JPH0666048A - Damping structure stack - Google Patents

Damping structure stack

Info

Publication number
JPH0666048A
JPH0666048A JP21928392A JP21928392A JPH0666048A JP H0666048 A JPH0666048 A JP H0666048A JP 21928392 A JP21928392 A JP 21928392A JP 21928392 A JP21928392 A JP 21928392A JP H0666048 A JPH0666048 A JP H0666048A
Authority
JP
Japan
Prior art keywords
damper
barrel
steel tower
stack
floor plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21928392A
Other languages
Japanese (ja)
Other versions
JP2710733B2 (en
Inventor
Mitsuo Sakamoto
光雄 坂本
Norio Suzuki
紀雄 鈴木
Nobuyuki Miyagawa
信幸 宮川
Hideki Morishita
日出喜 森下
Noriyoshi Nakamura
紀吉 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Tokyo Electric Power Company Holdings Inc
Original Assignee
Kajima Corp
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp, Tokyo Electric Power Co Inc filed Critical Kajima Corp
Priority to JP4219283A priority Critical patent/JP2710733B2/en
Publication of JPH0666048A publication Critical patent/JPH0666048A/en
Application granted granted Critical
Publication of JP2710733B2 publication Critical patent/JP2710733B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To secure the seismic safety of a stack in case it is built upon the substructure having a high rigidity. CONSTITUTION:A damping stack is composed of a barrel 2 and a truss structure steel tower 3 coupled with the barrel 2 through a floor plate 5 located a certain distance apart in the height direction. The floor plate 5 is connected with either of the barrel 2 while steel tower 3 and separated from the other, and a damper 4 is installed between the floor plate 5 on the separated side and the steel tower 3 or the barrel 2 so as to damp the vibrations of the two parties when they are in relative displacement. Thereby the damper 4 exerts the damping ability due to difference in the vibratory traits of the barrel 2 and steel tower 3, damps the vibrations of the two parties, and secures the seismic safety on the structure presenting a high rigidity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明はスタック自身に振動を
減衰させる機能を持たせた、減衰構造スタックに関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a damping structure stack in which the stack itself has a function of damping vibration.

【0002】[0002]

【発明が解決しようとする課題】火力発電所や原子力発
電所等に設置されるスタックは本体の筒身と、その周囲
を包囲する鉄塔から構成され、鉄塔が昇降機の停止階位
置に設置される踊り場用の床板を介して筒身に連結され
ることによって筒身の構造上の安全性を確保している
が、例えば沸騰水型の原子力発電所に付属する場合等、
高剛性のコンクリート構造物上に構築される場合には相
対的に低剛性のスタックの地震時の応答加速度が非常に
大きく、振動が増大するため、コンクリート構造物上に
建つスタックには地震時の振動を低減する手段が改めて
必要になる。
A stack installed in a thermal power plant, a nuclear power plant or the like is composed of a cylindrical body of a main body and a steel tower surrounding the body, and the steel tower is installed at a stop floor position of an elevator. The structural safety of the barrel is secured by being connected to the barrel through the floor plate for landings, but for example, when attached to a boiling water nuclear power plant,
When built on a high-rigidity concrete structure, the response acceleration of a relatively low-rigidity stack is extremely large during an earthquake, and the vibration increases. A means for reducing vibration is needed again.

【0003】この発明はスタックが高剛性の下部構造上
に構築される場合に直面する地震時の振動の問題に着目
してなされたもので、振動を自身で減衰させる構造のス
タックを提案しようとするものである。
The present invention has been made by paying attention to the problem of vibration during an earthquake, which is encountered when the stack is constructed on a highly rigid substructure. An attempt is made to propose a stack having a structure for damping the vibration by itself. To do.

