JP3991870B2 - Seismic control structure of frame - Google Patents

Seismic control structure of frame Download PDF

Info

Publication number
JP3991870B2
JP3991870B2 JP2003008392A JP2003008392A JP3991870B2 JP 3991870 B2 JP3991870 B2 JP 3991870B2 JP 2003008392 A JP2003008392 A JP 2003008392A JP 2003008392 A JP2003008392 A JP 2003008392A JP 3991870 B2 JP3991870 B2 JP 3991870B2
Authority
JP
Japan
Prior art keywords
frame
column
steel
columns
seismic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003008392A
Other languages
Japanese (ja)
Other versions
JP2004027815A (en
Inventor
隆行 難波
久哉 加村
佳 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2003008392A priority Critical patent/JP3991870B2/en
Publication of JP2004027815A publication Critical patent/JP2004027815A/en
Application granted granted Critical
Publication of JP3991870B2 publication Critical patent/JP3991870B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Vibration Dampers (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Warehouses Or Storage Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、立体自動倉庫などの地震時の応答により曲げ変形を生じ、柱に正負繰り返しの軸力を受ける架構の制震構造に関すものである。
【0002】
【従来の技術】
図17はスタッカークレーンによる格納搬出機能を持つ立体自動倉庫の一般的な骨組構造の説明図である。立体自動倉庫の骨組は、通常、軟鋼(SSC400)の軽量角型鋼管の弦材(柱)31、横材32及び斜材33のピン接合骨組(トラス骨組)より構成される。そして、骨組構造の内部にスタッカークレーン35の走行スペースを設ける必要があるため、張間方向(スタッカークレーン走行方向と直角方向)の骨組は、各スパンごとに高さ方向に細長いトラス骨組となり、最上層部分34以外は各スパンのトラス骨組相互を連結することができない構造となっている。
また、トラス骨組には荷格納用のラックが取り付けられており、このラックに品物が格納される。
【0003】
立体自動倉庫には重量物が格納される場合もあり、地震時においては、地震慣性力が格納されている品物及びラックを通じてトラス骨組に作用するため、格納されている品物が重量物の場合には慣性力も大きくなるので、この慣性力によって倉庫が倒壊しないようにすることが必要であり、これに加えて格納されている品物が転倒・落下しないようにすることも要請される。また、罹災後の迅速な復旧のために、補修が容易であることも必要である。
【0004】
そこで、立体自動倉庫の骨組は、耐震性の観点から、地震に対しては法令で想定される慣性水平力による部材応力、変形および保有水平耐力を構造計算により算定して、計算上必要な断面性能をもつ断面を選定することにより設計される(以下、「耐震設計」という)。
しかしながら、「耐震設計」による場合、最大速度50kine(=cm/ 秒)を超える大地震時には、建物の到壊は免がれたとしても、骨組に塑性変形(永久変形)を生ずることは避けられず、しかも一般に損傷の部位を特定することは困難であるため、罹災後の骨組の損傷に対する補修は容易ではない。また、「耐震設計」では地震時応答を制御するわけではないので、ラックに格納された品物の転倒・落下の可能性が高いという問題もある。
【0005】
そこで、「耐震設計」に加えて、骨組に作用する地震力を制御する方法が提案されている。この方法は、図18に示すように、外側トラス骨組(柔骨組)41と内側トラス骨組(剛骨組)42の連結部43に粘性ダンパー44を設置し、外側トラス骨組41と内側トラス骨組42との剛柔差を利用して粘性ダンパー44に地震エネルギーを吸収させるというものである(例えば、特許文献1参照)。
【0006】
また、地震力を制御する他の方法が開示されている。この方法は、図19に示すように、外側トラス骨組(柔骨組)41と内側トラス骨組(剛骨組)42の最上層連結部材43及び柱脚部材45を低降伏点鋼に置換して、その早期降伏によるエネルギー吸収により、地震力を制御するというものである(例えば、非特許文献1参照)。
【0007】
また、図20に示すような制震ジョイントが開示されている。この制震ジョイント51は、図20(a)に示すように、幅(図の奥行き方向)を狭くして塑性変形し易くした上部ジョイント53aと下部ジョイント53bからなる変形部52と、肉厚を増して補強した接続部54とを設け、柱部材50a,50bが接合された上下のジョイント53a,53bをボルト55で接合して上下の柱部材50a,50bを接続するようにしたものである。
そして、地震等によりスパン方向に加わる水平応力により、図20(b)に示すように、変形部52が塑性変形し、柱部材50aが上方へ移動して振動エネルギーを吸収するようにしたものである(例えば、特許文献2参照)。
【0008】
【特許文献1】
特開昭62−25679号公報(第2頁、図1)
【非特許文献1】
日本建築学会大会学術講演梗概集(北陸)216336
1992年8月
【特許文献2】
特開2001−253518号公報(第3頁、図5)
【0009】
【発明が解決しようとする課題】
しかしながら、特許文献1の粘性ダンパー44による方法は、鋼材の他に粘性ダンパーを必要とし、コストが高くなるという問題がある。また、粘性ダンパー44による場合には、粘性ダンパー44で吸収できなかったエネルギーはトラス骨組のどこかの部位に作用し、その部位に塑性変形をもたらすと考えられるが、その部位を特定することが難しく、補修が困難であるという問題もある。
【0010】
また、非特許文献1に示した連結部材43及び柱脚部材45を低降伏点鋼に置換するという方法では、地震により低降伏点鋼が降伏した瞬間、理論上骨組全体が不安定になって骨組全体の安全性を確保できないという問題がある。
【0011】
さらに、特許文献2の制震ラックは、柱の軸力によりジョイント部を塑性変形させ、エネルギーの吸収を行っているが、この形状では塑性変形により履歴がスリップ型に近くなり、十分なエネルギー吸収を行うことができない。
【0012】
本発明はかかる課題を解決するためになされたもので、地震時においてラックに格納されている品物の転倒・落下を防止できると共に、大地震による損傷後の建物安定性を確保しつつ、罹災後、容易に補修が可能な架構の制震構造を提供することを目的とするものである。
【0014】
【課題を解決するための手段】
(1)本発明に係る架構の制震構造は、両側に立設された縦長の外側ピントラス骨組と、2本の柱とその中間に中柱を有し前記外側ピントラス骨組の間に立設された複数の縦長の内側ピントラス骨組との最上部が剛結合され、地震時の水平荷重を主として構造部材の軸力によって負担し、地震時に応答により曲げ変形を生じて前記内側ピントラス骨組の2本の柱に正負の繰返えし軸力を受ける立体倉庫などの架構において、前記正負の繰返えし軸力を受ける内側ピントラス骨組の2本の柱の全部又は一部の下部を、座屈拘束された鋼製ダンパーで構成したものである。
【0016】
)上記(1)の座屈拘束された鋼製ダンパーを、最下層又はこれに準ずる層に設けた。
【0017】
)上記(1)又は(2)の座屈拘束された鋼製ダンパーが存在する内側ピントラス骨組の層の斜材と、正負の繰り返し荷重を受けない前記中柱との両者又は何れか一方を、前記座屈拘束された鋼製ダンパーが降伏したのちに、常時荷重を支持できるように補強した。
【0018】
)上記(1)〜()のいずれかの座屈拘束された鋼製ダンパーが存する内側ピントラス骨組の層の斜材と、正負の繰り返し荷重を受けない前記中柱とを剛接合により接合した。
【0019】
上記(1)の座屈拘束された鋼製ダンパーを、前記内側ピントラス骨組の2本の柱と斜材若しくは前記2本の柱と水平材との接合部のうち最も低い位置の接合部と柱脚部材との間又はその一部に設けた。
【0020】
上記(1)の座屈拘束された鋼製ダンパーと、上層の柱とを予め一体に接合して一節の通し柱を形成し、該通し柱を内側ピントラス骨組の2本の柱の最下層に配置した。
【0021】
)上記()の通し柱の両端部に接合用エンドプレートを設けた。
【0022】
【発明の実施の形態】
[実施の形態1]
図1は本発明の実施の形態1に係る架構の制震装置の模式図である。図において、1は外側トラス骨組、2は内側トラス骨組で、外側トラス骨組1は柱脚部材(図示せず)にピン接合されて立設された2本の柱3と、水平材5及び斜材6とをピン接合7により接合して構成したものであり、内側トラス骨組2は、柱脚部材にピン接合されて立設された2本の柱3と、その中間に立設された中柱4と、水平材5及び斜材6とをピン接合7により接合して構成したものである。8は外側トラス骨組1と内側トラス骨組2の最上部を連結する連結梁である。
