JP3814748B2 - High attenuation frame of building - Google Patents

High attenuation frame of building Download PDF

Info

Publication number
JP3814748B2
JP3814748B2 JP36956998A JP36956998A JP3814748B2 JP 3814748 B2 JP3814748 B2 JP 3814748B2 JP 36956998 A JP36956998 A JP 36956998A JP 36956998 A JP36956998 A JP 36956998A JP 3814748 B2 JP3814748 B2 JP 3814748B2
Authority
JP
Japan
Prior art keywords
building
deformation
rotational
damping
damping layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36956998A
Other languages
Japanese (ja)
Other versions
JP2000192684A (en
Inventor
雅史 山本
弘樹 濱口
信義 村井
雅彦 東野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP36956998A priority Critical patent/JP3814748B2/en
Publication of JP2000192684A publication Critical patent/JP2000192684A/en
Application granted granted Critical
Publication of JP3814748B2 publication Critical patent/JP3814748B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、大地震や強風による建物の応答振動を低減する為の、減衰性能の高い建物架構の技術分野に属する。
【0002】
【従来の技術】
従来一般に、建物の地震時、強風時の応答を低減するためには、建物の減衰性能を高めれば良い、との考えに基いて、次のような手段が採用されている。
(1)建物が振動する際に生じる層間変位に対して減衰力が発生するように設置する層間ダンパー。
(2)建物の振動が大きい部位(頂部など)に付加重錘を設置し、前記付加重錘の周期を建物の周期に同調させて建物の振動エネルギを吸収するチューンドマスダンパー(制震装置)。
(3)建物を、鉛直剛性が大で、水平剛性が小さい部材(免震装置)で支持せしめ、ダンパー等により振動エネルギを吸収する免震構造。
【0003】
上記3つの手段(1)〜(3)は、それぞれ異なった特徴を有するが、最終的にはダンパーで振動エネルギを吸収する点で共通している。
【0004】
ところで、同一のダンパーを使用するとき、そのダンパーによる付加減衰効果は、ダンパーが設置された2点間の変形量の2乗にほぼ反比例する。この観点から上記(1)(3)の各手段を検討すると、(1)の層間ダンパーは変形量が非常に小さい建物の層間に取り付けられる為、効率が悪く、多数のダンパーを取り付ける必要がある。上記(2)のチューンドマスダンパーは、共振現象を利用して付加重錘が大きく揺れるように構成し、増幅された変形に対してダンパーを働かせるので、効率は高い。上記(3)の免震構造は、水平剛性が小さい支承部材を使用し、免震層の変形を大きくしているので、やはり効率が高い。
【0005】
上記したように、(1)の層間ダンパーは、他の手段(2)、(3)に比較すると、効率が悪いだけでなく、建物内部のレイアウトの設計にも制限を受ける欠点がある。
【0006】
また、上記(2)のチューンドマスダンパーにしても、共振現象を利用しているため、建物の周期が設定した周期からずれると効率が激減する。また、付加重錘を使用するコスト、及びそれを設置するスペースの両面でマイナス要因を包含する欠点がある。
【0007】
更に、(3)の免震構造にしても、建物が振動する際に免震層が大きく揺れるため、その周辺部(隣接建物、道路など)との免震クリアランスを大きく確保しなければならず、建築計画上の制約が大きい。また、免震層を跨ぐ配管類にはフレキシブルジョイントを使用しなければならない欠点もある。
【0008】
従来、上述した欠点の解決を目的とする技術として、例えば特許第2616334号の発明Aに係る「軸方向変形制御用高減衰構造」は、建物の複数階にわたって延びる棒状の制御部材を設置し、この制御部材の上下を建物と連結し、中間部に受動型ダンパーを介在させ、ダンパー設置点間の変形量を大きくすることによって付加減衰効果を高める構成とされている。しかしながら、この特許発明Aは、曲げ変形が卓越する高層建物について実施されるもので、せん断変形がほとんどを占める中低層建物(例えば15階建て位まで)については高減衰効果を期待できない。また、高剛性の付加軸部材(制御部材)を複数階にわたり柱とは構造的に独立させたまま柱の中に「内柱」として設置することが必須要件であり、その製作(実施)にはかなりの困難が予想される。
【0009】
次に、特許第2713096号の発明Bに係る「高層建築物の免震構造」は、やはり曲げ変形が卓越する高層建物の免震構造である。高層建物の脚部に剪断抵抗部材を配置して剪断剛性を高め、伸び・圧縮性縦振動吸収支承を配置し、更に縦方向減衰ダンパーを配置して地震時の振動を減衰する構成とされている。
【0010】
【本発明が解決しようとする課題】
本発明の技術思想は、上記の特許第2713096号の発明Bに係る「高層建築物の免震構造」とかなり類似しているので、比較して言及する。
【0011】
第1に、特許発明Bは、上記したように曲げ変形が卓越する高層建物の免震構造である(図1B)。一方、本願発明が実施される建物は、むしろ剪断力及び剪断変形が卓越する(図1Aを参照)中低層建物(例えば15階建て位まで)である。
【0012】
第2に、特許発明Bは、前記目的の故に、「剪断抵抗部材」と「伸び・圧縮性縦振動吸収支承」及び「縦方向減衰ダンパー」を構成要素としている。これに対して、本願発明は、前記「剪断抵抗部材」と「伸び・圧縮性縦振動吸収支承」は必要とせず、建物外周部の柱剛性を小さくする(極端にはゼロにする)ことにより、弾性変形として建物に回転変形を生じ易くすることを特徴としている。
【0013】
以上要するに、本発明の目的は、特には剪断変形が卓越する中低層建物に実施して効果があり、付加減衰効果の大きい、建物の高減衰架構を提供することである。
【0014】
【課題を解決するための手段】
上述した課題を解決するための手段として、請求項1記載の発明に係る建物の高減衰架構は、
せん断変形が卓越する中・低層建物の基礎部分又は中間部分形成する減衰層Sにおける建物外周部分の柱の一部又は全部が取り除かれ、当該建物は内周部に残された柱3の回転剛性を小さくして前記基礎部分又は中間部分4の減衰層Sより上方の建物部分1又は1’が回転変形を生じ易く、且つ減衰層Sの回転によって建物に生じる変形が建物自身のせん断変形xとほぼ等しくなるように構築されていること、
建物の前記回転変形に減衰力を発揮するダンパー減衰層Sにおいて回転変形集中する建物外周部分に設置されていることを特徴とする。
【0015】
請求項2記載の発明に係る建物の高減衰架構は、
せん断変形が卓越する中・低層建物の基礎部分又は中間部分形成する減衰層Sにおける建物外周部分の柱の一部又は全部が取り除かれ、当該建物は内周部に残された柱3の回転剛性を小さくして前記基礎部分又は中間階部分4の減衰層Sより上方の建物部分1又は1’が回転変形を生じ易く、且つ減衰層Sの回転によって建物に生じる変形が建物自身のせん断変形xとほぼ等しくなるように構築されていること、
前記建物が回転変形する減衰層Sに、同建物の鉛直荷重を支持するが、前記回転変形の方向には抵抗が小さいブレース型支柱が設置されていること、「建物の前記回転変形に減衰力を発揮するダンパー5が減衰層Sにおいて回転変形集中する建物外周部分に設置されていることを特徴とする。
【0016】
請求項3記載の発明は、請求項1又は2に記載した建物の高減衰架構において、
回転変形を生じ易く構成した基礎部分又は中間部分の減衰層における回転剛性の大きさは、回転によって建物に生ずる変形量が、同建物自身の変形量と同じオーダーになるように、次式;
Σ(Fi×Hi)/Kr×H=x
