JP2713909B2 - Ceramic plate manufacturing equipment - Google Patents

Ceramic plate manufacturing equipment

Info

Publication number
JP2713909B2
JP2713909B2 JP62144931A JP14493187A JP2713909B2 JP 2713909 B2 JP2713909 B2 JP 2713909B2 JP 62144931 A JP62144931 A JP 62144931A JP 14493187 A JP14493187 A JP 14493187A JP 2713909 B2 JP2713909 B2 JP 2713909B2
Authority
JP
Japan
Prior art keywords
extruded
firing
dried
extruder
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62144931A
Other languages
Japanese (ja)
Other versions
JPS63307170A (en
Inventor
堯 石川
Original Assignee
株式会社アイジー技術研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アイジー技術研究所 filed Critical 株式会社アイジー技術研究所
Priority to JP62144931A priority Critical patent/JP2713909B2/en
Publication of JPS63307170A publication Critical patent/JPS63307170A/en
Application granted granted Critical
Publication of JP2713909B2 publication Critical patent/JP2713909B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は粘土を主成分とする原料を連続押し出しによ
って中空状の連続体を形成し、これを短時間で迅速に乾
燥し、この連続体を走行カッタで定尺にカットした後に
短時間で長尺体を焼成するのに有用な焼成炉に送給して
中空陶板等を連続して製造する装置に関するものであ
る。 〔従来の技術〕 瓦、タイルは成形機から送出される連続成形体を短尺
に切断し、さらにプレス加工等して成形し、これを乾
燥、焼成するか、型に材料を充填し、これをプレスによ
って成形し、次に乾燥、焼成するかのいずれかの方法に
よって製造していた。また、乾燥時間を短縮しようとす
るマイクロ波加熱機、遠赤外線ヒータ装置を用いること
も知られていた。しかも焼成には温度コントロールが容
易でなくトンネルドライヤを使用していた。 〔発明が解決しようとする問題点〕 この装置においては、乾燥、焼成工程に数日を要する
ため、生産性、コスト、場所の関係で連続体で乾燥し、
これを所定長さに切断して焼成することができなかっ
た。また、従来装置では未硬化の瓦、タイルを表面から
乾燥する方法のため乾燥、焼成途中に瓦、タイルが捩じ
れたり、クラックが入ったりする不利があった。さら
に、従来装置では押し出された直後の押出成形体が柔ら
かいため短尺に切断して乾燥しなければならず長尺体を
形成できず、かつ、均質な瓦、タイルも大幅な許容誤差
の中での生産しかできなかった。また、従来の製造方
法、装置では例えば押出中空成形体を焼成炉の廃熱で乾
燥するため、押出中空成形体の表面から乾燥する方法な
ので乾燥に数日を要し、焼成に8時間位を費やす欠点が
あった。しかも、このように長時間を要する工程の関係
で従来のこの種方法では押出から乾燥、あるいは焼成炉
まで直線的な一貫ラインに構成することができなかっ
た。すなわち、このラインを製造した場合は、膨大な費
用と広大な用地と高額のエネルギー代を必要とする不利
があった。また、中空状の成形体を単にマイクロ波等で
乾燥し、乾燥時間を大幅に短縮しようとした場合は、中
空部の水蒸気圧の上昇と結露が中空部内に発生したり、
中空部内壁と外表面の乾燥度合のズレによって相当の肉
厚がないと爆裂、クラックの発生、反り、捩じれ等の変
形が生じる欠点があった。しかも、マイクロ波は押出成
形体の含水分を1%以下にするために温度を130℃以上
に上昇させる必要があるが、この温度まで上昇させるの
に相当の時間とエネルギーロスがあった。その他、マイ
クロ波の代わりに遠赤外線を用いて乾燥する方法もある
が、押出成形体を130℃以上に昇温するのはマイクロ波
よりはるかに短時間となる反面、乾燥時間が長くなる弱
点があった。また、トンネルドライヤでは乾燥体をスサ
を介して多段に積層して焼成するため、長尺体の積層に
多くの時間を費やし、かつ焼成に多数のスサを必要とす
る欠点があった。さらに、段階的に焼成して焼きしめす
る際にはさらにこのような長時間を要する不利があっ
た。 〔問題点を解決するための手段〕 本発明は、このような欠点を除去するため、押出成形
体に中空孔を形成するための中子を有し、かつ中子には
外部からエアを供給して成形体内部にエアを送り込む機
能を有し、粘土を主材とした原料を所定形状で連続して
押し出す押出成形機と、該押出成形機から押し出された
成形体を次工程に搬送する搬送機と、少なくともマイク
ロ波加熱機と遠赤外線ヒータとを直列に配して構成さ
れ、搬送された押出成形体を迅速乾燥する乾燥機と、該
乾燥機から送出される押出乾燥成形体を定尺に切断する
走行カッタと、次工程に搬送する取り出し機と、150〜7
00℃の予熱領域、800〜1300℃の焼成領域、600〜100℃
位の冷却領域とから構成され、該乾燥体を焼成する第1
次焼成炉と、温度を700〜1300℃に設定して該焼成され
た成形体に釉焼、本焼、絵付け、イングレを行う第2次
焼成炉とから構成し、長尺の乾燥成形体をクラック、捩
れ、反り、曲がりもなく、しかも短時間に、さらに安価
に、かつ大量に生産できる中空状の陶板の製造装置を提
供するものである。 〔実施例〕 以下に、図面を用いて本発明に係る陶板の製造装置の
一実施例について詳細に説明する。第1図は上記装置の
代表的な一例を示す説明図である。図において、は押
出成形機で粘土を主材とした原料を例えば第2図に示す
ような形状に押し出すものであり、その押出速度は押出
中空成形体Aの形状、幅、厚さによって異なるが約200
〜2000mm/minである。第2図に示すような押出中空成形
体Aを押し出す場合は、例えば第3図(a)、(b)に
示すような口金2と中子3を介して中空部を有する断面
形状の押出中空成形体Aを連続して押し出すものであ
る。さらに説明すると、中子3は複数個の出口部4と共
通部5に外部からエアを供給、もしくは内部からエア、
水蒸気を排気するための連結管6とから形成したもので
あり、出口部4は押出中空成形体Aの中空部aの断面形
状と同じ断面となる中空体に形成し、これを押出中空成
形体Aの中空部aの配列に対応するように共通部5と一
体に形成したものである。しかも、中子3は押出成形機
の押出口1′から押し出された粘土を支障なくその口
金2から所定形状の中空部aを有する連続体で押し出し
できるように先端3aから未端3bに亘って例えば流線形状
に形成したものである。また、中子3の中空部3cには外
部に設置したポンプ7からホース8を介してエア、ドラ
イエア、ウェットエア、温風等の1種以上を所要量供
給、もしくは中空部aの水蒸気を排出したりして押出中
空成形体Aの乾燥しにくい中空部aの乾燥を促進すると
共に、その際の変形等の悪影響を排除するように機能す
るものである。なお、前記した粘土は天然物であり、各
産地により成分が異なるものであり、これらの長所、短
所を相互に相殺させて所定の混合粘土を得るものであ
る。その一具体例としては、陶石、長石、カオリンナイ
ト、ハロイサイト、メタハロイサイト、木節粘土、蛙目
粘土、信楽粘土、シャモットなどを打ち砕き、水を加え
て練り上げたものである。また、この粘土は必要により
マグネットによって除鉄されることもある。は搬送機
で押出成形機から押し出される柔らかい押出中空成形
体Aを変形させず、かつ押出速度に同調あるいはほぼ同
調して次工程に搬送するものである。その構成例として
は第4図(a)〜(e)に示すようなものがあり、
(a)図はフリローラ10のみからなる搬送機、(b)
図は駆動ベルト11にフリローラ構造のバックアップロー
ラ12を設けた搬送機、(c)、(d)図は(a)、
(b)を組合わせた搬送機、(e)図は(a)図にお
いて、フリローラ10のいずれか一個を駆動ローラとした
搬送機である。13は乾燥機で水分を22〜15%位を含有
する押出中空成形体Aの水分を8〜1%位までに形状の
変化もなく5〜30分位の短時間で乾燥するものであり、
これは柔らかい押出中空成形体A(以下、押出成形体と
いう)の焼成した乾燥板Aを製造できる主因の1つであ
る。その具体例を例えば第5図(a)〜(d)に示す
と、(a)図はマイクロ波加熱機14と遠赤外線ヒータ装
置15を直列に配列した乾燥機13、(b)図は(a)図の
雰囲気に熱風ゾーン16より熱風を供給した乾燥機13
(c)図は(a)図の逆、(d)図は(a)図に熱風ゾ
ーン16を直列に配列した乾燥機13である。また、マイク
ロ波加熱機14はオーブン連続方式構造としたものであ
り、主に押出成形体Aの内部へ浸透して熱伝導に時間を
要することなくマイクロ波を熱エネルギーに変換し、数
秒から数分で発熱して粘土内の水分の5〜10%を蒸発せ
しめる能力を有するものである。なお、押出成形体Aは
水分が5〜8%位になるまで体積が収縮するが、それ以
下の水分になると体積の収縮が生じないものとなるた
め、押出成形体A、Bの搬送手段としてはフリローラ、
あるいはフリローラと押出成形体Aの収縮に対応したス
ピードの駆動ベルト(ネットベルトも含む)の組み合わ
せからなる。また、遠赤外線ヒータ15は押出成形体Aの
水分を1〜0%位までに低減するために押出成形体Aを
130℃以上まで上昇させるものであり、搬送手段はフリ
ローラ、駆動ローラ、駆動ベルトの1種以上からなる。
さらに熱風ゾーン16は目的に応じて60〜150℃位までの
温度の熱風を送風するものである。17は走行カッタで、
乾燥された押出成形体Aを所定長さに切断するものであ
る。18は取り出し機構で、乾燥され所定長さに切断され
た乾燥板Aを次工程に送給するためであり、押出速度よ
り早い速度で搬送できるものである。19は第1次焼成炉
でローラハースキルンからなり、乾燥板Aを連続して短
時間に700〜1300℃で焼成するものであり、温度、スピ
ードのコントロールが容易で、かつ従前のトンネルドラ
イヤに較べ大幅にコンパクト化したものである。すなわ
ち、第1次焼成炉19は第6図に示すようなものであり、
入口19aから出口19bに亘って山状の温度分布となり、予
熱領域20、焼成領域21、冷却領域22の順に一応区分して
構成し、予熱領域20の温度は150〜700℃、焼成領域21は
800〜1300℃、冷却領域22は600〜100℃位までとしたも
のである。勿論、粘土の種類、組成によっては各領域間
の温度設定が異なるものであり、かつ、各領域間の温度
も明確に区分するものではなく連続焼成の中での一応の
区分である。さらに、第1次焼成炉19について説明する
と、第1次焼成炉19は可燃ガス、例えばLPGガスを燃焼
させて乾燥板Aを焼成するものであり、そのためのバー
ナ(図示せず)の配列は前記各領域に対応して設けるも
のである。また、焼成炉19内の乾燥板Aの搬送手段とし
てはメッシュベルト、金属ローラ、セラミックローラ、
アルミナローラ等を使用するが、特に焼成領域21の範囲
は1300℃位まで温度が上昇するので例えば第7図に示す
ように金属主軸23、24間にアルミナローラ25を載置して
熱伝導を駆動源に伝達しないようにして搬送するもので
ある。なお、第1次焼成炉19の焼成領域21は耐火レンガ
等で炉を形成し、その中を直線的に連続して通過させる
ものであり、各機器、領域間には排気ダンパー(図示せ
ず)を配設しておくものである。26は第2次焼成炉で一
次焼成した焼成体Aを直接、あるいは常温に冷却した後
に700〜1300℃に焼成するものであり、炉の構成は第1
次焼成炉19と同じであり、釉焼、本焼、絵付け、イング
レ等を行うものである。 次に動作について説明する。 まず、信楽粘土とシャモットと減水剤と水からなる粘
土を原料として準備する。なお、その重量%は例えば信
楽粘土61.5%、シャモット18%、減水剤0.5%(商品
名:セルフロー、第一工業製薬社製)、水20%を土練機
(MP-100型宮崎鉄工社製)で混練したものである。ま
た、押出成形機としては押し出し能力100〜150l/hrの
型名MV-FM-A−1型(宮崎鉄工社製)を用いた。ポンプ
7はリングブロアで20〜50℃に送風時の圧縮により加温
されたドライエアをホース8を介して口金2の外部へ露
出させた連結管6に連結し、もう1つの図示しないホー
スをマイクロ波加熱機14のエア出入口に連結した構成と
した。また、遠赤外線ヒータ装置15は遠赤外線ヒータを
10メートル間に10個配列し、押出成形体A内部の水分を
表面に拡散して脱水を迅速化し、水分を1%以下まで低
減しうるものである。さらに押出成形機の押出速度は
200mm/minで第2図に示す断面で押し出すものとし、長
さ900mm、3030mmに押出成形体Aを切断するとし、かつ
口金2から走行カッタ17までのラインの直線距離は15m
とした。勿論、このラインの長さは押出成形体Aの形
状、大きさ、厚さに対応して設定するものである。ま
た、第1次焼成炉19、第2次焼成炉26は組成に合致した
温度曲線で最高温度を1200℃、1000℃に設定されてい
る。なお、押出成形体Aのパスラインは同じ高さにあ
り、かつ、搬送機の移動速度は押出速度より幾分速い
速度となるように設定した。これは押出成形体Aが柔ら
かいのに押圧が付加され、変形するのを防止するためで
ある。そこで、粘土を主材とした原料は押出成形機
ら第2図に示す断面で連続して搬送機上に押し出され
る。押し出された押出成形体Aは前記速度でマイクロ波
加熱機14に送給され、マイクロ波加熱機14の被加熱空間
を通過中にマイクロ波とエア等によって押出成形体Aの
中空部aと外表面に送給されるエア等によってマイクロ
波加熱により発生する大量の水蒸気を中空部aの内外と
も同時に吹き払って常に蒸発しやすい環境にし、結露の
発生を排除すると共に、柔らかい押出成形体Aを短時間
の間に剛性を平均に上昇させ、クラック、反り、オーバ
ヒートによる爆裂のないようにし、かつ押出成形体Aの
含水分の1/3位を5〜10分位で蒸発させ、その出口から
遠赤外線ヒータ装置15に送給し、含水分を1%以下に乾
燥させ、走行カッタ17に送給し、乾燥した連続帯状の押
出成形体Aを所定長さに切断した。そして、押出成形体
Aは押し出しから切断まで約15〜30分位の短時間に、か
つ連続体のまま乾燥した。なお、単にマイクロ波を用い
て押出成形体Aを加熱した際は短時間の間に内部から急
加熱されるため爆裂と結露による悪影響がひどく、実用
とならなかった。次に、所定長さ、例えば606〜7272mm
位に切断された乾燥板A′を取り出し機構18を介して第
1次成炉19に送給し、予熱→焼成→冷却して出口から焼
成体A″として送出し、次に1000℃以下に冷却して絵
付、施釉して第2次焼成炉26に送給し、100℃で焼成
し、製品としたものである。なお、焼成時間は乾燥板
A′の板厚、大きさ、長さによって異なるが、送り、温
度コントロール等で約30分〜3時間位である。また、こ
の装置で製造した陶板はクラック、反り、捩じれ、爆裂
もなく、所定長さとなっていた。 以上説明したのは本発明に係る装置の一実施例にすぎ
ず、第1図において一点鎖線で示す位置に施釉機、絵付
機、印刷機を配設したりすることもできる。また、押出
成形体A、Bは第8図(a)〜(m)、第9図(a)、
(b)、第10図(a)、(b)に示すように形成するこ
ともできる。なお、第10図(a)、(b)は押出成形体
Aの裏面にエア抜き穴、スリットを形成したものであ
る。 〔発明の効果〕 上述したように、本発明に係る陶板の製造装置によれ
ば、粘土の押し出し、水分の低減、乾燥、焼成、冷却、
焼成を直線ラインで、かつ、短時間内にし、しかも高速
で長尺体として製造しうる大きな特徴がある。また、本
発明では水分を22〜15%位(重量比)含有した中空押出
成形体では2段階の加熱と押出中空成形体の中空部、露
出面、被加熱空間にエア等を送風する等することにより
加熱時に大量に発生する水蒸気、結露水等を押出中空成
形体の内外、雰囲気から排除し、より乾燥しやすい環境
とすることにより乾燥時のクラック、反り、捩じれ、爆
裂もなく、かつ連続体で迅速に乾燥できる特徴がある。
また、生産性は従前の数日を要したスピードに対し、10
〜60分で乾燥し、次に所定長さに乾燥板を切断し、これ
を60分〜6時間位で2度焼成できる特徴がある。さら
に、押出中空成形体の体積は乾燥時に押出時に比べ1割
以上収縮するが、それによる押出中空成形体への悪影響
をフリローラと駆動ベルト等で吸収し製造できる利点が
ある。また、本発明では押し出しから乾燥までを直列に
配列したため、長尺体、連続体を迅速に乾燥できる特徴
がある。さらに、焼成した押出成形体に施釉を薄く、か
つ正確にホウロウ等を形成できるため高価な釉薬を低減
して使用できる特徴がある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention forms a hollow continuous body by continuously extruding a raw material containing clay as a main component, and quickly and quickly dry the hollow continuous body. The present invention relates to an apparatus for continuously manufacturing hollow ceramic plates and the like by cutting into a baking furnace useful for baking a long body in a short time after cutting into a fixed length with a traveling cutter. [Conventional technology] For tiles and tiles, a continuous molded product sent from a molding machine is cut into short lengths, and further molded by pressing or the like, and then dried and fired, or a mold is filled with a material. It was manufactured by pressing, then drying and firing. It has also been known to use a microwave heater and a far-infrared heater to shorten the drying time. Moreover, temperature control was not easy for firing, and a tunnel dryer was used. [Problems to be Solved by the Invention] In this apparatus, since drying and baking steps require several days, productivity, cost, and drying in a continuous body in relation to location,
It could not be cut into a predetermined length and fired. Further, in the conventional apparatus, there is a disadvantage that the tile and the tile are twisted or cracked during drying and firing because the method of drying the uncured tile and the tile from the surface. Furthermore, in the conventional apparatus, the extruded body immediately after being extruded is soft, so it must be cut and dried to form a long body. Could only be produced. Further, in the conventional production method and apparatus, for example, since the extruded hollow molded body is dried by waste heat of a firing furnace, it is a method of drying from the surface of the extruded hollow molded body, so it takes several days to dry, and about 8 hours for firing. There was a drawback to spend. In addition, due to such a process requiring a long time, this type of conventional method cannot form a linear integrated line from extrusion to drying or firing furnace. That is, when this line is manufactured, there is a disadvantage that it requires enormous cost, vast land, and expensive energy cost. Also, if the hollow molded body is simply dried by microwaves or the like and the drying time is to be significantly reduced, an increase in the water vapor pressure and condensation in the hollow portion may occur in the hollow portion,
If the inner wall of the hollow portion and the outer surface are not properly dried due to misalignment between the inner wall and the outer surface, deformation such as explosion, generation of cracks, warpage, and twisting occurs. Moreover, in order to reduce the moisture content of the extruded product to 1% or less, it is necessary to raise the temperature of the microwave to 130 ° C. or higher. However, it takes considerable time and energy loss to raise the temperature to this temperature. In addition, there is a method of drying using far-infrared rays instead of microwaves, but raising the temperature of the extruded product to 130 ° C or more is much shorter than microwaves, but the weak point is that drying time is longer. there were. Further, in the tunnel dryer, since the dried bodies are stacked in multiple stages through the soot and baked, there are drawbacks that a lot of time is required for laminating the long body and a large number of sours are required for firing. Further, there is a disadvantage that such a long time is required when firing by baking step by step. [Means for Solving the Problems] The present invention has a core for forming a hollow hole in an extruded product, and air is supplied to the core from the outside in order to eliminate such disadvantages. An extruder for continuously extruding raw materials mainly composed of clay in a predetermined shape, and conveying the extruded product from the extruder to the next step. A transporter, at least a microwave heater and a far-infrared heater are arranged in series, and a dryer for rapidly drying the transported extruded body, and an extruded dry molded body delivered from the dryer are defined. Traveling cutter for cutting into length, take-out machine to be transported to the next process, 150 ~ 7
00 ° C preheating area, 800-1300 ° C firing area, 600-100 ° C
And a first cooling region for firing the dried body.
A long firing molded body comprising a second firing furnace and a second firing furnace for setting the temperature at 700 to 1300 ° C. and performing glaze firing, main firing, painting, and inglazing on the fired molded body. It is intended to provide an apparatus for manufacturing a hollow ceramic plate which can be produced in large quantities in a short time, at a low cost, without cracks, twists, warpages or bendings. [Embodiment] Hereinafter, an embodiment of a porcelain plate manufacturing apparatus according to the present invention will be described in detail with reference to the drawings. FIG. 1 is an explanatory view showing a typical example of the above apparatus. In the drawing, reference numeral 1 denotes an extruder for extruding a raw material mainly composed of clay into, for example, a shape as shown in FIG. 2, and the extrusion speed varies depending on the shape, width and thickness of the extruded hollow molded body A. Is about 200
~ 2000 mm / min. In the case of extruding the extruded hollow molded article A as shown in FIG. 2, for example, an extruded hollow molded article having a hollow portion through a base 2 and a core 3 as shown in FIGS. The molded body A is continuously extruded. More specifically, the core 3 supplies air to the plurality of outlets 4 and the common part 5 from outside, or air from inside,
The outlet 4 is formed in a hollow body having the same cross-section as the cross-sectional shape of the hollow part a of the extruded hollow molded body A. It is formed integrally with the common part 5 so as to correspond to the arrangement of the hollow parts a of A. Moreover, the core 3 is an extruder
The clay extruded from the extruding port 1 ′ is formed, for example, in a streamlined shape from the tip 3 a to the non-end 3 b so that the clay 2 can be extruded from the die 2 with a continuous body having a hollow part a of a predetermined shape without any trouble. It is. A required amount of one or more of air, dry air, wet air, hot air, etc. is supplied to the hollow portion 3c of the core 3 from a pump 7 installed outside via a hose 8, or the water vapor in the hollow portion a is discharged. In addition to promoting the drying of the hardly-dried hollow portion a of the extruded hollow molded body A, it functions to eliminate adverse effects such as deformation at that time. The above-mentioned clay is a natural product and has different components depending on the place of production. These advantages and disadvantages are mutually offset to obtain a predetermined mixed clay. As a specific example, pottery stone, feldspar, kaolinite, halloysite, metahalloysite, Kibushi clay, Frogme clay, Shigaraki clay, chamotte, and the like are crushed and kneaded with water. The clay may be iron-removed by a magnet if necessary. Reference numeral 9 denotes a conveying device which conveys the soft extruded hollow molded body A extruded from the extruder 1 to the next step without deforming and in synchronism with or almost in synchronism with the extrusion speed. Examples of the configuration include those shown in FIGS. 4 (a) to 4 (e).
(A) is a transporter 9 composed of only a free roller 10, (b)
The figure shows a conveyor 9 in which a backup roller 12 having a free roller structure is provided on a drive belt 11, (c), (d) shows (a),
Conveyor 9 which combined the (b), in (e) drawing (a) view and a conveyor 9 which either one of the driving rollers Furirora 10. Reference numeral 13 denotes a dryer which dries the moisture of the extruded hollow molded article A containing about 22 to 15% of water to about 8 to 1% without change in shape in about 5 to 30 minutes,
This is one of the main reasons for producing a dried plate A obtained by firing a soft extruded hollow molded body A (hereinafter, referred to as an extruded molded body). 5 (a) to 5 (d) show specific examples thereof. FIG. 5 (a) shows a dryer 13 in which a microwave heater 14 and a far infrared heater device 15 are arranged in series, and FIG. a) A dryer 13 that supplies hot air from the hot air zone 16 to the atmosphere shown in the figure.
(C) shows a dryer 13 in which hot air zones 16 are arranged in series in FIG. The microwave heater 14 has a continuous oven structure, and mainly converts the microwave into heat energy without penetrating the inside of the extruded product A and conducting heat for a few seconds to several seconds. It has the ability to generate heat in minutes and evaporate 5 to 10% of the water in the clay. The volume of the extruded product A shrinks until the water content becomes about 5 to 8%. However, when the water content is less than 5%, the volume does not shrink. Is a free roller,
Alternatively, it is composed of a combination of a free roller and a drive belt (including a net belt) having a speed corresponding to the contraction of the extruded product A. The far-infrared heater 15 is used to reduce the water content of the extruded product A to about 1 to 0%.
The temperature is raised to 130 ° C. or higher, and the transport means includes one or more of a free roller, a drive roller, and a drive belt.
Further, the hot air zone 16 blows hot air at a temperature of about 60 to 150 ° C. depending on the purpose. 17 is a traveling cutter,
The dried extruded product A is cut into a predetermined length. Reference numeral 18 denotes a take-out mechanism for feeding the dried plate A, which has been dried and cut to a predetermined length, to the next step, and can convey it at a speed higher than the extrusion speed. Reference numeral 19 denotes a primary baking furnace made of a roller hearth kiln, which bake the drying plate A continuously at a temperature of 700 to 1300 ° C. in a short period of time. It is much more compact than that. That is, the primary firing furnace 19 is as shown in FIG.
It becomes a mountain-like temperature distribution from the inlet 19a to the outlet 19b, and is divided into the preheating region 20, the firing region 21, and the cooling region 22 in this order.The temperature of the preheating region 20 is 150 to 700 ° C, and the firing region 21 is
800 to 1300 ° C., and the cooling area 22 is set to about 600 to 100 ° C. Of course, depending on the type and composition of the clay, the temperature setting between the respective regions is different, and the temperature between the respective regions is not a clear division but a tentative division in continuous firing. Further, the first firing furnace 19 will be described. The first firing furnace 19 burns a combustible gas, for example, an LPG gas, to fire the drying plate A, and the arrangement of burners (not shown) for that purpose is as follows. It is provided corresponding to each of the regions. Further, as a conveying means of the drying plate A in the firing furnace 19 , a mesh belt, a metal roller, a ceramic roller,
An alumina roller or the like is used. In particular, since the temperature in the range of the sintering region 21 rises to about 1300 ° C., for example, as shown in FIG. 7, an alumina roller 25 is placed between the metal spindles 23 and 24 to conduct heat conduction. The sheet is conveyed without being transmitted to the drive source. The sintering region 21 of the first sintering furnace 19 is made of a furnace made of refractory bricks and the like, and is made to pass straight through the furnace. An exhaust damper (not shown) is provided between each device and region. ) Is provided. Numeral 26 is for firing the fired body A, which has been primarily fired in the secondary firing furnace, directly or after cooling to room temperature, and then firing at 700 to 1300 ° C.
It is the same as the next firing furnace 19, and performs glaze baking, main baking, painting, ingress and the like. Next, the operation will be described. First, a clay consisting of Shigaraki clay, chamotte, water reducing agent and water is prepared as a raw material. The weight percentage is, for example, 61.5% of Shigaraki clay, 18% of chamotte, 0.5% of water reducing agent (trade name: Cellflow, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), and 20% of water by a dough kneader (MP-100 type manufactured by Miyazaki Tekko Co. ). Further, as the extruder 1 , a model name MV-FM-A-1 (manufactured by Miyazaki Iron Works) having an extrusion capacity of 100 to 150 l / hr was used. The pump 7 connects the dry air heated by compression at the time of blowing to 20 to 50 ° C. with a ring blower to the connection pipe 6 exposed to the outside of the base 2 through the hose 8, and connects another hose (not shown) to the micro tube. The wave heater 14 was connected to the air inlet / outlet. The far-infrared heater device 15 is a far-infrared heater.
Ten pieces are arranged in 10 meters, and the moisture inside the extruded product A is diffused to the surface to speed up the dehydration, and the moisture can be reduced to 1% or less. Further, the extrusion speed of the extruder 1 is
Extruded at the cross section shown in Fig. 2 at 200mm / min, the extruded body A is cut to a length of 900mm and 3030mm, and the straight line distance from the base 2 to the traveling cutter 17 is 15m.
And Of course, the length of this line is set in accordance with the shape, size, and thickness of the extruded product A. The maximum temperatures of the first sintering furnace 19 and the second sintering furnace 26 are set to 1200 ° C. and 1000 ° C. with temperature curves matching the compositions. The pass line of the extruded body A was set at the same height, and the moving speed of the conveyor 9 was set to be a little higher than the extruding speed. This is to prevent the extruded body A from being deformed by being pressed even though it is soft. Then, the raw material mainly composed of clay is continuously extruded from the extruder 1 onto the conveyor 9 in a cross section shown in FIG. The extruded product A extruded is fed to the microwave heater 14 at the above-mentioned speed, and while passing through the space to be heated of the microwave heater 14, the extruded product A and the hollow part a of the extruded product A are A large amount of water vapor generated by microwave heating by air or the like fed to the surface is blown off simultaneously inside and outside the hollow portion a to make the environment easy to evaporate, thereby eliminating the occurrence of dew condensation and making the soft extruded body A soft. In a short time, increase the rigidity to an average, avoid cracking, warping, explosion due to overheating, and evaporate 1/3 of the moisture content of the extruded body A in about 5 to 10 minutes, and from the outlet The extruded product A was fed to the far-infrared heater device 15, dried to a moisture content of 1% or less, fed to the traveling cutter 17, and the dried continuous strip-shaped extruded product A was cut into a predetermined length. The extruded body A was dried in a short time of about 15 to 30 minutes from extrusion to cutting and as a continuous body. In addition, when the extruded product A was simply heated using microwaves, the extruded product A was rapidly heated from the inside in a short period of time, so that the explosion and dew condensation had a serious adverse effect, making it impractical. Next, a predetermined length, for example, 606 to 7272 mm
The dried plate A 'cut into a predetermined position is fed to the primary furnace 19 through the take-out mechanism 18, preheated, fired, cooled, and sent out as a fired body A "from the outlet. The product is cooled, painted, glazed, and sent to the second firing furnace 26, where it is fired at 100 ° C. to obtain a product.The firing time is the thickness, size, and length of the dried plate A ′. It depends on the feeding, temperature control, etc., but it takes about 30 minutes to 3 hours, and the porcelain plate produced by this device has no crack, warp, twist, explosion and has a predetermined length. Is merely an embodiment of the apparatus according to the present invention, and a glaze machine, a painting machine, and a printing machine can be provided at the positions indicated by dashed lines in Fig. 1. Further, extruded products A and B 8 (a) to 8 (m), 9 (a),
(B), it can also be formed as shown in FIGS. 10 (a) and (b). 10 (a) and 10 (b) show an extruded product A in which an air vent hole and a slit are formed on the back surface. [Effects of the Invention] As described above, according to the apparatus for manufacturing a porcelain plate according to the present invention, extrusion of clay, reduction of moisture, drying, firing, cooling,
There is a great feature that firing can be performed in a straight line, within a short time, and at a high speed as a long body. In the present invention, in the case of a hollow extruded molded product containing about 22 to 15% (by weight) of water, two-stage heating and blowing of air or the like to the hollow portion, the exposed surface, and the heated space of the extruded hollow molded product are performed. This eliminates steam, dew condensation, etc., which are generated in large quantities during heating, from the inside and outside of the extruded hollow molded body, from the atmosphere, and creates an environment that is easier to dry, so there is no crack, warpage, torsion, explosion during drying and continuous It has the characteristic that it can be dried quickly by the body.
Productivity was 10% faster than the speed required in the past few days.
It is characterized in that it can be dried in about 60 minutes, then cut into a predetermined length, and fired twice in about 60 minutes to 6 hours. Furthermore, although the volume of the extruded hollow molded article shrinks by 10% or more during drying compared to the volume at the time of extrusion, there is an advantage that the adverse effect on the extruded hollow molded article can be absorbed by a free roller and a drive belt or the like to produce the extruded hollow molded article. Further, in the present invention, since the steps from extrusion to drying are arranged in series, there is a feature that a long body and a continuous body can be dried quickly. Furthermore, since the glaze can be formed thinly and accurately on the fired extruded product, an expensive glaze can be reduced and used.

【図面の簡単な説明】 第1図は本発明に係る陶板の製造装置の一実施例を示す
構成略図、第2図第8図(a)〜(n)、第9図(a)
〜(c)、第10図(a)、(b)は押出成形体の一例を
示す説明図、第3図(a)は押出中空成形体を押し出す
押出成形機の出口部を示す説明図、(b)図は中子を抽
出して示す説明図、第4図(a)〜(e)は搬送機の一
例を示す説明図、第5図(a)〜(d)は乾燥機の一例
を示す説明図、第6図は第1次、第2次焼成炉の構成例
を示す説明図、第7図は焼成領域の一例を示す説明図で
ある。 ……押出成形機、3……中子、7……ポンプ、……
搬送機、14……マイクロ波加熱機、15……遠赤外線ヒー
タ装置、17……走行カッタ、1926……第1次、第2次
焼成炉。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic structural view showing an embodiment of a porcelain plate manufacturing apparatus according to the present invention, and FIGS. 2 (a) to 8 (n) and 9 (a).
To (c), FIGS. 10 (a) and (b) are explanatory diagrams showing an example of an extruded product, and FIG. 3 (a) is an explanatory diagram showing an outlet of an extruder for extruding an extruded hollow molded product. (B) is an explanatory diagram showing the extracted core, FIGS. 4 (a) to (e) are explanatory diagrams showing an example of the transporter, and FIGS. 5 (a) to (d) are examples of the dryer. FIG. 6 is an explanatory view showing a configuration example of a primary and secondary firing furnace, and FIG. 7 is an explanatory view showing an example of a firing area. 1 ... Extrusion molding machine, 3 ... Core, 7 ... Pump, 9 ...
Conveyor, 14: microwave heater, 15: far-infrared heater, 17: traveling cutter, 19 , 26 : primary and secondary firing furnaces.

Claims (1)

(57)【特許請求の範囲】 1.押出成形体に中空孔を形成するための中子を有し、
かつ中子には外部からエアを供給して成形体内部にエア
を送り込む機能を有し、粘土を主材とした原料を所定形
状で連続して押し出す押出成形機と、該押出成形機から
押し出された成形体を次工程に搬送する搬送機と、少な
くともマイクロ波加熱機と遠赤外線ヒータとを直列に配
して構成され、搬送された押出成形体を迅速乾燥する乾
燥機と、該乾燥機から送出される押出乾燥成形体を定尺
に切断する走行カッタと、次工程に搬送する取り出し機
と、150〜700℃の予熱領域、800〜1300℃の焼成領域、6
00〜100℃位の冷却領域とから構成され、該乾燥体を焼
成する第1次焼成炉と、温度を700〜1300℃に設定して
該焼成された成形体に釉焼、本焼、絵付け、イングレを
行う第2次焼成炉とから構成したことを特徴とする陶板
の製造装置。
(57) [Claims] Having a core for forming a hollow hole in the extruded body,
The core has a function of supplying air from the outside and sending air into the molded body, and an extruder for continuously extruding a raw material mainly composed of clay in a predetermined shape, and an extruder for extruding from the extruder. A transporter for transporting the formed product to the next step, a dryer configured to arrange at least a microwave heater and a far-infrared heater in series, and a dryer for rapidly drying the transported extruded product; A traveling cutter that cuts the extruded and dried molded product sent out from the machine to a fixed size, a take-out machine that conveys to the next process, a preheating region of 150 to 700 ° C, a firing region of 800 to 1300 ° C, 6
A first baking furnace for baking the dried body, and a baking formed body with a temperature set at 700 to 1300 ° C. An apparatus for manufacturing a porcelain plate, comprising a secondary firing furnace for attaching and inlaying.
JP62144931A 1987-06-09 1987-06-09 Ceramic plate manufacturing equipment Expired - Fee Related JP2713909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62144931A JP2713909B2 (en) 1987-06-09 1987-06-09 Ceramic plate manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62144931A JP2713909B2 (en) 1987-06-09 1987-06-09 Ceramic plate manufacturing equipment

Publications (2)

Publication Number Publication Date
JPS63307170A JPS63307170A (en) 1988-12-14
JP2713909B2 true JP2713909B2 (en) 1998-02-16

Family

ID=15373531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62144931A Expired - Fee Related JP2713909B2 (en) 1987-06-09 1987-06-09 Ceramic plate manufacturing equipment

Country Status (1)

Country Link
JP (1) JP2713909B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180313087A1 (en) * 2016-01-29 2018-11-01 Mohawk Carpet Llc Roof Tile for Forming a Roof Covering, Method for Manufacturing a Roof Tile and Method for Installing Roof Tiles
US11542710B2 (en) 2021-02-09 2023-01-03 Dal-Tile Corporation Roof tile and a roof covering

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108910936B (en) * 2014-03-14 2021-01-12 大日精化工业株式会社 Thermally conductive composite oxide, method for producing same, composition containing thermally conductive composite oxide, and use thereof
CN112341175A (en) * 2020-10-29 2021-02-09 广西蒙娜丽莎新材料有限公司 Low-cost and environment-friendly through white brick and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3806402A (en) * 1969-12-02 1974-04-23 Borden Inc Stable vinyl acetate/n-methylolacrylamide latex with fully hydrolyzed polyvinyl alcohol
JPS6060964A (en) * 1983-09-09 1985-04-08 株式会社イナックス Tile manufacture equipment line tile manufacture equipment line
JPS62108003A (en) * 1985-11-05 1987-05-19 株式会社アイジー技術研究所 Production unit for long-sized ceramic board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180313087A1 (en) * 2016-01-29 2018-11-01 Mohawk Carpet Llc Roof Tile for Forming a Roof Covering, Method for Manufacturing a Roof Tile and Method for Installing Roof Tiles
US11542710B2 (en) 2021-02-09 2023-01-03 Dal-Tile Corporation Roof tile and a roof covering

Also Published As

Publication number Publication date
JPS63307170A (en) 1988-12-14

Similar Documents

Publication Publication Date Title
JP2713909B2 (en) Ceramic plate manufacturing equipment
JP2866708B2 (en) Continuous ceramic plate manufacturing equipment
JPS62252359A (en) Apparatus for continuously manufacturing elongated ceramic board
JP2837230B2 (en) Ceramic plate manufacturing equipment
JP2866719B2 (en) Continuous ceramic plate manufacturing equipment
JP2859687B2 (en) Ceramic plate manufacturing method
JP2859692B2 (en) Continuous ceramic plate manufacturing equipment
JPH0742157B2 (en) Continuous production equipment for long ceramic plates
JPS6379748A (en) Continuous manufacturing apparatus for hollow ceramic board
JPS62260758A (en) Apparatus for continuously manufacturing elongated ceramic board
JPH10101405A (en) Continuous production unit for ceramic plate
JPS62275052A (en) Continuous manufacturing apparatus for elongated ceramic sheet
JPS6369743A (en) Continuous manufacturing apparatus for elongated ceramic sheet
JPS62252360A (en) Apparatus for continuously manufacturing elongated ceramic board
JP2886580B2 (en) Manufacturing equipment for long ceramic bodies
JPH0660051B2 (en) Continuous production equipment for long ceramic plates
JPH0729832B2 (en) Long ceramic plate manufacturing equipment
JP2806482B2 (en) Continuous production equipment for long ceramic plates
JPH0460068B2 (en)
JPH0729836B2 (en) Long ceramic plate manufacturing equipment
JPH0543656B2 (en)
JPH0570208A (en) Apparatus for continuous production of porcelain plate
JPH10152365A (en) Continuous apparatus for producing ceramic board
JPH0729835B2 (en) Long ceramic plate manufacturing equipment
JPH0780701B2 (en) Continuous production equipment for long ceramic plates

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees