JP2000192684A - Highly damping frame for building - Google Patents

Highly damping frame for building

Info

Publication number
JP2000192684A
JP2000192684A JP10369569A JP36956998A JP2000192684A JP 2000192684 A JP2000192684 A JP 2000192684A JP 10369569 A JP10369569 A JP 10369569A JP 36956998 A JP36956998 A JP 36956998A JP 2000192684 A JP2000192684 A JP 2000192684A
Authority
JP
Japan
Prior art keywords
building
deformation
rotational
damper
rotational deformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10369569A
Other languages
Japanese (ja)
Other versions
JP3814748B2 (en
Inventor
Masafumi Yamamoto
雅史 山本
Hiroki Hamaguchi
弘樹 濱口
Nobuyoshi Murai
信義 村井
Masahiko Tono
雅彦 東野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP36956998A priority Critical patent/JP3814748B2/en
Publication of JP2000192684A publication Critical patent/JP2000192684A/en
Application granted granted Critical
Publication of JP3814748B2 publication Critical patent/JP3814748B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a building frame which has high damping performance for decreasing response vibrations of a building caused by a large earthquake or strong wind. SOLUTION: A part or the entire of pillars at peripheral portions of a building are removed on a foundation portion or an intermediate layer portion of the building, and the building is constructed so as to easily generate rotary deformation on the foundation portion or the intermediate layer portion supported by the remaining pillars. A damper for exhibiting a damping force with respect to the rotary deformation of the building is set at a location at which the rotary deformation is concentrated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、大地震や強風に
よる建物の応答振動を低減する為の、減衰性能の高い建
物架構の技術分野に属する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention belongs to the technical field of a building frame having high damping performance for reducing response vibration of a building due to a large earthquake or strong wind.

【0002】[0002]

【従来の技術】従来一般に、建物の地震時、強風時の応
答を低減するためには、建物の減衰性能を高めれば良
い、との考えに基いて、次のような手段が採用されてい
る。 建物が振動する際に生じる層間変位に対して減衰力
が発生するように設置する層間ダンパー。 建物の振動が大きい部位(頂部など)に付加重錘を
設置し、前記付加重錘の周期を建物の周期に同調させて
建物の振動エネルギを吸収するチューンドマスダンパー
(制震装置)。 建物を、鉛直剛性が大で、水平剛性が小さい部材
(免震装置)で支持せしめ、ダンパー等により振動エネ
ルギを吸収する免震構造。
2. Description of the Related Art Conventionally, the following means have been generally adopted based on the idea that in order to reduce the response of a building in the event of an earthquake or a strong wind, the damping performance of the building should be increased. . An inter-layer damper that is installed so that damping force is generated against inter-story displacement generated when a building vibrates. A tuned mass damper (vibration damper) in which an additional weight is installed at a site (such as a top) where vibration of the building is large, and the cycle of the additional weight is synchronized with the cycle of the building to absorb the vibration energy of the building. A seismic isolation structure in which the building is supported by members (seismic isolation device) that have high vertical rigidity and low horizontal rigidity, and absorb vibration energy using dampers and the like.

【0003】上記3つの手段〜は、それぞれ異なっ
た特徴を有するが、最終的にはダンパーで振動エネルギ
を吸収する点で共通している。
[0003] The above three means have different characteristics, but they have in common that they ultimately absorb vibration energy with a damper.

【0004】ところで、同一のダンパーを使用すると
き、そのダンパーによる付加減衰効果は、ダンパーが設
置された2点間の変形量の2乗にほぼ反比例する。この
観点から上記〜の各手段を検討すると、の層間ダ
ンパーは変形量が非常に小さい建物の層間に取り付けら
れる為、効率が悪く、多数のダンパーを取り付ける必要
がある。上記のチューンドマスダンパーは、共振現象
を利用して付加重錘が大きく揺れるように構成し、増幅
された変形に対してダンパーを働かせるので、効率は高
い。上記の免震構造は、水平剛性が小さい支承部材を
使用し、免震層の変形を大きくしているので、やはり効
率が高い。
When the same damper is used, the additional damping effect of the damper is almost inversely proportional to the square of the deformation between two points where the damper is installed. Considering each of the above means from this viewpoint, since the interlayer damper is mounted between the layers of the building having a very small deformation, the efficiency is low and a large number of dampers need to be mounted. The above-mentioned tuned mass damper is configured such that the additional weight is largely shaken by utilizing the resonance phenomenon, and the damper acts on the amplified deformation, so that the efficiency is high. The above seismic isolation structure uses a bearing member having a small horizontal rigidity and increases the deformation of the seismic isolation layer, so that the efficiency is also high.

【0005】上記したように、の層間ダンパーは、他
の手段、に比較すると、効率が悪いだけでなく、建
物内部のレイアウトの設計にも制限を受ける欠点があ
る。
[0005] As described above, the interlayer damper has a drawback that it is not only inefficient but also limited in the layout design inside the building as compared with other means.

【0006】また、上記のチューンドマスダンパーに
しても、共振現象を利用しているため、建物の周期が設
定した周期からずれると効率が激減する。また、付加重
錘を使用するコスト、及びそれを設置するスペースの両
面でマイナス要因を包含する欠点がある。
[0006] Even in the above-mentioned tuned mass damper, since the resonance phenomenon is used, when the cycle of the building deviates from the set cycle, the efficiency is drastically reduced. Further, there is a disadvantage that both the cost of using the additional weight and the space for installing the additional weight include a negative factor.

【0007】更に、の免震構造にしても、建物が振動
する際に免震層が大きく揺れるため、その周辺部(隣接
建物、道路など)との免震クリアランスを大きく確保し
なければならず、建築計画上の制約が大きい。また、免
震層を跨ぐ配管類にはフレキシブルジョイントを使用し
なければならない欠点もある。
Furthermore, even in the case of the seismic isolation structure, the seismic isolation layer is greatly shaken when the building vibrates, so that a large seismic isolation clearance with the peripheral parts (adjacent buildings, roads, etc.) must be secured. The restrictions on architectural planning are great. There is also a drawback that a flexible joint must be used for piping that straddles the seismic isolation layer.

【0008】従来、上述した欠点の解決を目的とする技
術として、例えば特許第2616334号の発明Aに係
る「軸方向変形制御用高減衰構造」は、建物の複数階に
わたって延びる棒状の制御部材を設置し、この制御部材
の上下を建物と連結し、中間部に受動型ダンパーを介在
させ、ダンパー設置点間の変形量を大きくすることによ
って付加減衰効果を高める構成とされている。しかしな
がら、この特許発明Aは、曲げ変形が卓越する高層建物
について実施されるもので、せん断変形がほとんどを占
める中低層建物(例えば15階建て位まで)については
高減衰効果を期待できない。また、高剛性の付加軸部材
(制御部材)を複数階にわたり柱とは構造的に独立させ
たまま柱の中に「内柱」として設置することが必須要件
であり、その製作(実施)にはかなりの困難が予想され
る。
Conventionally, as a technique aimed at solving the above-mentioned disadvantages, for example, a "high-damping structure for controlling axial deformation" according to invention A of Japanese Patent No. 2616334 discloses a rod-shaped control member extending over a plurality of floors of a building. The control member is installed above and below and connected to the building, a passive damper is interposed in the middle part, and the amount of deformation between the damper installation points is increased to increase the additional damping effect. However, this patent invention A is applied to a high-rise building where bending deformation is predominant, and a high damping effect cannot be expected for a middle-to-low-rise building (for example, up to about 15 stories) where shear deformation is dominant. In addition, it is essential to install a high-rigidity additional shaft member (control member) as an "inner pillar" in a pillar over a plurality of floors while keeping it structurally independent from the pillar. Expected to be quite difficult.