により回転剛性Krを設計すること但し、基礎部固定のとき、外力Fiにより建物頂部に変形xが生ずるものとして、前記Hiを外力Fiの作用する高さ、Hを建物頂部の高さとする)。
【0017】
また、ダンパーの容量は、回転方向の減衰係数Crが、全体1次円振動数をΩとするとき、次式;
Cr=1.6Kr/Ω
によって求めた数値を最大値として、設計可能な範囲で必要のダンパー5を設置することを特徴とする。
【0018】
【発明の実施の形態及び実施例】
図2A〜Cは、請求項1、2記載の発明に係る建物の減衰架構の実施形態を概念的に示している。
【0019】
図2Bは、建物1の基礎部分2における建物外周部分の柱の一部又は全部が取り除かれ、当該建物1は残る柱3により前記基礎部分2において回転変形を生じ易く構築された実施形態を示している。また、図2Cは、建物1’の中間部分4における建物外周部分の柱の一部又は全部が取り除かれ、当該建物1’は残る柱3により前記基礎部分2において回転変形を生じ易く構築された実施形態を示している。
【0020】
要するに、建物の基礎部分2又は中間階部分4に回転変形を局所的に発生させ、同建物の1次モードに回転変形を連成させる。この回転変形に対してダンパー5を働かせて、建物全体としての減衰性能を飛躍的に向上させるのである。そのためダンパー5は回転変形が集中する(又は最も大きい)外周部位に設置する。もとの建物が曲げ変形を生じず、剪断変形のみ生ずる建物であっても、上述し図2B、Cに示した減衰架構を構築することにより、「回転」と「剪断」が連成した1次モードの減衰を飛躍的に大きくすることが可能であり、結果的に応答は小さくなる。なお、図2B、Cにおいて、符号6で示したピン部分は回転剛性を有する。
【0021】
因みに、上記高減衰架構の設計法は、上記したように回転変形を生じ易く構成した基礎部分2又は中間層部分4における回転変形の集中位置の回転剛性の大きさを、回転によって建物に生ずる変形量が、同建物自身の変形量と同じオーダーになるように、次式;
Σ(Fi×Hi)/Kr×H=x
により回転剛性Krを設計する。但し、図2Aのように基礎部固定のとき、外力Fiにより建物頂部にxの変形が生ずるものとして、前記Hiを外力Fiの作用する高さ、Hを建物頂部の高さとする。
【0022】
また、ダンパー5の容量は、回転方向の減衰係数Crが、全体1次円振動数をΩとするとき、次式;
Cr=1.6Kr/Ω
によって求めた数値を最大値の目安として、設計可能な範囲で必要数のダンパー5を設置する(請求項3記載の発明)。
【0023】
次に図3〜図5は、本発明のより具体的な実施例を示している。
図3と図4は、基礎部分2において回転(又は曲げ)変形を生じ易い構成とした実施例である。図5は建物中間部分4において回転(又は曲げ)変形を生じ易い構成とした実施例を示している。それぞれ図中に符号Sで指示した減衰層における建物外周部の柱の一部又は全部を取り除いて鉛直剛性を小さくし、建物内周部に残した柱3の鉛直剛性を大きくすることによって、実質の鉛直剛性を通常建物と同程度に確保したまま、回転剛性を通常建物よりも小さくし回転変形を生じ易くしている。
【0024】
なお、図中に符号7で示したものは、減衰層Sより上方の建物1’が回転変形する減衰層Sに、同建物1’の鉛直荷重を支持するが、前記回転変形の方向には抵抗が小さくなる構成で設置されたブレース型支柱であり、建物1’の安定性が確保される(請求項2記載の発明)。
【0025】
建物の前記回転変形に減衰力を発揮するダンパー5は、前記回転変形の集中位置に設置されている。このダンパー5には、オイルダンパー、粘性体ダンパー、極底降伏点鋼ダンパー、摩擦ダンパー等々を適用できる。前記ダンパー5の設置部は、減衰層Sを前記したように回転変形を生じ易くしていることを前提に、剛性がないオイルダンパーか粘性体ダンパー、或いは剛性があっても早期に降伏して曲げ剛性には寄与しない極底降伏点鋼ダンパーか摩擦ダンパーが適用される。
【0026】
図6は、15階建ての建物に本発明の高減衰架構を実施した場合の効果をシミュレーション解析によって示したものである。回転(せん断)変形は基礎部分に与えた(図2B、及び図3、図4のタイプ)。回転剛性は、回転による建物の変位量(図2Aのx)が、建物自身の剪断変形量と同等になるように設定した。解析の結果は、伝達関数の形で示している。図6によれば、通常建物に比較して、伝達関数のピークが大幅に下がっており、非常に大きな付加減衰効果のあることがわかる。
【0027】
【本発明が奏する効果】
請求項1〜3に記載した発明に係る建物の高減衰架構によれば、特には剪断変形が卓越する中低層建物に実施して効果があり、付加減衰効果の大きい建物を提供できる。
【図面の簡単な説明】
【図1】Aは本発明が実施される建物の変形性状、Bは公知の発明Bが実施される建物の変形性状を概念的に示した立面図である。
【図2】Aは本発明が実施される建物の変形性状を定量化して示した説明図、B,Cは本発明の異なる実施形態を概念的に示した立面図である。
【図3】A、Bは本発明の実施例を変形前と後で示した立面図である。
【図4】A、Bは本発明の異なる実施例を変形前と後で示した立面図である。
【図5】A、Bは本発明の更に異なる実施例を変形前と後で示した立面図である。
【図6】15階建物への本発明の実施効果をシミュレーション解析によって示した図である。
【符号の説明】
1、1’ 建物
2 基礎部分
3 内周部に残る柱
4 中間部分
5 ダンパー
7 ブレース型柱
[0001]
BACKGROUND OF THE INVENTION
The present invention belongs to the technical field of building frames with high damping performance for reducing response vibrations of buildings due to large earthquakes and strong winds.
[0002]
[Prior art]
Conventionally, in order to reduce the response at the time of earthquake and strong wind of a building, the following means has been adopted based on the idea that the attenuation performance of the building should be increased.
(1) An interlayer damper that is installed so that a damping force is generated against an interlayer displacement that occurs when a building vibrates.
(2) A tuned mass damper (seismic control device) that absorbs the vibration energy of the building by installing an additional weight on the site where the vibration of the building is large (top, etc.) and synchronizing the period of the additional weight with the period of the building .
(3) A seismic isolation structure in which a building is supported by a member (seismic isolation device) having a large vertical rigidity and a small horizontal rigidity and absorbing vibration energy by a damper or the like.
[0003]
The three means (1) to (3) have different characteristics, but are finally common in that vibration energy is absorbed by a damper.
[0004]
By the way, when the same damper is used, the additional damping effect by the damper is almost inversely proportional to the square of the deformation amount between the two points where the damper is installed. Considering each of the means (1) to (3) from this point of view, the interlayer damper of (1) is mounted between the layers of the building where the amount of deformation is very small, so the efficiency is poor and it is necessary to mount a large number of dampers. is there. The tuned mass damper of the above (2) is configured such that the additional weight fluctuates greatly using a resonance phenomenon, and the damper is operated against the amplified deformation, so that the efficiency is high. The (3) seismic isolation structure uses a support member having a small horizontal rigidity and increases the deformation of the seismic isolation layer, so that the efficiency is still high.
[0005]
As described above, the interlayer damper (1) is not only less efficient than the other means (2) and (3) , but also has a drawback of being limited in the design of the layout inside the building.
[0006]
Further, even in the tuned mass damper of the above (2) , since the resonance phenomenon is used, the efficiency is drastically reduced when the period of the building deviates from the set period. In addition, there are disadvantages including negative factors in both the cost of using the additional weight and the space for installing the additional weight.
[0007]
Furthermore, even with the seismic isolation structure of (3), the seismic isolation layer shakes greatly when the building vibrates, so a large seismic isolation clearance with the surrounding area (adjacent buildings, roads, etc.) must be secured. There are great constraints on architectural planning. In addition, there is a drawback in that flexible joints must be used for pipes straddling the seismic isolation layer.
[0008]
Conventionally, as a technique for solving the above-described drawbacks, for example, the “high damping structure for axial deformation control” according to the invention A of Japanese Patent No. 2616334 is installed with a rod-shaped control member extending over a plurality of floors of a building, The top and bottom of this control member are connected to the building, a passive damper is interposed in the middle, and the amount of deformation between the damper installation points is increased to increase the additional damping effect. However, this patented invention A is implemented for a high-rise building where bending deformation is dominant, and a high damping effect cannot be expected for medium to low-rise buildings (for example, up to 15 stories) where shear deformation dominates. In addition, it is essential to install a high-rigidity additional shaft member (control member) as an “inner pillar” in the pillar while being structurally independent from the pillar across multiple floors. Is expected to be quite difficult.
[0009]
Next, the “seismic isolation structure for high-rise buildings” according to Invention B of Japanese Patent No. 2713096 is a seismic isolation structure for high-rise buildings where bending deformation is also predominant. Shear resistance members are placed on the legs of high-rise buildings to increase shear rigidity, stretch / compressible longitudinal vibration absorbing bearings are placed, and longitudinal damping dampers are placed to attenuate vibrations during earthquakes. Yes.
[0010]
[Problems to be solved by the present invention]
The technical idea of the present invention is quite similar to the “seismic isolation structure for a high-rise building” according to Invention B of the above-mentioned Patent No. 2713096, and will be referred to for comparison.
[0011]
First, patent invention B is a seismic isolation structure for a high-rise building in which bending deformation is dominant as described above (FIG. 1B). On the other hand, the building in which the present invention is implemented is rather a medium to low-rise building (for example, up to 15 floors) where shearing force and shear deformation are dominant (see FIG. 1A).
[0012]
Secondly, for the purpose described above, the patent invention B has “shear resistance member”, “extensible / compressible longitudinal vibration absorbing bearing” and “longitudinal damping damper” as constituent elements. On the other hand, the present invention does not require the “shear resistance member” and the “elongation / compressible longitudinal vibration absorption support”, and reduces the column rigidity at the outer periphery of the building (extremely makes it zero). It is characterized by facilitating rotational deformation in the building as elastic deformation.
[0013]
In short, an object of the present invention is to provide a high-damping structure of a building that is particularly effective when applied to a low-rise building where shear deformation is excellent and has a large additional damping effect.
[0014]
[Means for Solving the Problems]
As a means for solving the above-described problem, a high-damping frame of a building according to the invention according to claim 1 is:
Some or all of the pillars of the damping layer S in definitive building outer peripheral portion formed in-low-rise building 1 of base part 2 or the intermediate floor section 4 shear deformation is dominant is removed, the building is left in the inner peripheral portion The building portion 1 or 1 ′ above the damping layer S of the base portion 2 or the intermediate floor portion 4 is likely to be rotationally deformed by reducing the rotational rigidity of the column 3 and the deformation generated in the building by the rotation of the damping layer S Is constructed to be approximately equal to the shear deformation x of the building itself ,
Wherein the damper 5 to exert a damping force to the rotational deformation of the building 1 is installed on a building outer peripheral portion of the rotational deformation is concentrated in the attenuation layer S.
[0015]
The high-damping frame of a building according to the invention of claim 2 is:
Some or all of the pillars of the damping layer S in definitive building outer peripheral portion formed in-low-rise building 1 of base part 2 or the intermediate floor section 4 shear deformation is dominant is removed, the building is left in the inner peripheral portion The building portion 1 or 1 ′ above the damping layer S of the base portion 2 or the intermediate floor portion 4 is likely to be rotationally deformed by reducing the rotational rigidity of the column 3 and the deformation generated in the building by the rotation of the damping layer S Is constructed to be approximately equal to the shear deformation x of the building itself ,
The damping layer S in which the building 1 is rotationally deformed supports the vertical load of the building, but a brace-type column 7 having a small resistance is installed in the direction of the rotational deformation, “the rotational deformation of the building 1 The damper 5 that exhibits a damping force is installed on the outer periphery of the building where rotational deformation concentrates in the damping layer S.
[0016]
The invention according to claim 3 is the high attenuation frame of the building according to claim 1 or 2,
The magnitude of rotational rigidity in the damping layer of the foundation part or intermediate floor part that is likely to cause rotational deformation is expressed by the following equation so that the deformation amount generated in the building by rotation is in the same order as the deformation amount x of the building itself. ;
Σ (Fi × Hi) / Kr × H = x
To design the rotational rigidity Kr ( however, when the foundation is fixed, assuming that deformation x occurs at the top of the building due to the external force Fi, Hi is the height at which the external force Fi acts and H is the height of the top of the building) .
[0017]
The capacity of the damper is expressed by the following equation when the damping coefficient Cr in the rotational direction is Ω as the overall primary circular frequency:
Cr = 1.6Kr / Ω
A numerical value obtained by the maximum value by, characterized by installing a damper 5 in the required number in the design range.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
2A to 2C conceptually show an embodiment of a building damping frame according to the first and second aspects of the present invention.
[0019]
FIG. 2B shows an embodiment in which some or all of the pillars in the outer periphery of the building 1 in the foundation part 2 of the building 1 are removed, and the building 1 is constructed by the remaining pillars 3 to easily cause rotational deformation in the foundation part 2. ing. Further, FIG. 2C shows that a part or all of the pillars in the outer peripheral part of the building 1 ′ in the intermediate floor part 4 are removed, and the building 1 ′ is constructed by the remaining pillars 3 so as to easily cause rotational deformation in the foundation part 2. Embodiments are shown.
[0020]
In short, rotational deformation is locally generated in the foundation portion 2 or the intermediate floor portion 4 of the building, and the rotational deformation is coupled to the primary mode of the building. The damper 5 is made to work against this rotational deformation, and the damping performance as a whole building is drastically improved. Therefore, the damper 5 is installed in an outer peripheral portion where rotational deformation is concentrated (or the largest). Even if the original building does not cause bending deformation and only shear deformation, the above-described damping frame shown in FIGS. 2B and 2C can be used to couple “ rotation ” and “shear”. It is possible to dramatically increase the attenuation of the next mode, resulting in a small response. 2B and 2C, the pin portion indicated by reference numeral 6 has rotational rigidity.
[0021]
Incidentally, in the design method of the high attenuation frame, as described above, the magnitude of the rotational rigidity at the concentrated position of the rotational deformation in the foundation part 2 or the intermediate layer part 4 configured to easily generate rotational deformation is changed to the deformation generated in the building by the rotation. So that the amount is in the same order as the amount of deformation of the building itself;
Σ (Fi × Hi) / Kr × H = x
By designing the rotation rigidity Kr. However, when the foundation is fixed as shown in FIG. 2A, assuming that the external force Fi causes deformation of x at the top of the building, Hi is the height at which the external force Fi acts and H is the height of the building top.
[0022]
The capacity of the damper 5 is calculated by the following equation when the damping coefficient Cr in the rotation direction is Ω as the overall primary circular frequency:
Cr = 1.6Kr / Ω
The required number of dampers 5 is installed within a designable range using the numerical value obtained by the above as a guideline for the maximum value (the invention according to claim 3).
[0023]
3 to 5 show a more specific embodiment of the present invention.
3 and 4 show an embodiment in which the base portion 2 is likely to be rotated (or bent). FIG. 5 shows an embodiment in which it is easy to cause rotational (or bending) deformation in the building middle floor portion 4. By removing some or all of the pillars on the outer periphery of the building in the attenuation layer indicated by the symbol S in the figure, the vertical rigidity is reduced, and the vertical rigidity of the pillar 3 remaining on the inner periphery of the building is increased. While maintaining the vertical rigidity of the same as that of a normal building, the rotational rigidity is made smaller than that of a normal building to make it easy to cause rotational deformation.
[0024]
In the figure, what is indicated by reference numeral 7 supports the vertical load of the building 1 'on the damping layer S in which the building 1' above the damping layer S is rotationally deformed. It is a brace-type support column installed in a configuration in which the resistance is reduced, and the stability of the building 1 ′ is ensured (the invention according to claim 2).
[0025]
The damper 5 that exhibits a damping force in the rotational deformation of the building is installed at the concentrated position of the rotational deformation. For this damper 5, an oil damper, a viscous body damper, an extreme bottom yield point steel damper, a friction damper, and the like can be applied. The installation part of the damper 5 is assumed to make the damping layer S susceptible to rotational deformation as described above, and yields at an early stage even if there is a rigid oil damper or a viscous damper or a rigid body. Extreme bottom yield point steel dampers or friction dampers that do not contribute to bending stiffness are applied.
[0026]
FIG. 6 shows the effect of implementing the high-damping frame of the present invention on a 15-story building by simulation analysis. Rotational ( shear ) deformation was applied to the foundation (types of FIG. 2B, FIG. 3 and FIG. 4). The rotational rigidity was set such that the amount of displacement of the building due to rotation (x in FIG. 2A) was equivalent to the amount of shear deformation of the building itself. The result of the analysis is shown in the form of a transfer function. According to FIG. 6, it can be seen that the peak of the transfer function is significantly lower than that of a normal building, and that there is a very large additional attenuation effect.
[0027]
[Effects of the present invention]
According to the high-damping frame of a building according to the first to third aspects of the present invention, it is particularly effective when applied to a middle- and low-rise building where shear deformation is excellent, and a building having a large additional damping effect can be provided.
[Brief description of the drawings]
FIG. 1A is an elevation view conceptually showing deformation characteristics of a building in which the present invention is implemented, and B is conceptually showing deformation characteristics of a building in which a known invention B is implemented.
FIG. 2A is an explanatory diagram quantifying and showing deformation properties of a building in which the present invention is implemented, and B and C are elevation views conceptually illustrating different embodiments of the present invention.
FIGS. 3A and 3B are elevation views showing an embodiment of the present invention before and after deformation. FIGS.
4A and 4B are elevational views showing different embodiments of the present invention before and after modification.
FIGS. 5A and 5B are elevational views showing still another embodiment of the present invention before and after modification. FIGS.
FIG. 6 is a diagram showing the effect of implementing the present invention on a 15-story building by simulation analysis.
[Explanation of symbols]
1, 1 'building 2 foundation part 3 pillar remaining in inner circumference part 4 middle part 5 damper 7 brace type pillar

Claims (3)

せん断変形が卓越する中・低層建物の基礎部分又は中間部分に形成される減衰層における建物外周部分の柱の一部又は全部が取り除かれ、当該建物は内周部に残された柱の回転剛性を小さくして前記基礎部分又は中間部分の減衰層より上方の建物部分が回転変形を生じ易く、且つ減衰層の回転によって建物に生じる変形が建物自身のせん断変形とほぼ等しくなるように構築されていること、
建物の前記回転変形に減衰力を発揮するダンパーが減衰層において回転変形集中する建物外周部分に設置されていることを特徴とする、建物の高減衰架構。
Some or all of the pillars of the base portion or the intermediate floor portions are formed definitive damping layer building outer peripheral portion of the low-rise buildings and in the shear deformation is dominant is removed, of the building was left in the inner peripheral portion pillars The rotational rigidity is reduced so that the building part above the damping layer of the foundation part or the intermediate floor part is likely to be subjected to rotational deformation , and the deformation generated in the building by the rotation of the damping layer is substantially equal to the shear deformation of the building itself. That it is built,
A high-damping structure for a building, wherein a damper that exhibits a damping force for the rotational deformation of the building is installed on an outer peripheral portion of the building where the rotational deformation is concentrated in the damping layer .
せん断変形が卓越する中・低層建物の基礎部分又は中間部分に形成される減衰層における建物外周部分の柱の一部又は全部が取り除かれ、当該建物は内周部に残された柱の回転剛性を小さくして前記基礎部分又は中間部分の減衰層より上方の建物部分が回転変形を生じ易く、且つ減衰層の回転によって建物に生じる変形が建物自身のせん断変形とほぼ等しくなるように構築されていること、
前記建物が回転変形する減衰層に、同建物の鉛直荷重を支持するが、前記回転変形の方向には抵抗が小さいブレース型支柱が設置されていること、
建物の前記回転変形に減衰力を発揮するダンパーが減衰層において回転変形集中する建物外周部分に設置されていることを特徴とする、建物の高減衰架構。
Some or all of the pillars of the base portion or the intermediate floor portions are formed definitive damping layer building outer peripheral portion of the low-rise buildings and in the shear deformation is dominant is removed, of the building was left in the inner peripheral portion pillars The rotational rigidity is reduced so that the building part above the damping layer of the foundation part or the intermediate floor part is likely to be subjected to rotational deformation , and the deformation generated in the building by the rotation of the damping layer is substantially equal to the shear deformation of the building itself. That it is built,
The building supports a vertical load on the damping layer in which the building is rotationally deformed, but brace-type support columns with low resistance are installed in the direction of the rotational deformation.
A high-damping structure for a building, wherein a damper that exhibits a damping force for the rotational deformation of the building is installed on an outer peripheral portion of the building where the rotational deformation is concentrated in the damping layer .
回転変形を生じ易く構成した基礎部分又は中間部分の減衰層における回転剛性の大きさは、回転によって建物に生ずる変形量が、同建物自身の変形量と同じオーダーになるように、次式;
Σ(Fi×Hi)/Kr×H=x
により回転剛性Krを設計すること但し、基礎部固定のとき、外力Fiにより建物頂部に変形xが生ずるものとして、前記Hiを外力Fiの作用する高さ、Hを建物頂部の高さとする)、
また、ダンパーの容量は、回転方向の減衰係数Crが、全体1次円振動数をΩとするとき、次式;
Cr=1.6Kr/Ω
によって求めた数値を最大値として、設計可能な範囲で必要数のダンパーを設置することを特徴とする、請求項1又は2に記載した建物の高減衰架構。
The magnitude of rotational rigidity in the damping layer of the foundation part or intermediate floor part that is likely to cause rotational deformation is expressed by the following equation so that the deformation amount generated in the building by rotation is in the same order as the deformation amount x of the building itself. ;
Σ (Fi × Hi) / Kr × H = x
Designing the rotational stiffness Kr by (provided that when the basal portion fixed, as the deformation in the building top x is caused by an external force Fi, height of the action of external force Fi to the Hi, the H height of the building top) ,
The capacity of the damper is expressed by the following equation when the damping coefficient Cr in the rotational direction is Ω as the overall primary circular frequency:
Cr = 1.6Kr / Ω
As the maximum value a numerical value obtained by, characterized by installing the required number of dampers in designable range, high attenuation Frame building according to claim 1 or 2.
JP36956998A 1998-12-25 1998-12-25 High attenuation frame of building Expired - Fee Related JP3814748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36956998A JP3814748B2 (en) 1998-12-25 1998-12-25 High attenuation frame of building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36956998A JP3814748B2 (en) 1998-12-25 1998-12-25 High attenuation frame of building

Publications (2)

Publication Number Publication Date
JP2000192684A JP2000192684A (en) 2000-07-11
JP3814748B2 true JP3814748B2 (en) 2006-08-30

Family

ID=18494767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36956998A Expired - Fee Related JP3814748B2 (en) 1998-12-25 1998-12-25 High attenuation frame of building

Country Status (1)

Country Link
JP (1) JP3814748B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3991870B2 (en) * 2002-04-30 2007-10-17 Jfeエンジニアリング株式会社 Seismic control structure of frame

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3555232B2 (en) * 1995-04-07 2004-08-18 鹿島建設株式会社 Bending deformation control type vibration control structure
JPH09296625A (en) * 1996-04-30 1997-11-18 Shimizu Corp Building structure having earthquake-resistant construction

Also Published As

Publication number Publication date
JP2000192684A (en) 2000-07-11

Similar Documents

Publication Publication Date Title
JP2007046410A (en) Vibration proof device
JP3814748B2 (en) High attenuation frame of building
JP3828695B2 (en) Seismic control wall of a three-story house
JP3248684B2 (en) Damping structure
JP3092097B2 (en) Damping double floor structure
JP4216235B2 (en) Renovation structure and support for existing buildings
JP3807065B2 (en) Soft-rigid mixed structure
JP3677706B2 (en) Seismic isolation and control structure
JP3154019B2 (en) How to install substructures for adaptive growth structures
JP3972892B2 (en) Seismic retrofit method for existing buildings
JP3260473B2 (en) Mega structure brace frame damping structure incorporating damper unit
JP3183198B2 (en) Nuclear-related buildings and damping structures
JP7145669B2 (en) Seismic isolation structure
JP3156061B2 (en) High-rise building damping structure
JPS61215825A (en) Anti-seismic supporting device
JP3690468B2 (en) Seismic reinforcement structure
JPH0640493U (en) Vibration reduction device
JP3218527B2 (en) Damping structure
JP3728646B2 (en) Vibration control structure
JP3218528B2 (en) Damping structure
JPS63293284A (en) Vibration damping building
JPH04194180A (en) Camper against axial expansion-vibration of column in structure
JP2001271514A (en) Damper
JPH0742724B2 (en) Vibration control device
JPS62189264A (en) Construction of building

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060524

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees