものである。
As detailed above, according to the present invention, in a power generation facility that takes water from a shallow sea area, condenses it, and discharges this supplied water to a shallow sea area, a supply system from the deep sea area where the temperature is lower is added. Along with letting
A detector is installed to detect the temperature difference between the temperature on the condenser drainage side and the temperature near the shallow water intake, and the detection power of this temperature difference detector is used to control the opening/closing control valve installed in the supply system from the deep sea. By controlling the amount of lower-temperature water taken in from the deep sea area, the temperature of the wastewater discharged into the shallow sea area can be made to be as equal as possible to the seawater temperature near the shallow sea water intake. This has the advantage of automatically resolving the environmental problems associated with wastewater discharge, and in the summer, it is possible to increase condensate performance by supplying more low-temperature seawater to the condenser. This also has the advantage of secondarily improving the degree of vacuum within the condenser and increasing power generation efficiency.
第1図は従来の発電設備の概要を示す構成図、
第2図および第3図はこの発明に係る排水温度制
御方法に使用される装置の各別の実施例概要を示
す構成図である。
a…第1の供給系、b…第2の供給系、3…タ
ービンジエネレータ、4…蒸気発生器、5…復水
器、7…浅海内取水口、8…ポンプ、9…開閉制
御弁、10…深海内取水口、11…ポンプ、1
2,16…開閉制御弁、13…排水側温度検出
器、14…浅海取水部側温度検出器、15…温度
差検出器。
Figure 1 is a configuration diagram showing an overview of conventional power generation equipment.
FIGS. 2 and 3 are block diagrams showing the outline of different embodiments of the apparatus used in the wastewater temperature control method according to the present invention. a...First supply system, b...Second supply system, 3...Turbine generator, 4...Steam generator, 5...Condenser, 7...Shallow sea water intake, 8...Pump, 9...Opening/closing control valve , 10...Deep sea water intake, 11...Pump, 1
2, 16...Opening/closing control valve, 13...Drainage side temperature detector, 14...Shallow water intake part side temperature detector, 15...Temperature difference detector.
Claims (1)
水器を備え、該復水器に浅海域から取水した海水
を供給して復水作用をなし、かつ前記復水器から
の排水を浅海域に放流するようにした発電設備に
おいて、前記浅海域から取水し復水器を経て浅海
域に排水する第1の供給系に、深海域から取水す
る第2の供給系を連結し、前記第2の供給系に開
閉制御弁を設けるとともに、前記第1の供給系の
取水温度および排水温度をそれぞれ検出する温度
検出器と、該各温度検出器の測定温度を比較する
温度差検出器とを設け、該温度差検出器からの信
号により前記開閉制御弁を操作することにより前
記第2の供給系から前記第1の供給系へ流入する
海水流量を制御して第1の供給系からの排水温度
を制御するようにしたことを特徴とする発電設備
における排水温度制御方法。1. Equipped with a steam generator, a turbine generator, and a condenser, the condenser is supplied with seawater taken from a shallow sea area to perform a condensing action, and the waste water from the condenser is discharged into the shallow sea area. In the power generation equipment, a second supply system that takes water from the deep sea area is connected to the first supply system that takes water from the shallow sea area and discharges water to the shallow sea area via a condenser, and the second supply system is provided with an on-off control valve, and is also provided with a temperature detector that detects the intake water temperature and the waste water temperature of the first supply system, and a temperature difference detector that compares the measured temperatures of each of the temperature detectors. Controlling the flow rate of seawater flowing into the first supply system from the second supply system by operating the opening/closing control valve in response to a signal from the difference detector, thereby controlling the temperature of the waste water from the first supply system. A method for controlling the temperature of wastewater in a power generation facility, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11112082A JPS591987A (en) | 1982-06-28 | 1982-06-28 | Steam condensing device in power plant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11112082A JPS591987A (en) | 1982-06-28 | 1982-06-28 | Steam condensing device in power plant |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS591987A JPS591987A (en) | 1984-01-07 |
JPS6223231B2 true JPS6223231B2 (en) | 1987-05-21 |
Family
ID=14552931
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11112082A Granted JPS591987A (en) | 1982-06-28 | 1982-06-28 | Steam condensing device in power plant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS591987A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4642992A (en) * | 1986-02-04 | 1987-02-17 | Julovich George C | Energy-saving method and apparatus for automatically controlling cooling pumps of steam power plants |
JP4706836B2 (en) * | 2005-11-09 | 2011-06-22 | 株式会社日立プラントテクノロジー | Cooling system |
JP5030834B2 (en) * | 2008-03-28 | 2012-09-19 | 中国電力株式会社 | Liquid temperature measuring means and condenser cooling equipment using the same |
JP2016014378A (en) * | 2014-07-03 | 2016-01-28 | 横河電機株式会社 | Water intake method, and water intake system |
-
1982
- 1982-06-28 JP JP11112082A patent/JPS591987A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS591987A (en) | 1984-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103884037A (en) | Circulating water heat exchange system of heating network | |
CN110160113A (en) | A kind of nuclear power plant's heating system and its heating method | |
JPS6223231B2 (en) | ||
JPS5963310A (en) | Compound plant | |
US4301650A (en) | Pressure regulating apparatus for a closed water circuit | |
CN212408620U (en) | Hydrophobic waste heat recovery device of thermal power plant's heat supply network based on low temperature economizer technique | |
CN204881237U (en) | Steam heat transfer system with reinforce heat transfer effect | |
CN111779964A (en) | Subcritical unit improved heat supply network drainage system and working method thereof | |
CN203704106U (en) | Heating heat supply network circulating water heat exchange system | |
CA1148934A (en) | Waste water heat recovery system | |
JPS5912287A (en) | Shellfish-removing device for condenser cooling water | |
CN220038415U (en) | Boiler blowdown waste heat recovery system | |
JPS5790555A (en) | Hot water supply equipment utilizing solar heat | |
RU2714020C1 (en) | Steam turbine plant with main condensate cooler on recirculation line thereof | |
JPS55143389A (en) | Heat pipe system waste heat recovery device | |
FR2307957A1 (en) | Heating and power station with steam turbine - has discharge point of turbine connected to second condenser | |
FR2343977A1 (en) | PROCESS AND INSTALLATION FOR HEATING PREMISES OF A BUILDING OR SIMILAR WITH SUPPLY OF SOLAR ENERGY | |
JPH0621539Y2 (en) | Desalination equipment using solar heat | |
JPS56132408A (en) | Turbine bypass device | |
JPS5671765A (en) | Solar system | |
SU1744277A1 (en) | Condenser technical water-supply system | |
SU1150384A1 (en) | Method of heat supply to consumers | |
JPH09126407A (en) | Cooling method of boiler blow water | |
RU1815343C (en) | Method of generation of additional power at power-and-heat supply plant with network heaters | |
SU1212110A1 (en) | Method of operation of heat-supply turbine plant |