【0009】次に、特許第2713096号の発明Bに
係る「高層建築物の免震構造」は、やはり曲げ変形が卓
越する高層建物の免震構造である。高層建物の脚部に剪
断抵抗部材を配置して剪断剛性を高め、伸び・圧縮性縦
振動吸収支承を配置し、更に縦方向減衰ダンパーを配置
して地震時の振動を減衰する構成とされている。
Next, the "seismic isolation structure of a high-rise building" according to Invention B of Japanese Patent No. 2713096 is a seismic isolation structure of a high-rise building in which bending deformation is predominant. A shear resistance member is placed on the leg of a high-rise building to increase the shear stiffness. I have.

【0010】[0010]

【本発明が解決しようとする課題】本発明の技術思想
は、上記の特許第2713096号の発明Bに係る「高
層建築物の免震構造」とかなり類似しているので、比較
して言及する。
The technical concept of the present invention is quite similar to the "seismic isolation structure of a high-rise building" according to the invention B of the above-mentioned Japanese Patent No. 2713096, and will be referred to in comparison. .

【0011】第1に、特許発明Bは、上記したように曲
げ変形が卓越する高層建物の免震構造である(図1
B)。一方、本願発明が実施される建物は、むしろ剪断
力及び剪断変形が卓越する(図1Aを参照)中低層建物
(例えば15階建て位まで)である。
First, patent invention B is a seismic isolation structure for a high-rise building in which bending deformation is predominant as described above (FIG. 1).
B). On the other hand, the building in which the present invention is implemented is rather a medium-to-low-rise building (for example, up to 15 stories) in which the shearing force and the shearing deformation are dominant (see FIG. 1A).

【0012】第2に、特許発明Bは、前記目的の故に、
「剪断抵抗部材」と「伸び・圧縮性縦振動吸収支承」及
び「縦方向減衰ダンパー」を構成要素としている。これ
に対して、本願発明は、前記「剪断抵抗部材」と「伸び
・圧縮性縦振動吸収支承」は必要とせず、建物外周部の
柱剛性を小さくする(極端にはゼロにする)ことによ
り、弾性変形として建物に回転変形を生じ易くすること
を特徴としている。
Secondly, Patent Invention B has, for the above object,
The components include a "shear resistance member", a "longitudinal and compressive longitudinal vibration absorbing bearing", and a "longitudinal damper". On the other hand, the invention of the present application does not require the "shear resistance member" and the "extendable / compressible longitudinal vibration absorbing bearing", and reduces the column rigidity of the outer periphery of the building (extremely zero). In addition, the present invention is characterized in that a rotational deformation is easily generated in a building as elastic deformation.

【0013】以上要するに、本発明の目的は、特には剪
断変形が卓越する中低層建物に実施して効果があり、付
加減衰効果の大きい、建物の高減衰架構を提供すること
である。
In summary, an object of the present invention is to provide a high-damping frame of a building that is particularly effective when applied to a medium- to low-rise building where shear deformation is predominant and has a large additional damping effect.

【0014】[0014]

【課題を解決するための手段】上述した課題を解決する
ための手段として、請求項1記載の発明に係る建物の高
減衰架構は、建物の基礎部分又は中間層部分における建
物外周部分の柱の一部又は全部が取り除かれ、当該建物
は残る柱によって前記基礎部分又は中間層部分において
回転変形を生じ易く構築されていること、建物の前記回
転変形に減衰力を発揮するダンパーが回転変形の集中位
置に設置されていることを特徴とする。
As a means for solving the above-mentioned problems, a high-attenuation frame for a building according to the first aspect of the present invention is a high-attenuation frame for a pillar of a building outer peripheral portion in a foundation portion or a middle layer portion of the building. A part or all of the building is removed, and the building is constructed by the remaining pillars so as to easily cause rotational deformation in the base portion or the intermediate layer portion. A damper that exerts a damping force on the rotational deformation of the building is concentrated in the rotational deformation. It is characterized by being installed in a position.

【0015】請求項2記載の発明に係る建物の高減衰架
構は、建物の基礎部分又は中間層部分における建物外周
部分の柱の一部又は全部が取り除かれ、当該建物は残る
柱によって前記基礎部分又は中間層部分において回転変
形を生じ易く構築されていること、前記建物が回転変形
する底面部に、同建物の鉛直荷重を支持するが、前記回
転変形の方向には抵抗が小さいブレース型支柱が設置さ
れていること、建物の前記回転変形に減衰力を発揮する
ダンパーが回転変形の集中位置に設置されていることを
特徴とする。
According to a second aspect of the present invention, there is provided a high-attenuation frame for a building, in which part or all of the pillars on the outer peripheral portion of the building in the foundation portion or the middle layer portion are removed, and the building is left by the remaining pillars. Or, it is constructed so that rotational deformation is likely to occur in the middle layer part, and on the bottom part where the building rotationally deforms, the vertical load of the building is supported, but in the direction of the rotational deformation, a brace-type column with small resistance is used. It is characterized in that it is installed, and a damper that exerts a damping force on the rotational deformation of the building is installed at a concentrated position of the rotational deformation.

【0016】請求項3に記載した発明は、請求項1又は
2に記載した建物の高減衰架構において、回転変形を生
じ易く構成した基礎部分又は中間層部分の回転剛性の大
きさは、回転によって建物に生ずる変形量が、同建物自
身の変形量と同じオーダーになるように、次式; Σ(Fi×Hi)/Kr×H=x となるように回転剛性Krを設計すること。但し、基礎
部固定のとき、外力Fiにより建物頂部にxの変形が生
ずるものとして、前記Hiを外力Fiの作用する高さ、
Hを建物頂部の高さとする。
According to a third aspect of the present invention, in the high damping frame of a building according to the first or second aspect, the magnitude of the rotational rigidity of the base portion or the intermediate layer portion which is apt to cause rotational deformation is determined by the rotation. The rotational rigidity Kr is designed so that the following equation is obtained so that the amount of deformation occurring in the building is in the same order as the amount of deformation of the building itself: Σ (Fi × Hi) / Kr × H = x. However, when the foundation is fixed, it is assumed that the deformation of x occurs at the top of the building due to the external force Fi, and the Hi is set to the height at which the external force Fi acts,
Let H be the height of the building top.

【0017】また、ダンパーの容量は、回転方向の減衰
係数Crが、全体1次円振動数をΩとするとき、次式; Cr=1.6Kr/Ω によって求めた数値を最大値の目安として、設計可能な
範囲で多数設置することを特徴とする。
Further, when the damping coefficient Cr in the rotational direction is Ω and the whole primary circular frequency is Ω, the numerical value obtained by the following equation: Cr = 1.6 Kr / Ω is used as a guide of the maximum value. It is characterized in that it is installed in a large number within a designable range.

【0018】[0018]

【発明の実施の形態及び実施例】図2A〜Cは、請求項
1、2記載の発明に係る建物の減衰架構の実施形態を概
念的に示している。
2A to 2C conceptually show an embodiment of a damping frame for a building according to the first and second aspects of the present invention.

【0019】図2Bは、建物1の基礎部分2における建
物外周部分の柱の一部又は全部が取り除かれ、当該建物
1は残る柱3により前記基礎部分2において回転変形を
生じ易く構築された実施形態を示している。また、図2
Cは、建物1’の中間層部分4における建物外周部分の
柱の一部又は全部が取り除かれ、当該建物1’は残る柱
3により前記基礎部分2において回転変形を生じ易く構
築された実施形態を示している。
FIG. 2B shows an embodiment in which some or all of the pillars at the outer periphery of the building in the base part 2 of the building 1 are removed, and the building 1 is constructed by the remaining pillars 3 so as to easily cause rotational deformation in the base part 2. The form is shown. FIG.
C is an embodiment in which some or all of the pillars of the outer peripheral portion of the intermediate layer portion 4 of the building 1 ′ are removed, and the building 1 ′ is constructed such that the remaining pillars 3 easily cause rotational deformation in the base portion 2. Is shown.

【0020】要するに、建物の特定の層2又は4に曲げ
変形を局所的に発生させ、同建物の1次モードに曲げ変
形を連成させる。この曲げ変形に対してダンパー5を働
かせて、建物全体としての減衰性能を飛躍的に向上させ
るのである。そのためダンパー5は回転変形が集中する
(又は最も大きい)部位に設置する。もとの建物が曲げ
変形を生じず、剪断変形のみ生ずる建物であっても、上
述し図2B,Cに示した減衰架構を構築することによ
り、「曲げ」と「剪断」が連成した1次モードの減衰を
飛躍的に大きくすることが可能であり、結果的に応答は
小さくなる。なお、図2B,Cにおいて、符号6で示し
たピン部分は回転剛性を有する。
In short, a bending deformation is locally generated in a specific layer 2 or 4 of the building, and the bending deformation is coupled to the first mode of the building. By acting the damper 5 against this bending deformation, the damping performance of the whole building is dramatically improved. Therefore, the damper 5 is installed at a portion where the rotational deformation is concentrated (or largest). Even if the original building does not generate bending deformation but generates only shearing deformation, by constructing the damping frame shown in FIGS. 2B and 2C, "bending" and "shearing" are coupled. It is possible to greatly increase the attenuation of the next mode, and as a result, the response is reduced. In FIGS. 2B and 2C, the pin indicated by reference numeral 6 has rotational rigidity.

【0021】因みに、上記高減衰架構の設計法は、上記
したように回転変形を生じ易く構成した基礎部分2又は
中間層部分4における回転変形の集中位置の回転剛性の
大きさを、回転によって建物に生ずる変形量が、同建物
自身の変形量と同じオーダーになるように、次式; Σ(Fi×Hi)/Kr×H=x となるように回転剛性Krを設計する。但し、図2Aの
ように基礎部固定のとき、外力Fiにより建物頂部にx
の変形が生ずるものとして、前記Hiを外力Fiの作用
する高さ、Hを建物頂部の高さとする。
Incidentally, the design method of the high damping frame described above is based on the fact that the magnitude of the rotational rigidity at the concentrated position of the rotational deformation in the base portion 2 or the intermediate layer portion 4 which is configured to easily cause the rotational deformation as described above is determined by rotating the building. The rotational rigidity Kr is designed such that the following equation: よ う (Fi × Hi) / Kr × H = x, so that the amount of deformation occurring in the same order as the amount of deformation of the building itself. However, when the foundation is fixed as shown in FIG. 2A, x is applied to the top of the building by external force Fi.
Is defined as the height at which the external force Fi acts, and H is the height of the top of the building.

【0022】また、ダンパー5の容量は、回転方向の減
衰係数Crが、全体1次円振動数をΩとするとき、次
式; Cr=1.6Kr/Ω によって求めた数値を最大値の目安として、設計可能な
範囲で多数設置する(請求項3記載の発明)。
Further, when the damping coefficient Cr in the rotational direction is Ω and the whole primary circular frequency is Ω, the capacity of the damper 5 is calculated by the following equation: Cr = 1.6 Kr / Ω As many as possible, they are installed within a designable range (the invention according to claim 3).

【0023】次に図3〜図5は、本発明のより具体的な
実施例を示している。図3と図4は、基礎部分2におい
て回転(又は曲げ)変形を生じ易い構成とした実施例で
ある。図5は建物中間層部分4において回転(又は曲
げ)変形を生じ易い構成とした実施例を示している。そ
れぞれ図中に符号Sで指示した層の建物外周部の柱の一
部又は全部を取り除いて鉛直剛性を小さくし、建物内周
部に残した柱3の鉛直剛性を大きくすることによって、
実質の鉛直剛性を通常建物と同程度に確保したまま、回
転剛性を通常建物よりも小さくし回転変形を生じ易くし
ている。
3 to 5 show more specific embodiments of the present invention. FIGS. 3 and 4 show an embodiment in which a rotation (or bending) deformation is easily generated in the base portion 2. FIG. 5 shows an embodiment in which a rotation (or bending) deformation is easily generated in the middle layer 4 of the building. By removing some or all of the pillars on the outer periphery of the building of the layer indicated by the symbol S in the figure to reduce the vertical rigidity, and increasing the vertical rigidity of the pillar 3 left on the inner peripheral portion of the building,
Rotational rigidity is made smaller than that of a normal building to make it easier to cause rotational deformation, while maintaining substantially the same vertical rigidity as that of a normal building.

【0024】なお、図中に符号7で示したものは、建物
の建物1又は1’が回転変形する底面部に、同建物の鉛
直荷重を支持するが、前記回転変形の方向には抵抗が小
さくなる構成で設置されたブレース型支柱であり、建物
の安定性が確保される(請求項2記載の発明)。
In the figure, the reference numeral 7 indicates that the vertical load of the building 1 or 1 'is supported on the bottom of the building where the building 1 or 1' is rotationally deformed. It is a brace-type support installed in a smaller configuration, and the stability of the building is ensured (the invention according to claim 2).

【0025】建物の前記回転変形に減衰力を発揮するダ
ンパー5は、前記回転変形の集中位置に設置されてい
る。このダンパー5には、オイルダンパー、粘性体ダン
パー、極低降伏点鋼ダンパー、摩擦ダンパー等々を適用
できる。前記ダンパー5の設置部は、S層を前記したよ
うに回転変形を生じ易くしていることを前提に、剛性が
ないオイルダンパーか粘性体ダンパー、或いは剛性があ
っても早期に降伏して曲げ剛性には寄与しない極低降伏
点鋼ダンパーか摩擦ダンパーが適用される。
The damper 5 which exerts a damping force on the rotational deformation of the building is installed at a position where the rotational deformation is concentrated. As the damper 5, an oil damper, a viscous material damper, an extremely low yield point steel damper, a friction damper, and the like can be applied. The installation portion of the damper 5 is based on the premise that the S layer is liable to be rotationally deformed as described above. Ultra-low yield point steel dampers or friction dampers that do not contribute to rigidity are applied.

【0026】図6は、15階建ての建物に本発明の高減
衰架構を実施した場合の効果をシミュレーション解析に
よって示したものである。回転(曲げ)変形は基礎部分
に与えた(図2B、及び図3、図4のタイプ)。回転剛
性は、回転による建物の変位量(図2Aのx)が、建物
自身の剪断変形量と同等になるように設定した。解析の
結果は、伝達関数の形で示している。図6によれば、通
常建物に比較して、伝達関数のピークが大幅に下がって
おり、非常に大きな付加減衰効果のあることがわかる。
FIG. 6 shows the effect of implementing the high damping frame of the present invention in a 15-story building by simulation analysis. Rotational (bending) deformation was applied to the base (types of FIGS. 2B, 3 and 4). The rotational rigidity was set so that the amount of displacement of the building due to rotation (x in FIG. 2A) was equal to the amount of shear deformation of the building itself. The result of the analysis is shown in the form of a transfer function. According to FIG. 6, the peak of the transfer function is significantly lower than that of a normal building, and it can be seen that there is a very large additional attenuation effect.

【0027】[0027]

【本発明が奏する効果】請求項1〜3に記載した発明に
係る建物の高減衰架構によれば、特には剪断変形が卓越
する中低層建物に実施して効果があり、付加減衰効果の
大きい建物を提供できる。
According to the high damping frame for a building according to the first to third aspects of the present invention, the present invention is particularly effective for a medium to low-rise building where shear deformation is predominant, and has a large additional damping effect. Building can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Aは本発明が実施される建物の変形性状、Bは
公知の発明Bが実施される建物の変形性状を概念的に示
した立面図である。
FIG. 1A is an elevational view conceptually showing a deformation property of a building in which the present invention is implemented, and FIG. 1B is a conceptual view showing a deformation property of a building in which a known invention B is implemented.

【図2】Aは本発明が実施される建物の変形性状を定量
化して示した説明図、B,Cは本発明の異なる実施形態
を概念的に示した立面図である。
FIG. 2A is an explanatory view quantifying and showing the deformation properties of a building in which the present invention is implemented, and FIGS. 2B and 2C are elevation views conceptually showing different embodiments of the present invention.

【図3】A、Bは本発明の実施例を変形前と後で示した
立面図である。
3A and 3B are elevation views showing an embodiment of the present invention before and after deformation.

【図4】A、Bは本発明の異なる実施例を変形前と後で
示した立面図である。
4A and 4B are elevation views showing different embodiments of the present invention before and after deformation.

【図5】A、Bは本発明の更に異なる実施例を変形前と
後で示した立面図である。
5A and 5B are elevation views showing still another embodiment of the present invention before and after deformation.

【図6】15階建物への本発明の実施効果をシミュレー
ション解析によって示した図である。
FIG. 6 is a diagram showing the effect of implementing the present invention on a 15th-floor building by simulation analysis.

【符号の説明】[Explanation of symbols]

1、1’ 建物 2 基礎部分 3 内周部に残る柱 4 中間部分 5 ダンパー 7 ブレース型柱 DESCRIPTION OF SYMBOLS 1, 1 'Building 2 Basic part 3 Column remaining in inner peripheral part 4 Intermediate part 5 Damper 7 Brace type column

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成10年12月25日(1998.12.
25)
[Submission date] December 25, 1998 (1998.12.
25)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図6[Correction target item name] Fig. 6

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図6】 FIG. 6

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村井 信義 千葉県印西市大塚一丁目5番地1 株式会 社竹中工務店技術研究所内 (72)発明者 東野 雅彦 千葉県印西市大塚一丁目5番地1 株式会 社竹中工務店技術研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Nobuyoshi Murai 1-5-1, Otsuka, Inzai City, Chiba Prefecture Inside the Technical Research Institute, Takenaka Corporation (72) Inventor Masahiko Higashino 1-5-1, Otsuka, Inzai City, Chiba Prefecture Takenaka Corporation Technical Research Institute

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】建物の基礎部分又は中間層部分における建
物外周部分の柱の一部又は全部が取り除かれ、当該建物
は残る柱によって前記基礎部分又は中間層部分において
回転変形を生じ易く構築されていること、 建物の前記回転変形に減衰力を発揮するダンパーが回転
変形の集中位置に設置されていることを特徴とする、建
物の高減衰架構。
Claims: 1. A part or all of a pillar at a peripheral portion of a building in a foundation portion or a middle layer portion of a building is removed, and the building is constructed by the remaining pillars so as to easily cause rotational deformation in the foundation portion or the middle layer portion. A high-damping frame for a building, wherein a damper that exerts a damping force on the rotational deformation of the building is installed at a concentrated position of the rotational deformation.
【請求項2】建物の基礎部分又は中間層部分における建
物外周部分の柱の一部又は全部が取り除かれ、当該建物
は残る柱によって前記基礎部分又は中間層部分において
回転変形を生じ易く構築されていること、 前記建物が回転変形する底面部に、同建物の鉛直荷重を
支持するが、前記回転変形の方向には抵抗が小さいブレ
ース型支柱が設置されていること、 建物の前記回転変形に減衰力を発揮するダンパーが回転
変形の集中位置に設置されていることを特徴とする、建
物の高減衰架構。
2. A part of or all of pillars of a building outer peripheral part in a foundation part or a middle layer part of a building are removed, and the building is constructed by the remaining pillars so as to easily cause rotational deformation in the base part or the middle layer part. That the building supports the vertical load of the building on the bottom surface where the building is rotationally deformed, but that a brace-type column with a small resistance is installed in the direction of the rotational deformation, and that the building is attenuated by the rotational deformation of the building A high-damping frame of a building, characterized in that a damper that exerts force is installed at a location where rotational deformation is concentrated.
【請求項3】回転変形を生じ易く構成した基礎部分又は
中間層部分の回転剛性の大きさは、回転によって建物に
生ずる変形量が、同建物自身の変形量と同じオーダーに
なるように、次式; Σ(Fi×Hi)/Kr×H=x となるように回転剛性Krを設計すること。但し、基礎
部固定のとき、外力Fiにより建物頂部にxの変形が生
ずるものとして、前記Hiを外力Fiの作用する高さ、
Hを建物頂部の高さとする。また、ダンパーの容量は、
回転方向の減衰係数Crが、全体1次円振動数をΩとす
るとき、次式; Cr=1.6Kr/Ω によって求めた数値を最大値の目安として、設計可能な
範囲で多数設置することを特徴とする、請求項1又は2
に記載した建物の高減衰架構。
3. The magnitude of the rotational rigidity of the base portion or the intermediate layer portion, which is liable to cause rotational deformation, is determined so that the amount of deformation generated in the building by rotation is in the same order as the amount of deformation of the building itself. Formula: 回 転 (Fi × Hi) / Kr × H = x Designing the rotational rigidity Kr. However, when the foundation is fixed, it is assumed that the deformation of x occurs at the top of the building due to the external force Fi, and the Hi is set to the height at which the external force Fi acts,
Let H be the height of the building top. Also, the capacity of the damper is
Assuming that the damping coefficient Cr in the rotational direction is Ω for the whole primary circular frequency, a number determined by the following equation: Cr = 1.6 Kr / Ω is used as a guideline for the maximum value, and a large number should be installed within a designable range. 3. The method according to claim 1, wherein
The high attenuation frame of the building described in.
JP36956998A 1998-12-25 1998-12-25 High attenuation frame of building Expired - Fee Related JP3814748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36956998A JP3814748B2 (en) 1998-12-25 1998-12-25 High attenuation frame of building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36956998A JP3814748B2 (en) 1998-12-25 1998-12-25 High attenuation frame of building

Publications (2)

Publication Number Publication Date
JP2000192684A true JP2000192684A (en) 2000-07-11
JP3814748B2 JP3814748B2 (en) 2006-08-30

Family

ID=18494767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36956998A Expired - Fee Related JP3814748B2 (en) 1998-12-25 1998-12-25 High attenuation frame of building

Country Status (1)

Country Link
JP (1) JP3814748B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004027815A (en) * 2002-04-30 2004-01-29 Jfe Steel Kk Vibration control structure of frame

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08277650A (en) * 1995-04-07 1996-10-22 Kajima Corp Bending deformation control type vibration damping structure
JPH09296625A (en) * 1996-04-30 1997-11-18 Shimizu Corp Building structure having earthquake-resistant construction

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08277650A (en) * 1995-04-07 1996-10-22 Kajima Corp Bending deformation control type vibration damping structure
JPH09296625A (en) * 1996-04-30 1997-11-18 Shimizu Corp Building structure having earthquake-resistant construction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004027815A (en) * 2002-04-30 2004-01-29 Jfe Steel Kk Vibration control structure of frame

Also Published As

Publication number Publication date
JP3814748B2 (en) 2006-08-30

Similar Documents

Publication Publication Date Title
KR20120088684A (en) Method and structure for damping movement in buildings
JP5316850B2 (en) Seismic isolation structure
JP6482373B2 (en) Seismic isolation structure
Madsen et al. Seismic response of building structures with dampers in shear walls
Pradono et al. Application of angular‐mass dampers to base‐isolated benchmark building
JP2000192684A (en) Highly damping frame for building
JP3092097B2 (en) Damping double floor structure
CN211447995U (en) Two-way harmonious mass shock-absorbing structure system of local shock insulation
JPH11223041A (en) Vibration control construction for mid-to-low-rise building or structure
JP6289929B2 (en) Structure damping device and specification setting method thereof
JP3248684B2 (en) Damping structure
JP3807065B2 (en) Soft-rigid mixed structure
JP2003155838A (en) Vibration-isolated structure of building
JP6456774B2 (en) Vibration control structure
JP4216235B2 (en) Renovation structure and support for existing buildings
JP2014156707A (en) Vibration control structure
JPH0449384A (en) Oscillation-proof device for lightweight structure
JP5483097B2 (en) Vibration control structure
JP3218529B2 (en) Damping structure
JPS63103127A (en) Earthquake isolator
JP2004162319A (en) Earthquake damping structure having basement
Kimura et al. High-Performance Seismic System Using Reinforced Concrete Wall-Column with Response Control System
JPH0742724B2 (en) Vibration control device
Takabatake et al. Simplified Analysis of High-Rise Buildings by the Extended Rod Theory
JP6306373B2 (en) Structure damping device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060524

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees