JP2710733B2 - Damping structure stack - Google Patents

Damping structure stack

Info

Publication number
JP2710733B2
JP2710733B2 JP4219283A JP21928392A JP2710733B2 JP 2710733 B2 JP2710733 B2 JP 2710733B2 JP 4219283 A JP4219283 A JP 4219283A JP 21928392 A JP21928392 A JP 21928392A JP 2710733 B2 JP2710733 B2 JP 2710733B2
Authority
JP
Japan
Prior art keywords
tubular body
tower
floor slab
damper
stack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4219283A
Other languages
Japanese (ja)
Other versions
JPH0666048A (en
Inventor
光雄 坂本
紀雄 鈴木
信幸 宮川
日出喜 森下
紀吉 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Tokyo Electric Power Co Inc
Original Assignee
Kajima Corp
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp, Tokyo Electric Power Co Inc filed Critical Kajima Corp
Priority to JP4219283A priority Critical patent/JP2710733B2/en
Publication of JPH0666048A publication Critical patent/JPH0666048A/en
Application granted granted Critical
Publication of JP2710733B2 publication Critical patent/JP2710733B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明はスタック自身に振動を
減衰させる機能を持たせた減衰構造スタックに関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a damping structure stack having a function of damping vibration in the stack itself.

【0002】[0002]

【発明が解決しようとする課題】火力発電所や原子力発
電所等に設置されるスタックは本体の筒身と、その周囲
を包囲する鉄塔から構成され、鉄塔が昇降機の停止階位
置に設置される踊り場用の床版を介して筒身に連結され
ることによって筒身の構造上の安全性を確保している
が、例えば沸騰水型の原子力発電所に付属する場合等、
高剛性のコンクリート構造物上に構築される場合には相
対的に低剛性のスタックの地震時の応答加速度が非常に
大きく、振動が増大するため、コンクリート構造物上に
建つスタックには地震時の振動を低減する手段が改めて
必要になる。
A stack installed in a thermal power plant, a nuclear power plant, or the like is composed of a cylindrical body of a main body and a steel tower surrounding the body, and the steel tower is installed at a stop floor position of an elevator. The structural safety of the cylinder body is secured by being connected to the cylinder body via a floor slab for landing, for example, when attached to a boiling water type nuclear power plant,
When building on a high-rigidity concrete structure, the response acceleration during earthquakes of the relatively low-rigidity stack is very large, and vibration increases. A means for reducing vibration is needed again.

【0003】この発明はスタックが高剛性の下部構造上
に構築される場合に直面する地震時の振動の問題に着目
してなされたもので、振動を自身で減衰させる構造のス
タックを提案しようとするものである。
[0003] The present invention has been made in view of the problem of vibration during an earthquake which is encountered when the stack is built on a high rigidity substructure, and attempts to propose a stack having a structure for damping vibration by itself. Is what you do.

【0004】[0004]

【課題を解決するための手段】本発明では筒身と鉄塔を
連結する床版の片側を筒身,もしくは鉄塔から切り離
し、この互いに切り離された側の床版と筒身との間,も
しくは床版と鉄塔との間に両者間の相対水平変位時に振
動を減衰させる弾塑性ダンパを設置し、筒身と鉄塔の振
動性状の違いを利用して弾塑性ダンパに減衰能力を発揮
させることにより双方の振動を減衰させ、コンクリート
構造物等の高剛性構造物上におけるスタックの地震時の
安全性を確保する。
According to the present invention, one side of a floor slab for connecting a tubular body and a steel tower is separated from the tubular body or the steel tower, and the floor slab and the tubular body on the separated side are separated from each other or the floor. An elasto-plastic damper is installed between the slab and the tower to attenuate vibrations when the horizontal displacement between them is relatively large, and the elasto-plastic damper uses the difference in vibration characteristics between the tubular body and the tower to exhibit the damping ability. Damping the vibration of the stack and securing the safety of the stack on a highly rigid structure such as a concrete structure during an earthquake.

【0005】床版は筒身と鉄塔のいずれか一方に接続し
て他方から切り離され、筒身,もしくは鉄塔から切り離
された側の、すなわち弾塑性ダンパが設置された側の床
版は筒身,もしくは鉄塔に対して水平方向に相対移動可
能な状態に筒身,もしくは鉄塔に支持される。床版はそ
れが接続する側の鉄塔,もしくは筒身と、切り離された
側の筒身,もしくは鉄塔の両者に支持される。
The floor slab is connected to one of the tubular body and the steel tower and separated from the other. The tubular body or the floor slab separated from the steel tower, that is, the floor slab on which the elasto-plastic damper is installed is mounted on the tubular body. Or, it is supported by a tubular body or a steel tower so as to be movable relative to the steel tower in the horizontal direction. The floor slab is supported by both the tower or tube connected to it and the tube or tube separated from it.

【0006】弾塑性ダンパは軸方向両端部から中央部へ
かけて断面積が増加する回転体形状をし、軸が鉛直方向
を向いて床版と筒身間,もしくは床版と鉄塔間に設置さ
れる。その軸方向両端部は筒身,もしくは鉄塔に回転自
在に連結され、軸方向中央部は床版に固定される。弾塑
性ダンパはこの取付状態により、筒身と鉄塔間の任意の
相対水平変位時に両端部が自由の片持ち梁として機能す
る。
The elasto-plastic damper is in the form of a rotating body whose cross-sectional area increases from both ends in the axial direction to the center, and is installed between the floor slab and the cylinder, or between the floor slab and the steel tower, with the shaft facing vertically. Is done. Both ends in the axial direction are rotatably connected to a tubular body or a steel tower, and a central portion in the axial direction is fixed to a floor slab. Due to this mounting state, the elasto-plastic damper functions as a free-standing cantilever beam at any relative horizontal displacement between the tubular body and the steel tower.

【0007】弾塑性ダンパが筒身と鉄塔を連結する床版
を利用して設置されることにより、直接筒身と鉄塔間に
架設される場合程の規模を必要とせず、その重量がスタ
ック全体の重量に与える影響が小さい。また筒身や鉄塔
に対して高さ方向に納められるため、平面上、床版内に
場所を取ることがなく、床版の平面積を縮小させること
がない。
[0007] Since the elasto-plastic damper is installed by using a floor slab connecting the tubular body and the tower, it does not require a scale as large as being directly installed between the tubular body and the tower, and the weight of the entire stack is reduced. The effect on weight is small. In addition, since it is accommodated in the height direction with respect to the cylindrical body and the steel tower, there is no need to take up space on the floor, within the floor slab, and the flat area of the floor slab is not reduced.

【0008】弾塑性ダンパは筒身と鉄塔の各固有振動数
や振動モードの差に基づく床版と鉄塔間、もしくは床版
と筒身間の相対変位時に双方の振動エネルギーを吸収
し、スタックの振動を減衰させる。
The elasto-plastic damper absorbs both vibration energy at the time of relative displacement between the floor slab and the tower or between the floor slab and the cylinder based on the difference between the natural frequencies and the vibration modes of the tube body and the tower, and the stacking of the stack. Damping vibration.

【0009】[0009]

【実施例】この発明のスタック1は図1に示すような、
筒身2と、その周囲を包囲し、高さ方向に間隔を隔て、
各階毎に設置される踊り場用の床版5を介して筒身2に
連結されるトラス構造の鉄塔3から構成され、床版5と
筒身2間,もしくは床版5と鉄塔3間に設置される弾塑
性ダンパ(以下ダンパ)4によって地震時の振動を減衰
させるものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A stack 1 according to the present invention has a structure as shown in FIG.
Surrounds the cylindrical body 2 and its surroundings, and is spaced apart in the height direction,
It consists of a truss-structured tower 3 connected to the barrel 2 via a landing deck 5 for each floor, and is installed between the deck 5 and the barrel 2 or between the deck 5 and the tower 3. The vibration during an earthquake is attenuated by an elastic-plastic damper (hereinafter referred to as a damper) 4.

【0010】床版5はスタック1の各階毎に設置される
が、ダンパ4はスタック1全体としての減衰効果の高
い、必要な階の床版5に設置される。減衰効率上は後述
するようにダンパ4をスタック1の少なくとも頂部位置
と中間階位置に設置すれば十分である。
The floor slabs 5 are installed on each floor of the stack 1, and the dampers 4 are installed on the required floor slabs 5 having a high damping effect as the whole stack 1. In terms of the damping efficiency, it is sufficient to install the damper 4 at least at the top position and the middle floor position of the stack 1 as described later.

【0011】図2はダンパ4の設置階における図1の断
面図であるが、ここに示すように床版5は筒身2の外周
から張り出す、後述の張出部材7や支持部材8に接続さ
れることにより筒身2に、鉄塔3の主柱31,31間に架設
される水平材32と水平材32,32間に架設される水平ブレ
ース33に接続されることにより鉄塔3にそれぞれ支持さ
れる。ダンパ4が設置される階の床版5は筒身2と鉄塔
3のいずれか一方に接続し、他方にダンパ4が設置され
ることによりその側から切り離され、水平方向に相対移
動可能な状態に支持される。
FIG. 2 is a cross-sectional view of FIG. 1 at the floor where the damper 4 is installed. As shown here, the floor slab 5 projects from the outer periphery of the cylindrical body 2. the tubular body 2 by being connected, is connected to the main pillar 3 1, 3 horizontal member 3 which is installed between 1 2 and horizontal members 3 2, 3 horizontal braces 3 3 which is installed between two towers 3 Thereby, it is respectively supported by the steel tower 3. The floor slab 5 of the floor where the damper 4 is installed is connected to one of the tubular body 2 and the steel tower 3, and is separated from the other side by installing the damper 4 on the other side, and is relatively movable in the horizontal direction. Supported by

【0012】図2は床版5を鉄塔3に接続し、筒身2か
ら切り離した場合を示すが、この場合、床版5は図2に
おける筒身2側の断面図である図3に示すようにダンパ
4によって筒身2に対して相対変位可能に切り離され
る。
FIG. 2 shows a case where the floor slab 5 is connected to the steel tower 3 and separated from the tubular body 2. In this case, the floor slab 5 is shown in FIG. 3 which is a sectional view of the tubular body 2 side in FIG. Thus, the cylinder body 2 is separated by the damper 4 so as to be relatively displaceable.

【0013】ダンパ4は図3に示すように床版5の筒身
2側の縁に一体化した支持部材6と、筒身2から床版5
側へ張り出して固定された張出部材7間に跨って設置さ
れる。床版5が筒身2に接続され、鉄塔3から切り離さ
れる場合も、床版5の鉄塔3との取合いは図3と同様の
納まりとなる。その場合、ダンパ4は床版5と鉄塔3間
に設置され、水平材32,または水平ブレース33、あるい
は張出部材7等の適当な部材に接続され、床版5は上記
の通り、張出部材7や支持部材8に接続されることによ
り筒身2に支持される。
As shown in FIG. 3, the damper 4 includes a supporting member 6 integrated with the edge of the floor slab 5 on the side of the cylinder 2, and
It is installed so as to straddle between the projecting members 7 which are projected and fixed to the side. When the floor slab 5 is connected to the tubular body 2 and separated from the steel tower 3, the arrangement of the floor slab 5 with the steel tower 3 is the same as in FIG. In that case, the damper 4 is disposed between the floor slab 5 and pylon 3, is connected to a suitable member such as the horizontal member 3 2 or horizontal braces 3 3 or projecting member 7,,, slab 5 of the street, It is supported by the tubular body 2 by being connected to the overhang member 7 and the support member 8.

【0014】ダンパ4は軸方向両端部から中央部へかけ
て断面積が増加する回転体形状をし、図3に示すように
軸が鉛直方向を向いて設置され、軸方向両端部が筒身
2,もしくは鉄塔3に回転自在な状態に連結され、軸方
向中央部が床版5に固定される。床版5が筒身2から切
り離された図3の場合、球状の両端部が張出部材7に筒
身2と鉄塔3間の相対移動に伴う回転変形を許容する状
態に連結され、中央部が支持部材6に固定される。
The damper 4 is in the form of a rotating body whose cross-sectional area increases from both ends in the axial direction to the central portion. As shown in FIG. 3, the damper 4 is installed so that the shaft is oriented vertically, and both ends in the axial direction are cylindrical bodies. 2, and is rotatably connected to the steel tower 3, and the central portion in the axial direction is fixed to the floor slab 5. In the case of FIG. 3 in which the floor slab 5 is separated from the cylindrical body 2, both end portions of the spherical shape are connected to the overhanging member 7 so as to allow rotational deformation accompanying the relative movement between the cylindrical body 2 and the steel tower 3, and the central portion is formed. Are fixed to the support member 6.

【0015】床版5の、ダンパ4が設置される側のダン
パ4の設置箇所以外の部分は図2のy−y線断面図であ
る図4に示すように筒身2,もしくは鉄塔3に対して水
平方向に相対移動可能な状態に筒身2,もしくは鉄塔3
に支持される。筒身2側にダンパ4を設置した実施例で
は床版5を筒身2に固定された支持部材8,8間に挟み
込むことによりこれに接続し、床版5の両面と支持部材
8,8間に低摩擦材9,9を介在させることにより床版
5と筒身2間で抵抗のない相対移動を生じさせ、両者を
実質的に切り離している。ダンパ4を鉄塔3側に接続し
た場合も床版5と鉄塔3とは図4と同様の要領で切り離
される。
The portion of the floor slab 5 other than the installation location of the damper 4 on the side where the damper 4 is installed is attached to the cylindrical body 2 or the steel tower 3 as shown in FIG. The tube body 2 or the tower 3 can be moved relative to the horizontal direction.
Supported by In the embodiment in which the damper 4 is installed on the side of the tubular body 2, the floor slab 5 is connected to the supporting members 8, 8 fixed to the tubular body 2 by being sandwiched between the supporting members 8, 8, and both sides of the floor slab 5 and the supporting members 8, 8 By interposing the low friction materials 9, 9 between them, relative movement without resistance is generated between the floor slab 5 and the tubular body 2, and both are substantially separated. Also when the damper 4 is connected to the tower 3 side, the floor slab 5 and the tower 3 are separated in the same manner as in FIG.

【0016】ここで本発明のスタック1のダンパ4によ
る減衰効果を、スタック1を筒身2と鉄塔3に相当する
2本の曲げせん断棒と、両者間に挿入され、ダンパ4に
相当するダッシュポット(粘性ダンパ)とに置き換えた
図5に示す解析モデルに基づいて確認する。図中、○で
囲った数字は質点番号、囲まない数字は部材(層)番号
を示す。
Here, the damping effect of the damper 4 of the stack 1 of the present invention will be described. The stack 1 is provided with two bending / shearing rods corresponding to the cylindrical body 2 and the steel tower 3 and a dash corresponding to the damper 4 inserted between the two. It is confirmed based on the analysis model shown in FIG. 5 replaced with a pot (viscous damper). In the figure, the numbers encircled by o represent the mass point numbers, and the numbers not enclosed represent the member (layer) numbers.

【0017】基本的なモデルではダッシュポットをスタ
ック1の頂部と中間部及び下部に設置しているが、最下
部に設置されるダンパ4の変形は小さく、スタック1全
体の1次振動モードに与える影響が小さいことから、最
下部のダンパ4が不在の場合を含めた次の3ケースにつ
いて地震応答解析を行った。(1) 基本(ダンパなし)の
場合:筒身と鉄塔を頂部と中間部及び下部位置で剛なバ
ネで連結した場合。
In the basic model, dashpots are installed at the top, middle, and lower portions of the stack 1. However, the deformation of the damper 4 installed at the lowermost portion is small, and the dashpot is applied to the primary vibration mode of the entire stack 1. Since the influence is small, the seismic response analysis was performed for the following three cases including the case where the lowermost damper 4 was not present. (1) Basic (without damper): When the tubular body and the tower are connected by rigid springs at the top, middle and lower positions.

【0018】(2) ダンパ3個:(1) の剛なバネを粘性ダ
ンパに置き換えた場合。(3) ダンパ2個:(2) の場合の
最下部のダンパを除いた場合。
(2) Three dampers: When the rigid spring of (1) is replaced with a viscous damper. (3) Two dampers: When the lowermost damper in (2) is removed.

【0019】入力波は通常用いられる設計用地震動によ
り求められた、スタック1の基部レベルでの床応答波形
で、その加速度応答スペクトルを図6に示す。同図には
スタック1全体の固有周期の他、筒身2と鉄塔3単独の
固有周期も示してある。
The input wave is a floor response waveform at the base level of the stack 1 obtained by a generally used design seismic motion, and its acceleration response spectrum is shown in FIG. The figure also shows the natural period of the cylindrical body 2 and the steel tower 3 alone, in addition to the natural period of the entire stack 1.

【0020】スタック1では1次〜3次の振動モードの
刺激性が大きいことから、3次までの減衰定数とダッシ
ュポットの減衰係数との関係からスタック1の減衰係数
の最適値を設定すればよく、図7に示すように3次まで
の減衰定数は減衰係数の値によって変動するが、1次の
減衰定数値が低減する直前で、2次,3次の減衰定数が
比較的大きいときの減衰係数の値(C=0.2tonf/kine)
を地震応答解析モデルに採用した。
Since the first to third order vibration modes of the stack 1 are highly stimulating, if the optimal value of the damping coefficient of the stack 1 is set from the relationship between the damping coefficient up to the third order and the damping coefficient of the dashpot. As shown in FIG. 7, the attenuation constant up to the third order varies depending on the value of the attenuation coefficient. However, when the second-order and third-order attenuation constants are relatively large immediately before the first-order attenuation constant decreases. Damping coefficient value (C = 0.2tonf / kine)
Was adopted in the seismic response analysis model.

【0021】上記3ケースの場合についての地震応答解
析から得られた、鉄塔3と筒身2毎の応答最大加速度,
応答最大変位,及び応答最大せん断力の分布を図8〜図
13に示す。図中、●−●が上記(1) の場合を、△−△が
(2) の場合を、○−○が(3)の場合を示す。
The response maximum acceleration for each of the tower 3 and the cylinder 2 obtained from the seismic response analysis for the above three cases,
Fig. 8 to Fig. 8 show the distribution of the maximum response displacement and maximum response shear force.
See Figure 13. In the figure, ●-● indicates the case of (1) above, and △-△ indicates
The case of (2) shows the case where ○-○ is (3).

【0022】これらの図から(2) の場合と(3) の場合の
応答値の差はほとんどなく、いずれの場合も(1) の場合
に比べ、鉄塔3頂部の加速度と変位は60%程度、ベース
シヤは55%程度低減されており、また筒身2頂部の加速
度は75%、変位は60%、ベースシヤは50%低減されてい
ることが分かる。
From these figures, there is almost no difference between the response values in the cases (2) and (3). In each case, the acceleration and displacement at the top of the tower 3 are about 60% as compared with the case (1). It can be seen that the base shear is reduced by about 55%, the acceleration at the top of the cylinder body 2 is reduced by 75%, the displacement is reduced by 60%, and the base shear is reduced by 50%.

【0023】以上はダンパ4が粘性ダンパの場合の検討
結果であるが、弾塑性ダンパの場合も同様の結果が得ら
れ、これらの結果からダンパ4をスタック1の頂部付近
と中間部位置の2箇所に設置するのみで効率的に振動の
減衰を行え、同時にスタック1の合理的な設計が可能に
なることが分かる。
The above is the result of the examination in the case where the damper 4 is a viscous damper. Similar results are obtained in the case where the damper 4 is an elasto-plastic damper. From these results, the damper 4 is connected to the vicinity of the top of the stack 1 and the intermediate position. It can be seen that the vibration can be efficiently attenuated only by installing the stack 1, and at the same time, the stack 1 can be reasonably designed.

【0024】[0024]

【発明の効果】筒身と鉄塔を連結する床版の片側を筒
身,もしくは鉄塔から切り離し、この互いに切り離され
た筒身と鉄塔間に両者間の相対変位時に振動を減衰させ
る弾塑性ダンパを設置し、筒身と鉄塔の振動性状の違い
を利用して弾塑性ダンパに減衰能力を発揮させるため、
地震時の双方の振動を減衰させ、高剛性のコンクリート
構造物上におけるスタックの安全性を確保することがで
きる。
According to the present invention, an elasto-plastic damper for separating one side of a floor slab connecting a tubular body and a steel tower from the tubular body or the steel tower and attenuating vibration between the separated tubular body and the steel tower upon relative displacement between the two. In order to make the elasto-plastic damper exhibit the damping ability by installing and using the difference in the vibration properties of the tubular body and the tower,
Both vibrations during an earthquake are damped, and the safety of the stack on a concrete structure having high rigidity can be ensured.

【0025】特に弾塑性ダンパを筒身と鉄塔を連結する
床版を利用して設置するため、弾塑性ダンパには、それ
を直接筒身と鉄塔間に架設する場合程の規模を必要とせ
ず、、その重量がスタック全体の重量に与える影響が小
さい。また弾塑性ダンパは筒身や鉄塔に対して高さ方向
に納められるため、平面上、床版内に場所を取ることが
なく、床版の平面積を縮小させることがない。
In particular, since the elasto-plastic damper is installed by using a floor slab connecting the tubular body and the steel tower, the elasto-plastic damper does not need to be as large as the case where it is directly installed between the tubular body and the steel tower. , Has a small effect on the weight of the entire stack. Further, since the elasto-plastic damper is accommodated in the height direction with respect to the tubular body and the steel tower, it does not take up space on the floor and in the floor slab, and does not reduce the plane area of the floor slab.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のスタックを示した立面図である。FIG. 1 is an elevational view showing a stack of the present invention.

【図2】弾塑性ダンパの設置階における図1の断面図で
ある。
FIG. 2 is a cross-sectional view of FIG. 1 at an installation floor of an elastic-plastic damper.

【図3】図2のx−x線断面図である。FIG. 3 is a sectional view taken along line xx of FIG. 2;

【図4】図2のy−y線断面図である。FIG. 4 is a sectional view taken along line yy of FIG. 2;

【図5】スタックの地震応答解析用のモデル図である。FIG. 5 is a model diagram for seismic response analysis of a stack.

【図6】スタック入力波の加速度応答スペクトル図であ
る。
FIG. 6 is an acceleration response spectrum diagram of a stack input wave.

【図7】減衰係数と減衰定数の関係を示したグラフであ
る。
FIG. 7 is a graph showing a relationship between an attenuation coefficient and an attenuation constant.

【図8】鉄塔の応答加速度を示したグラフである。FIG. 8 is a graph showing a response acceleration of a tower.

【図9】筒身の応答加速度を示したグラフである。FIG. 9 is a graph showing a response acceleration of a tubular body.

【図10】鉄塔の応答変位を示したグラフである。FIG. 10 is a graph showing a response displacement of a steel tower.

【図11】筒身の応答変位を示したグラフである。FIG. 11 is a graph showing a response displacement of a tubular body.

【図12】鉄塔の応答せん断力を示したグラフである。FIG. 12 is a graph showing a response shear force of a steel tower.

【図13】筒身の応答せん断力を示したグラフである。FIG. 13 is a graph showing a response shear force of a tubular body.

【符号の説明】[Explanation of symbols]

1……スタック、2……筒身、3……鉄塔、31……主
柱、32……水平材、33……水平ブレース、4……弾塑性
ダンパ、5……床版、6……支持部材、7……張出部
材、8……支持部材、9……低摩擦材。
1 ... stack, 2 ... tubular body, 3 ... steel tower, 3 1 ... main pillar, 3 2 ... horizontal material, 3 3 ... horizontal brace, 4 ... elastic-plastic damper, 5 ... floor slab, 6 support member, 7 overhang member, 8 support member, 9 low friction material.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮川 信幸 東京都港区元赤坂1丁目2番7号 鹿島 建設株式会社内 (72)発明者 森下 日出喜 東京都千代田区神田神保町2丁目2番30 号 東京電力株式会社原子力研究所内 (72)発明者 中村 紀吉 東京都千代田区神田神保町2丁目2番30 号 東京電力株式会社原子力研究所内 (56)参考文献 特開 平2−101267(JP,A) 特開 平4−119231(JP,A) 実開 昭62−199468(JP,U) 特公 昭50−22730(JP,B2) 特公 昭55−24546(JP,B2) ──────────────────────────────────────────────────続 き Continued on the front page (72) Nobuyuki Miyagawa 1-2-7 Moto-Akasaka, Minato-ku, Tokyo Kashima Construction Co., Ltd. (72) Hideki Morishita 2-2-2 Kanda Jimbocho, Chiyoda-ku, Tokyo No. 30 Within the Tokyo Electric Power Company Nuclear Research Laboratory (72) Inventor Kiyoshi Nakamura 2-3-2 Kanda Jimbocho, Chiyoda-ku, Tokyo Tokyo Electric Power Company Nuclear Research Laboratory (56) Reference JP-A-2-101267 (JP, A JP-A-4-119231 (JP, A) JP-A 62-199468 (JP, U) JP-B 50-22730 (JP, B2) JP-B 55-24546 (JP, B2)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 筒身と、その周囲を包囲し、高さ方向に
間隔を隔てて設置される床版を介して筒身に連結される
トラス構造の鉄塔から構成されるスタックであり、床版
は筒身と鉄塔のいずれか一方に接続して他方から切り離
され、その切り離された側の床版と筒身との間,もしく
は床版と鉄塔との間に、両者間の相対水平変位時に双方
の振動を減衰させる弾塑性ダンパが設置され、床版は弾
塑性ダンパが設置された筒身,もしくは鉄塔に対して水
平方向に相対移動可能な状態に筒身,もしくは鉄塔に支
持されており、弾塑性ダンパは軸方向両端部から中央部
へかけて断面積が増加する回転体形状をし、軸が鉛直方
向を向き、軸方向両端部が筒身,もしくは鉄塔に回転自
在に連結され、軸方向中央部が床版に固定されている減
衰構造スタック。
1. A stack comprising a tubular body and a truss-structured tower surrounding the periphery thereof and connected to the tubular body via a floor slab installed at an interval in a height direction, The slab is connected to one of the tubular body and the tower and separated from the other, and the relative horizontal displacement between the separated floor slab and the tubular body or between the deck and the tower, An elasto-plastic damper is sometimes installed to attenuate both vibrations, and the floor slab is supported by the tubular body or the tower so that it can move relative to the tubular body with the elasto-plastic damper or the tower horizontally. The elasto-plastic damper has the shape of a rotating body whose cross-sectional area increases from both ends in the axial direction to the center. The shaft faces in the vertical direction, and both ends in the axial direction are rotatably connected to a cylinder or a steel tower. , A damping structure stack whose axial center is fixed to the floor slab.
JP4219283A 1992-08-18 1992-08-18 Damping structure stack Expired - Lifetime JP2710733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4219283A JP2710733B2 (en) 1992-08-18 1992-08-18 Damping structure stack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4219283A JP2710733B2 (en) 1992-08-18 1992-08-18 Damping structure stack

Publications (2)

Publication Number Publication Date
JPH0666048A JPH0666048A (en) 1994-03-08
JP2710733B2 true JP2710733B2 (en) 1998-02-10

Family

ID=16733088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4219283A Expired - Lifetime JP2710733B2 (en) 1992-08-18 1992-08-18 Damping structure stack

Country Status (1)

Country Link
JP (1) JP2710733B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS536949B2 (en) * 1973-07-02 1978-03-13
JPS5524546A (en) * 1978-08-09 1980-02-21 Kubota Ltd Sand-lifting apparatus
JPS62199468U (en) * 1986-06-10 1987-12-18
JPH02101267A (en) * 1988-10-11 1990-04-13 Taisei Corp Frame system for structure with damping property
JP2536680B2 (en) * 1990-09-10 1996-09-18 鹿島建設株式会社 Construction method of elasto-plastic damper unit

Also Published As

Publication number Publication date
JPH0666048A (en) 1994-03-08

Similar Documents

Publication Publication Date Title
JP5570605B2 (en) Method and structure for dampening motion in a building
JPH10169244A (en) Vibration control device having toggle mechanism
JP3858432B2 (en) Vibration control method for linked structures
JP5137991B2 (en) Tower crane mast horizontal support device
JP6420012B1 (en) Passive vibration control device for buildings
JP2710733B2 (en) Damping structure stack
WO2019020991A1 (en) Building, integrated damping unit, and method of damping
JP2733917B2 (en) Damping device
JP3114602B2 (en) Seismic isolation device
JP2711298B2 (en) Vibration suppression device for structures
JP3248684B2 (en) Damping structure
JP2522527B2 (en) Vibration isolation device
JP3677706B2 (en) Seismic isolation and control structure
JPS6366987B2 (en)
JP3849624B2 (en) Vibration damping device for use in damping type seismic isolation buildings
JP2669112B2 (en) Damper for vibration isolation
KR200154452Y1 (en) Building antivibration structure by helipad
JPH01102182A (en) Earthquakeproof wall
JP2004162319A (en) Earthquake damping structure having basement
JP2796484B2 (en) Damping structure with a part of the main structure being a dynamic vibration absorber
JPH0444669B2 (en)
JP3115586B2 (en) Three-dimensional seismic isolation device for structures using spherical rubber bearings
JPH09105245A (en) Vibration damping structure corresponding to vertical movement
JP3706984B2 (en) Seismic reinforcement method and seismic control structure for existing buildings
JPH10121771A (en) Nuclear-power related building and vibration-isolation structure

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970930