【0004】[0004]

【課題を解決するための手段】本発明では筒身と鉄塔を
連結する床板の片側を筒身,もしくは鉄塔から切り離
し、この互いに切り離された筒身と鉄塔間に両者間の相
対変位時に振動を減衰させるダンパを設置し、筒身と鉄
塔の振動性状の違いを利用してダンパに減衰能力を発揮
させることにより双方の振動を減衰させ、コンクリート
構造物等の高剛性構造物上におけるスタックの地震時の
安全性を確保する。
According to the present invention, one side of a floor plate for connecting a tubular body and a steel tower is separated from the tubular body or the steel tower, and vibration is generated between the tubular body and the steel tower, which are separated from each other, when the two are relatively displaced. A damper is installed to dampen, and the difference between the vibration characteristics of the cylinder and the steel tower is utilized to allow the damper to exert its damping capacity to dampen both vibrations, causing a stack earthquake on a highly rigid structure such as a concrete structure. Secure the safety of time.

【0005】床板はスタックの高さ方向に間隔をおいて
筒身と鉄塔間に設置され、その片側が筒身と鉄塔のいず
れか一方に接続すると同時に、他方から切り離され、そ
の切り離された側の床板と鉄塔間,もしくは床板と筒身
間に跨ってダンパが設置される。
The floorboards are installed between the barrel and the steel tower at intervals in the height direction of the stack, and one side of the floorboard is connected to either one of the barrel and the steel tower, and at the same time, it is separated from the other and the separated side. A damper is installed between the floorboard and the steel tower, or between the floorboard and the barrel.

【0006】ダンパは筒身と鉄塔の各固有振動数や振動
モードの差に基づく床板と鉄塔間、もしくは床板と筒身
間の相対変位時に双方の振動エネルギーを吸収し、スタ
ックの振動を減衰させる。
The damper absorbs the vibration energy of both the floor plate and the steel tower or the relative displacement between the floor plate and the cylinder based on the difference between the natural frequencies and the vibration modes of the cylinder and the steel tower, or attenuates the vibration of the stack. .

【0007】[0007]

【実施例】以下本発明を一実施例を示す図面に基づいて
説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings showing an embodiment.

【0008】この発明のスタック1は図1に示すよう
な、筒身2と、その周囲を包囲し、高さ方向に間隔を隔
て、各階毎に設置される踊り場用の床板5を介して筒身
2に連結されるトラス構造の鉄塔3から構成され、ある
床板5位置の筒身2と鉄塔3間に設置されるダンパ4に
よって地震時の振動を減衰させるものである。
As shown in FIG. 1, the stack 1 of the present invention includes a cylinder body 2 and a cylinder surrounding the circumference of the cylinder body 2 with a landing floor plate 5 installed at each floor at intervals in the height direction. It is composed of a truss structure steel tower 3 connected to the body 2, and a damper 4 installed between the cylinder body 2 at a certain floor plate 5 position and the steel tower 3 attenuates vibration during an earthquake.

【0009】床板5はスタック1の各階毎に設置される
が、ダンパ4はスタック1全体としての減衰効果の高
い、必要な階の床板5に設置される。減衰効率上は後述
するようにダンパ4をスタック1の少なくとも頂部位置
と中間階位置に設置すれば十分である。
The floor board 5 is installed on each floor of the stack 1, but the damper 4 is installed on the floor board 5 of a necessary floor where the damping effect of the entire stack 1 is high. In terms of damping efficiency, it is sufficient to install the damper 4 at least at the top position and the intermediate floor position of the stack 1 as described later.

【0010】図2はダンパ4の設置階における図1の断
面を示したものであるが、床板5は筒身2の外周から張
り出す、後述の張出部材7や支持部材8に接続されるこ
とにより筒身2に、鉄塔3の主柱31,31間に架設される
水平材32と水平材32,32間に架設される水平ブレース33
に接続されることにより鉄塔3にそれぞれ支持される。
ダンパ4が設置される階の床板5は筒身2と鉄塔3のい
ずれか一方に接続し、他方にダンパ4が設置されること
によりその側から切り離される。
FIG. 2 shows a cross section of FIG. 1 on the floor where the damper 4 is installed. The floor plate 5 is connected to an overhanging member 7 and a supporting member 8 which will be described later and overhang from the outer circumference of the tubular body 2. the cylindrical body 2 by the horizontal braces 3 3 which is laid in the horizontal member 3 2 and horizontal members 3 2, 3 between 2 to be installed between the main pillar 3 1, 3 1 of tower 3
The steel towers 3 are respectively supported by being connected to.
The floor plate 5 on the floor on which the damper 4 is installed is connected to either one of the barrel 2 and the steel tower 3, and is separated from the side by installing the damper 4 on the other side.

【0011】図2に示す実施例は床板5を鉄塔3に接続
し、筒身2から切り離した場合であるが、この場合、床
板5は図2における筒身2側の断面図である図3に示す
ようにダンパ4によって筒身2に対して相対変位可能に
切り離される。ダンパ4は図3に示すように床板5の筒
身2側の縁に一体化した支持部材6と、筒身2から床板
5側へ張り出して固定された張出部材7間に跨って設置
される。床板5が筒身2に接続され、鉄塔3から切り離
される場合も、床板5の鉄塔3との取合いは図3と同様
の納まりとなり、その場合、ダンパ4は床板5と鉄塔3
間に設置され、水平材32,または水平ブレース33、ある
いは張出部材7等の適当な部材に接続される。この場
合、床板5は上記の通り、張出部材7や支持部材8に接
続されることにより筒身2に支持される。
In the embodiment shown in FIG. 2, the floor plate 5 is connected to the steel tower 3 and separated from the barrel 2. In this case, the floor plate 5 is a sectional view on the barrel 2 side in FIG. As shown in, the damper 4 separates the cylinder body 2 so that the cylinder body 2 can be displaced relative thereto. As shown in FIG. 3, the damper 4 is installed so as to straddle between a support member 6 that is integrated with the edge of the floor plate 5 on the side of the barrel 2 and an overhanging member 7 that extends from the barrel 2 to the side of the floor plate 5 and is fixed. It Even when the floor plate 5 is connected to the tubular body 2 and separated from the steel tower 3, the engagement of the floor plate 5 with the steel tower 3 is the same as in FIG. 3, and in that case, the damper 4 includes the floor plate 5 and the steel tower 3.
It is installed between and is connected to a suitable member such as the horizontal member 3 2 or the horizontal brace 3 3 or the overhang member 7. In this case, the floor plate 5 is supported by the barrel 2 by being connected to the overhanging member 7 and the supporting member 8 as described above.

【0012】図3はダンパ4に筒身2と鉄塔3間の相対
移動時の水平力を負担し、曲げモーメントによって降伏
する形式の、回転体形状の弾塑性ダンパを使用した例を
示したものであるが、実施例の弾塑性ダンパは軸に直交
する方向の相対移動時の外力に対して機能することか
ら、軸が床板5の面に対して垂直な方向を向いて設置さ
れる。また図示するダンパ4は特に片持ち梁式に外力を
負担する形状であるため断面の大きい基部側が支持部材
6に固定され、球状の頭部側が張出部材7に筒身2と鉄
塔3間の相対移動に伴う回転変形を許容する状態に接続
される。
FIG. 3 shows an example of using an elastic-plastic elasto-plastic damper of the type in which the damper 4 bears a horizontal force during relative movement between the barrel 2 and the tower 3 and yields by a bending moment. However, since the elasto-plastic damper of the embodiment functions with respect to the external force at the time of relative movement in the direction orthogonal to the axis, the axis is installed in the direction perpendicular to the surface of the floor plate 5. Further, since the damper 4 shown in the figure has a cantilevered shape for bearing an external force, the base side having a large cross section is fixed to the support member 6, and the spherical head side is the extension member 7 between the barrel 2 and the steel tower 3. It is connected in a state in which rotational deformation due to relative movement is allowed.

【0013】本発明で使用されるダンパ4は筒身2と鉄
塔3間の相対移動時、すなわち水平面内での相対移動に
対して減衰力を発生すればよく、ダンパ4の形態や形状
は図3の実施例に特定されず、他に粘性ダンパや粘弾性
ダンパ等が使用される。粘性ダンパや粘弾性ダンパも筒
身2側ではその外周に突設される張出部材7や支持部材
8を利用して床板5との間に跨って設置される。
The damper 4 used in the present invention only needs to generate a damping force when the cylindrical body 2 and the steel tower 3 move relative to each other, that is, relative movement in a horizontal plane. Not limited to the third embodiment, a viscous damper, a viscoelastic damper, or the like may be used instead. The viscous damper and the viscoelastic damper are also installed on the side of the barrel 2 so as to straddle the floor plate 5 by utilizing the projecting member 7 and the supporting member 8 which are provided on the outer periphery of the viscous damper.

【0014】床板5の、ダンパ4が設置される側のダン
パ4の設置箇所以外の部分は図2のy−y線断面図であ
る図4に示すように筒身2,もしくは鉄塔3に対して相
対移動可能な状態にこれに支持される。筒身2側にダン
パ4を設置した実施例では床板5を筒身2に固定された
支持部材8,8間に挟み込むことによりこれに接続し、
床板5の両面と支持部材8,8間に低摩擦材9,9を介
在させることにより床板5と筒身2間で抵抗のない相対
移動を生じさせ、両者を実質的に切り離している。ダン
パ4を鉄塔3側に接続した場合も床板5と鉄塔3とは図
4と同様の要領で切り離される。
The portion of the floor plate 5 other than the installation location of the damper 4 on the side where the damper 4 is installed is shown in FIG. 4 which is a sectional view taken along the line yy of FIG. It is supported by this in a relatively movable state. In the embodiment in which the damper 4 is installed on the cylinder body 2 side, the floor plate 5 is sandwiched between the support members 8 fixed to the cylinder body 2 to be connected thereto.
By interposing the low friction materials 9 and 9 between both sides of the floor plate 5 and the supporting members 8 and 8, relative movement without resistance between the floor plate 5 and the barrel 2 is generated, and the two are substantially separated. Even when the damper 4 is connected to the steel tower 3 side, the floor plate 5 and the steel tower 3 are separated in the same manner as in FIG.

【0015】ここで本発明のスタック1のダンパ4によ
る減衰効果を、スタック1を筒身2と鉄塔3に相当する
2本の曲げせん断棒と、両者間に挿入され、ダンパ4に
相当するダッシュポット(粘性ダンパ)とに置き換えた
図5に示す解析モデルに基づいて確認する。図中、○で
囲った数字は質点番号、囲まない数字は部材(層)番号
を示す。
Here, the damping effect of the damper 4 of the stack 1 according to the present invention will be described. The stack 1 is inserted between the two bending shear rods corresponding to the barrel 2 and the tower 3, and the dash corresponding to the damper 4 is inserted between the two. Confirm based on the analytical model shown in FIG. 5 replaced with a pot (viscous damper). In the figure, the numbers circled are mass point numbers, and the numbers not enclosed are member (layer) numbers.

【0016】基本的なモデルではダッシュポットをスタ
ック1の頂部と中間部及び下部に設置しているが、最下
部に設置されるダンパ4の変形は小さく、スタック1全
体の1次振動モードに与える影響が小さいことから、最
下部のダンパ4が不在の場合を含めた次の3ケースにつ
いて地震応答解析を行った。(1) 基本(ダンパなし)の
場合:筒身と鉄塔を頂部と中間部及び下部位置で剛なバ
ネで連結した場合。(2) ダンパ3個:(1) の剛なバネを
粘性ダンパに置き換えた場合。(3) ダンパ2個:(2) の
場合の最下部のダンパを除いた場合。
In the basic model, the dashpots are installed at the top, middle and lower parts of the stack 1, but the damper 4 installed at the bottom has a small deformation and gives the primary vibration mode of the entire stack 1. Since the effect is small, seismic response analysis was performed for the following three cases including the case where the damper 4 at the bottom was absent. (1) Basic (without damper): When the barrel and the steel tower are connected by a rigid spring at the top, middle and lower positions. (2) Three dampers: When the rigid spring in (1) is replaced with a viscous damper. (3) 2 dampers: In the case of (2), the bottom damper is removed.

【0017】入力波は通常用いられる設計用地震動によ
り求められた、スタック1の基部レベルでの床応答波形
で、その加速度応答スペクトルを図6に示す。同図には
スタック1全体の固有周期の他、筒身2と鉄塔3単独の
固有周期も示してある。
The input wave is a floor response waveform at the base level of the stack 1 obtained by a commonly used design earthquake motion, and its acceleration response spectrum is shown in FIG. In addition to the natural period of the stack 1 as a whole, the same figure also shows the natural period of the barrel 2 and the tower 3 alone.

【0018】スタック1では1次〜3次の振動モードの
刺激性が大きいことから、3次までの減衰定数とダッシ
ュポットの減衰係数との関係からスタック1の減衰係数
の最適値を設定すればよく、図7に示すように3次まで
の減衰定数は減衰係数の値によって変動するが、1次の
減衰定数値が低減する直前で、2次,3次の減衰定数が
比較的大きいときの減衰係数の値(C=0.2tonf/kine)
を地震応答解析モデルに採用した。
In the stack 1, since the stimuli of the first to third order vibration modes are large, if the optimum value of the damping coefficient of the stack 1 is set from the relationship between the damping coefficient of the third order and the damping coefficient of the dashpot. Often, as shown in FIG. 7, the damping constant up to the third order varies depending on the value of the damping coefficient. However, when the damping constants of the second and third orders are relatively large immediately before the value of the first order damping constant decreases. Attenuation coefficient value (C = 0.2 tonf / kine)
Was adopted in the seismic response analysis model.

【0019】上記3ケースの場合についての地震応答解
析から得られた、鉄塔3と筒身2毎の応答最大加速度,
応答最大変位,及び応答最大せん断力の分布を図8〜図
13に示す。図中、●−●が上記(1) の場合を、△−△が
(2) の場合を、○−○が(3)の場合を示す。
The maximum response acceleration for each of the tower 3 and barrel 2 obtained from the seismic response analysis for the above three cases,
Distribution of maximum response displacement and maximum response shear force
Shown in 13. In the figure, ●-● is the case of (1) above, and △-△ is
The case of (2) shows the case of ○-○ is (3).

【0020】これらの図から(2) の場合と(3) の場合の
応答値の差はほとんどなく、いずれの場合も(1) の場合
に比べ、鉄塔3頂部の加速度と変位は60%程度、ベース
シヤは55%程度低減されており、また筒身2頂部の加速
度は75%、変位は60%、ベースシヤは50%低減されてい
ることが分かる。
From these figures, there is almost no difference between the response values in the cases of (2) and (3). In both cases, the acceleration and displacement at the top of the steel tower 3 is about 60% compared to the case of (1). It can be seen that the base shear is reduced by about 55%, the acceleration at the top of the barrel 2 is reduced by 75%, the displacement is reduced by 60%, and the base shear is reduced by 50%.

【0021】以上はダンパ4が粘性ダンパの場合の検討
結果であるが、弾塑性ダンパの場合も同様の結果が得ら
れ、これらの結果からダンパ4をスタック1の頂部付近
と中間部位置の2箇所に設置するのみで効率的に振動の
減衰を行え、同時にスタック1の合理的な設計が可能に
なることが分かる。
The above is the result of examination when the damper 4 is a viscous damper, but the same result is obtained when the damper 4 is an elasto-plastic damper. From these results, the damper 4 is positioned at the top of the stack 1 and at the intermediate position. It can be understood that the vibration can be efficiently damped only by installing it in a place, and at the same time, the rational design of the stack 1 becomes possible.

【0022】[0022]

【発明の効果】この発明は以上の通りであり、筒身と鉄
塔を連結する床板の片側を筒身,もしくは鉄塔から切り
離し、この互いに切り離された筒身と鉄塔間に両者間の
相対変位時に振動を減衰させるダンパを設置し、筒身と
鉄塔の振動性状の違いを利用してダンパに減衰能力を発
揮させるものであるため、地震時の双方の振動を減衰さ
せ、高剛性のコンクリート構造物上におけるスタックの
安全性を確保することができる。
The present invention is as described above, and one side of the floor plate that connects the tubular body and the steel tower is separated from the tubular body or the steel tower, and at the time of relative displacement between the tubular body and the steel tower separated from each other. Since a damper that damps vibration is installed and the damping capacity of the damper is exerted by utilizing the difference in vibration characteristics between the barrel and the steel tower, it is a highly rigid concrete structure that dampens both vibrations during an earthquake. The safety of the stack above can be ensured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のスタックを示した立面図である。FIG. 1 is an elevational view showing a stack of the present invention.

【図2】ダンパの設置階における図1の断面図である。FIG. 2 is a sectional view of FIG. 1 on a floor where a damper is installed.

【図3】図2のx−x線断面図である。FIG. 3 is a sectional view taken along line xx of FIG.

【図4】図2のy−y線断面図である。FIG. 4 is a sectional view taken along line yy of FIG.

【図5】スタックの地震応答解析用のモデル図である。FIG. 5 is a model diagram for seismic response analysis of a stack.

【図6】スタック入力波の加速度応答スペクトル図であ
る。
FIG. 6 is an acceleration response spectrum diagram of a stack input wave.

【図7】減衰係数と減衰定数の関係を示したグラフであ
る。
FIG. 7 is a graph showing a relationship between a damping coefficient and a damping constant.

【図8】鉄塔の応答加速度を示したグラフである。FIG. 8 is a graph showing response acceleration of a steel tower.

【図9】筒身の応答加速度を示したグラフである。FIG. 9 is a graph showing the response acceleration of the barrel.

【図10】鉄塔の応答変位を示したグラフである。FIG. 10 is a graph showing a response displacement of a steel tower.

【図11】筒身の応答変位を示したグラフである。FIG. 11 is a graph showing a response displacement of a barrel.

【図12】鉄塔の応答せん断力を示したグラフである。FIG. 12 is a graph showing a response shear force of a steel tower.

【図13】筒身の応答せん断力を示したグラフである。FIG. 13 is a graph showing the response shear force of the barrel.

【符号の説明】[Explanation of symbols]

1……スタック、2……筒身、3……鉄塔、31……主
柱、32……水平材、33……水平ブレース、4……ダン
パ、5……床板、6……支持部材、7……張出部材、8
……支持部材、9……低摩擦材。
1 …… Stack, 2 …… Cylinder, 3 …… Steel tower, 3 1 …… Main pillar, 3 2 …… Horizontal material, 3 3 …… Horizontal brace, 4 …… Damper, 5 …… Floor plate, 6 …… Support member, 7 ... Overhang member, 8
…… Supporting member, 9 …… Low friction material.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮川 信幸 東京都港区元赤坂1丁目2番7号 鹿島建 設株式会社内 (72)発明者 森下 日出喜 東京都千代田区神田神保町2丁目2番30号 東京電力株式会社原子力研究所内 (72)発明者 中村 紀吉 東京都千代田区神田神保町2丁目2番30号 東京電力株式会社原子力研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Nobuyuki Miyagawa 1-2-7 Moto-Akasaka, Minato-ku, Tokyo Kashima Construction Co., Ltd. No. 30 TEPCO Atomic Energy Research Institute (72) Inventor Kiyoshi Nakamura 2-30 No. 30 Kanda Jinbocho, Chiyoda-ku, Tokyo TEPCO Atomic Energy Research Institute

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 筒身と、その周囲を包囲し、高さ方向に
間隔を隔てて設置される床板を介して筒身と互いに連結
されるトラス構造の鉄塔から構成されるスタックであ
り、床板は筒身と鉄塔のいずれか一方に接続して他方か
ら切り離され、その切り離された側の床板と鉄塔との
間,もしくは筒身との間に両者間の相対変位時に双方の
振動を減衰させるダンパが設置されていることを特徴と
する減衰構造スタック。
1. A stack comprising a tubular body and a truss-structured steel tower that is connected to the tubular body through floor plates that surround the periphery of the tubular body and are installed at intervals in the height direction. Is connected to either one of the barrel and the steel tower and is separated from the other, and damps the vibration of both sides between the floor plate and the steel tower on the separated side or between the barrel and the relative displacement between them. Damping structure stack with a damper installed.
JP4219283A 1992-08-18 1992-08-18 Damping structure stack Expired - Lifetime JP2710733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4219283A JP2710733B2 (en) 1992-08-18 1992-08-18 Damping structure stack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4219283A JP2710733B2 (en) 1992-08-18 1992-08-18 Damping structure stack

Publications (2)

Publication Number Publication Date
JPH0666048A true JPH0666048A (en) 1994-03-08
JP2710733B2 JP2710733B2 (en) 1998-02-10

Family

ID=16733088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4219283A Expired - Lifetime JP2710733B2 (en) 1992-08-18 1992-08-18 Damping structure stack

Country Status (1)

Country Link
JP (1) JP2710733B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5022730A (en) * 1973-07-02 1975-03-11
JPS5524546A (en) * 1978-08-09 1980-02-21 Kubota Ltd Sand-lifting apparatus
JPS62199468U (en) * 1986-06-10 1987-12-18
JPH02101267A (en) * 1988-10-11 1990-04-13 Taisei Corp Frame system for structure with damping property
JPH04119231A (en) * 1990-09-10 1992-04-20 Kajima Corp Elastic and plastic damper unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5022730A (en) * 1973-07-02 1975-03-11
JPS5524546A (en) * 1978-08-09 1980-02-21 Kubota Ltd Sand-lifting apparatus
JPS62199468U (en) * 1986-06-10 1987-12-18
JPH02101267A (en) * 1988-10-11 1990-04-13 Taisei Corp Frame system for structure with damping property
JPH04119231A (en) * 1990-09-10 1992-04-20 Kajima Corp Elastic and plastic damper unit

Also Published As

Publication number Publication date
JP2710733B2 (en) 1998-02-10

Similar Documents

Publication Publication Date Title
US20130118098A1 (en) Negative stiffness device and method
WO2015098084A1 (en) Boiler support structure
JPH08158697A (en) Base isolation method and base isolation device applied to same method
JPH0666048A (en) Damping structure stack
WO2019020991A1 (en) Building, integrated damping unit, and method of damping
JP2750362B2 (en) Damping viscoelastic wall
JP3677706B2 (en) Seismic isolation and control structure
JPH10231639A (en) Vibration-damping structure
JP2522527B2 (en) Vibration isolation device
JP2010281171A (en) Building having vibration control reinforcing structure and vibration control reinforcing method
JP3849624B2 (en) Vibration damping device for use in damping type seismic isolation buildings
JPH0754356A (en) Earthquake resistant structure for construction
JP3156061B2 (en) High-rise building damping structure
JP2000045563A (en) Vibration-damping wall panel
JP2004162319A (en) Earthquake damping structure having basement
JP6924599B2 (en) Floor structure
JP4953713B2 (en) Seismic isolation system
JP2796484B2 (en) Damping structure with a part of the main structure being a dynamic vibration absorber
JP2018145627A (en) Floor structure
JPH09105245A (en) Vibration damping structure corresponding to vertical movement
JPH0754357A (en) Eaerthquake resistant structure for construction
JP3814748B2 (en) High attenuation frame of building
JP2002227450A (en) Vibration control structure of mega-frame
JP3508388B2 (en) Long period control structure
JP3608134B2 (en) Seismic isolation mechanism

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970930