【0023】
10は内側トラス骨組2の曲げ変形により軸方向の正負繰り返し荷重を負担する最下層又は柱の必要長さが確保できる最下部(以下、最下層に準ずる層という)の柱で、柱3に代えて極低降伏点鋼(以下、極軟鋼という)により構成したものである(以下、この柱10を極軟鋼柱という)。なお、この極軟鋼柱10の長さ(高さ)は、最下層の柱3の高さと等しく構成してもよく、あるいは部分的に設けてもよい。
【0024】
この場合、極軟鋼柱10の有効断面積を従来の柱3と同じ構造にすれば、耐震設計の一次設計においては、変形の検討を従来の構造と同様に行うことができ、短期許容耐力も鋼材の降伏耐力の変更のみで対応することができるので、繰り返し荷重に対して大きなエネルギー吸収を行うことができる。
【0025】
上記のように構成した本実施の形態によれば、大地震時において、極軟鋼柱10が早期に降伏することによって極軟鋼柱10に地震エネルギーを吸収させることができるので、大地震時の損傷を極軟鋼柱10に集中させ、他の部分が損傷しないようにすることができる。
また、従来構造の最下層の柱3のみを極軟鋼柱10と置換するだけなので、従来の制震構造に比べてコストを低く抑えることができ、さらに、基礎やトラス骨組の部材断面を小さくできるので、制震化によるコスト増を吸収することができる。
【0026】
また、極軟鋼柱10を設けたことにより加速度応答が低下するので、格納商品の落下を防止することができる。さらに、損傷後の補修が容易であり、既存の架構に対する改修も可能である。また、架構の曲げ変形によるエネルギー吸収が可能なため、高層の架構についても大きな制震効果を得ることができる。
さらに、立体自動倉庫の柱脚から最も下層にある商品格納スペースまでの間は一般に利用されていないので、この位置に制振構造を配置することにより、操業に影響を与えることはない。
【0027】
[実施の形態2]
図2は本発明の実施の形態2に係る架構の制震構造の模式図である。
本実施の形態は、実施の形態1における内側トラス骨組2の最下層又はこれに準ずる層の斜材6と、正負繰り返し荷重を受けない中柱4を補強し、剛接合11としたものである。
本実施の形態によれば、実施の形態1の効果に加えて、極軟鋼柱10が地震荷重によって降伏した後も、外側トラス骨組1と連結梁5と合わせて構造安定性を確保する効果が得られる。
【0028】
[実施の形態3]
図3は本発明の実施の形態3に係る架構の制震構造の模式図である。本実施の形態は、実施の形態1における内側トラス骨組2の中柱4と斜材6を、中柱4の柱脚部材にピン結合7して集約したものである。
本実施の形態によれば、実施の形態1の効果に加えて、極軟鋼柱10が降伏後も常時荷重を中柱4の柱脚部材で支持し、外側トラス骨組1と連結梁8と合わせて構造安定性を確保することができ、また、極軟鋼柱10を支持する柱脚部材にかかる荷重は小さいため、比較的簡素な構造とすることができる。
なお、実施の形態1〜3では内側トラス骨組2の最下層の柱3を極軟鋼柱10に置換した場合を示したが、外側トラス骨組1の最下層の柱3を極軟鋼柱10としてもよい。
【0029】
[実施の形態4]
図4は本発明の実施の形態4に係る架構の制震装置の要部の説明図である。実施の形態1〜3では、正負繰り返し軸力を受ける柱の最下層又はこれに準ずる層の全部又は一部に、極軟鋼柱10を設けた場合を示したが、本実施の形態は、極軟鋼柱10に代えて座屈拘束された鋼製ダンパー15を設けたものである。
【0030】
この鋼製ダンパー15は図4にその一例を示すように、板状の極軟鋼17の両端部に、普通鋼板を十字状に接合したスチフナ18を溶接により接合して軸材16を構成し、この軸材16を角形又は丸形の座屈拘束用鋼管19内に挿入して一体化したものである。
このような鋼製ダンパー15は、実施の形態1〜3の場合と同様に、その下端部のスチフナ18が柱脚部材に接合され、上端部のスチフナ18が上部の柱に接合されて設置される。
【0031】
本実施の形態の作用、効果は、実施の形態1の場合とほぼ同様であるが、特に、正負の軸力に対して軸材16が引張り、圧縮両方向の力に降伏して座屈拘束用鋼管19により軸材16の座屈が拘束されるため、安定してエネルギーを吸収することができる。
【0032】
上記の実施の形態1〜4では、極軟鋼柱10又は鋼製ダンパー15を、架構の最下層又はこれに準ずる層に設置した場合を示したが、本発明はこれに限定するものではなく、柱の正負繰り返し軸力を受ける位置であれば、他の場所に設けてもよい。
【0033】
[実施の形態5]
図5は本発明の実施の形態5に係る架構の制震構造の内側トラス骨組の下層部分の模式図、図6は一節の通し柱の模式図である。なお、実施の形態1〜4と同じ部分にはこれと同じ符号を付し、説明を省略する。
図において、20は鋼製ダンパー15aと柱3aとからなる一節の通し柱で、上部はエンドプレート21を介して上層の柱3に接合され、下部はエンドプレート22を介して柱脚部材(図示せず)に接合される。
【0034】
鋼製ダンパー15aの一例を図7に示す。図7(a)に示すように、板状の極軟鋼17の一端に普通鋼板を十字状に接合したスチフナ18及び接合プレート23を溶接接合して軸材16aを構成する。なお、接合プレート23は必要最小限の大きさとすることが望ましい。
そして、図7(b)に示すように、軸材16aを座屈拘束用鋼管19aに挿入したのち、軸材16aのもう一端にエンドプレート22を溶接接合し、さらに、座屈拘束用鋼管19aをエンドプレート22に接合し、一体化する(図7(c),(d))。
【0035】
このような鋼製ダンパー15aは工場等で製作され、さらに、工場等においてその接合プレート23を柱3aのエンドプレートに接合し、工事現場に輸送可能な通し柱20が構成される。なお、鋼製ダンパー15aは、内側トラス骨組2の最下層に設けられたパレット支持部24(水平材)より低い位置において柱3aに接合される。これにより、立体自動倉庫に適用する際に、パレットの収納搬出作業に支障をきたすことはない。
【0036】
上記の説明では、柱3aと鋼製ダンパー15aとにより一節の通し柱20を構成した場合を示したが、鋼製ダンパー15aに代えて実施の形態1で説明した極軟鋼柱10を柱3aに接合して通し柱20を構成してもよい。また、通し柱20を内側トラス骨組2に設けた場合を示したが、外側トラス骨組1又は内側トラス骨組2と外側トラス骨組1の両者に設けてもよい。
【0037】
上記のように構成した本実施の形態においては、制震機能を有する鋼製ダンパー15aと柱3aを一体化して柱の一節である通し柱20を構成し、従来の柱の一節と置換するようにしたので、従来と同様の工程で施工することができる。
また、柱3aと鋼製ダンパー15aを工場等で一体成形することができるので、それぞれ単独で製作し、施工する場合に比べてコストを低減することができる。
【0038】
以上本発明の実施の形態1〜5について説明したが、これら各実施の形態はそれぞれ単独で実施してもよく、適宜組合わせて実施してもよい。
【0039】
【実施例】
発明者らは、立体自動倉庫の骨組モデルを用いて時刻歴応答解析を行った。モデルは実施の形態1に対応するもので、図8に示すように高さ30.18mの立体自動倉庫骨組であり、接合部は柱が縦方向に、連結梁が横方向に連続(剛結合)である以外は、すべてピン接合とした。また、これに使用した鋼材は、図9に示す通りである。なお、図9において、□は角形鋼管、○は丸形鋼管、HはH形鋼管を示す。
そして、実際の解析にあたっては、自由度縮小のため、縦方向のトラス骨組(格納部分)を、剛性と耐力が等価な曲げ剪断棒に置き換えた。また、極軟鋼柱10の部分は、上記曲げ剪断棒の降伏耐力と降伏後の応力ひずみ勾配を、極軟鋼柱10を配置したトラス骨組と等価になるように設置した。
【0040】
解析は、図10に示すように、極軟鋼柱10を配置しないモデル(以下、従来モデルという)、図11に示すように、両端部を除くトラス骨組の最下層に極軟鋼柱10(点線で示す)を配置したモデル(以下、モデルAという)、及び図12に示すように、一部のトラスの最下層に極軟鋼柱10を配置したモデル(以下、モデルBという)のそれぞれに、横浜波、エルセントロNS(南北方向)波、八戸EW(東西方向)波(これらの規模は、いずれも最大加速度200gal(1gal=1cm/s2))を入力して行った。また、極軟鋼柱10は、降伏点が1.6ft/cm2(F=1.6)と、1.0tf/cm2(F=1.0)の2種類のものを用いた。
【0041】
図13は従来モデル、モデルA及びモデルBにそれぞれ200galの横浜波を入力したときの時刻歴応答解析を行った結果を示す線図である。なお、極軟鋼柱10はF=1.6に設定した。
図から明らかなように、応答変位角(図13(a))、層剪断力(図13(b))ともに従来モデル、モデルB、モデルAの順に低下しており、配置する極軟鋼柱10の数が多いほど効果が高くなることが確認された。
【0042】
図14は図13の場合と同じ条件で、従来モデル、モデルA、モデルBに200galのエルセントロ波を入力した場合、図15は同じ八戸波を入力した場合の時刻歴応答解析を行った結果を示す線図であり、これらの場合も横浜波の場合とほぼ同様の結果が得られることがわかった。
【0043】
図16は図10の従来モデル(柱の降伏点F=2.4)、図11の極軟鋼柱10の降伏点をF=1.6とした場合、同じく降伏点をF=1.0とした場合のモデルAの3ケースにつき、200galの横浜波を入力した場合の時刻歴応答解析結果を示す線図である。
図から明らかなように、降伏点がF=1.0の極軟鋼柱10の場合が、他の場合より効果が大きいことが確認された。
【0044】
以上のような時刻歴応答解析結果から、極軟鋼柱10の配置及び数、降伏点の高低によって耐震効果が異なることが明らかになったので、必要な性能に応じて極軟鋼柱10の配置及び数、降伏点を選択することができる。
【0045】
【発明の効果】
本発明に係る架構の制震構造は、地震時の応答により曲げ変形を生じ、柱に正負繰り返しの軸力を受ける架構において、上記正負の繰り返し軸力を受ける全部又は一部の柱の下部を、他の部材より低い荷重によって降伏する部材によって構成したので、大地震時の損傷をこの部材に集中させ、他の部分の損傷を防止することができる。また、従来の制震構造に比べてコストを低減することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1に係る架構の耐震構造の模式図である。
【図2】本発明の実施の形態2に係る架構の耐震構造の模式図である。
【図3】本発明の実施の形態3に係る架構の耐震構造の模式図である。
【図4】本発明の実施の形態4に係る架構の耐震構造の要部の説明図である。
【図5】本発明の実施の形態5に係る架構の耐震構造の内側トラス骨組の下層部分の模式図である。
【図6】図5の通し柱の模式図である。
【図7】図5の鋼製ダンパーの説明図である。
【図8】本発明の実施例の立体自動倉庫の説明図である。
【図9】図8の各部材の構成表である。
【図10】図8の立体自動倉庫の時刻歴応答解析を行うための具体例の説明図である(従来モデル)。
【図11】図8の立体自動倉庫の時刻歴応答解析を行うための具体例の説明図である(モデルA)。
【図12】図8の立体自動倉庫の時刻歴応答解析を行うための具体例の説明図である(モデルB)。
【図13】図10〜図12のモデルに横浜波を入力したときの解析結果を示す線図である。
【図14】図10〜図12のモデルにエルセントロ波を入力したときの解析結果を示す線図である。
【図15】図10〜図12のモデルに八戸波を入力したときの解析結果を示す線図である。
【図16】従来モデルと、モデルAの極軟鋼柱の降伏点を1.6、1.0とし、200galの横浜波を入力した場合の解析結果を示す線図である。
【図17】従来の立体自動倉庫の一例の説明図である。
【図18】従来の立体自動倉庫の制震構造の一例の説明図である。
【図19】従来の立体自動倉庫の制震構造の他の例の説明図である。
【図20】従来の立体自動倉庫の制震構造のさらに他の例の説明図である。
【符号の説明】
1 外側トラス骨組
2 内側トラス骨組
3 柱
4 中柱
5 水平材
6 斜材
8 連結梁
10 極軟鋼柱
15,15a 鋼製ダンパー
16 軸材
17 極軟鋼
18 スチフナ
19 座屈拘束用鋼管
20 通し柱
21,22 エンドプレート
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a seismic control structure of a frame that undergoes bending deformation due to an earthquake response such as a three-dimensional automatic warehouse and receives a positive and negative axial force on a column.
[0002]
[Prior art]
FIG. 17 is an explanatory diagram of a general framework structure of a three-dimensional automatic warehouse having a storage / unloading function by a stacker crane. The framework of a three-dimensional automatic warehouse is usually composed of a pinned framework (truss framework) of a chord material (column) 31 of a lightweight square steel pipe of mild steel (SSC 400), a cross member 32 and an oblique member 33. Since it is necessary to provide a travel space for the stacker crane 35 inside the frame structure, the frame in the spanning direction (perpendicular to the stacker crane travel direction) becomes a truss frame that is elongated in the height direction for each span. Except for the upper layer portion 34, the truss frames of each span cannot be connected to each other.
In addition, a load storage rack is attached to the truss frame, and items are stored in the rack.
[0003]
There are cases where heavy objects are stored in the three-dimensional automatic warehouse, and in the event of an earthquake, the seismic inertia force acts on the truss frame through the stored items and racks, so the stored items are heavy items. Since the inertial force increases, it is necessary to prevent the warehouse from collapsing due to the inertial force, and in addition to this, it is also required to prevent the stored items from falling or falling. It is also necessary that repairs be easy for quick recovery after a disaster.
[0004]
Therefore, from the viewpoint of earthquake resistance, the framework of a three-dimensional automatic warehouse calculates the member stress, deformation, and retained horizontal strength due to the inertial horizontal force assumed by law for earthquakes by structural calculation, and calculates the necessary cross-section for calculation. It is designed by selecting a cross-section with performance (hereinafter referred to as “seismic design”).
However, in the case of “earthquake resistant design”, in the event of a large earthquake exceeding the maximum speed of 50 kine (= cm / sec), it is unavoidable to cause plastic deformation (permanent deformation) in the frame even if the building is not destroyed. In addition, since it is generally difficult to specify the site of damage, it is not easy to repair a damaged frame after a disaster. In addition, since “seismic design” does not control the response at the time of earthquake, there is also a problem that the possibility that the item stored in the rack will fall or fall is high.
[0005]
Therefore, in addition to “seismic design”, a method for controlling the seismic force acting on the frame has been proposed. In this method, as shown in FIG. 18, a viscous damper 44 is installed at a connecting portion 43 of an outer truss frame (flexible frame) 41 and an inner truss frame (rigid frame) 42, and the outer truss frame 41 and inner truss frame 42 The viscous damper 44 is made to absorb seismic energy using the stiffness difference (see, for example, Patent Document 1).
[0006]
Other methods for controlling seismic forces are also disclosed. In this method, as shown in FIG. 19, the upper layer connecting member 43 and the column base member 45 of the outer truss frame (flexible frame) 41 and the inner truss frame (rigid frame) 42 are replaced with low yield point steel. The seismic force is controlled by energy absorption by early yielding (for example, see Non-Patent Document 1).
[0007]
Further, a vibration control joint as shown in FIG. 20 is disclosed. As shown in FIG. 20A, the vibration control joint 51 has a thickness of a deformed portion 52 composed of an upper joint 53a and a lower joint 53b, which has a narrow width (in the depth direction in the drawing) and is easily plastically deformed. Further, a connection portion 54 that is reinforced is provided, and upper and lower joint members 53a and 53b to which the column members 50a and 50b are joined are joined with bolts 55 to connect the upper and lower pillar members 50a and 50b.
And, as shown in FIG. 20B, the deformed portion 52 is plastically deformed by the horizontal stress applied in the span direction due to an earthquake or the like, and the column member 50a moves upward to absorb the vibration energy. Yes (see, for example, Patent Document 2).
[0008]
[Patent Document 1]
Japanese Patent Laid-Open No. 62-25679 (2nd page, FIG. 1)
[Non-Patent Document 1]
Abstracts of Annual Meeting of Architectural Institute of Japan (Hokuriku) 216336
August 1992 [Patent Document 2]
JP 2001-253518 A (3rd page, FIG. 5)
[0009]
[Problems to be solved by the invention]
However, the method using the viscous damper 44 of Patent Document 1 requires a viscous damper in addition to the steel material, and there is a problem that the cost increases. In the case of the viscous damper 44, the energy that could not be absorbed by the viscous damper 44 is considered to act on some part of the truss frame and cause plastic deformation in that part. There is also a problem that it is difficult and repair is difficult.
[0010]
Moreover, in the method of replacing the connecting member 43 and the column base member 45 shown in Non-Patent Document 1 with low yield point steel, the entire framework is theoretically unstable at the moment when the low yield point steel yields due to an earthquake. There is a problem that the safety of the entire frame cannot be secured.
[0011]
Furthermore, the vibration control rack of Patent Document 2 absorbs energy by plastically deforming the joint portion by the axial force of the column, but in this shape, the history becomes close to a slip type due to plastic deformation, and sufficient energy absorption is achieved. Can not do.
[0012]
The present invention has been made to solve such a problem, and can prevent the articles stored in the rack from falling or falling during an earthquake and ensuring the stability of the building after damage caused by a large earthquake, and after the disaster. The purpose is to provide a seismic control structure for a frame that can be easily repaired.
[0014]
[Means for Solving the Problems]
(1) The frame vibration control structure according to the present invention has a vertically long outer pin truss frame erected on both sides, two columns and a middle column between them, and is erected between the outer pin truss frames. In addition, the uppermost part of the plurality of vertically long inner pin truss frames is rigidly connected, and the horizontal load at the time of the earthquake is mainly borne by the axial force of the structural member, and bending deformation is caused by the response at the time of the earthquake, so that two of the inner pin truss frames In a framework such as a three-dimensional warehouse that receives positive and negative axial forces on the columns, buckling restraint is applied to all or part of the lower part of the two pillars of the inner pin truss frame that receives the positive and negative axial forces. It is composed of a steel damper .
[0016]
( 2 ) The buckled and restrained steel damper of (1) was provided in the lowermost layer or a layer equivalent thereto.
[0017]
( 3 ) Either or either of the diagonal material of the inner pin truss frame layer in which the buckled-restrained steel damper of (1) or (2) is present and the central column not subjected to positive and negative repeated loads After the buckling-restrained steel damper yielded, it was reinforced so that it could always support the load.
[0018]
(4) above (1) to (3) and diagonal members of the inner layer Pintorasu Frame either buckling restrained steel damper exists in, and said in columns not subjected to positive and negative cyclic loading Tsuyoshi Bonded by bonding.
[0019]
( 5 ) The buckling-restrained steel damper of (1) is joined at the lowest position of the joints between the two pillars of the inner pin truss frame and the diagonal member or between the two pillars and the horizontal member. It was provided between the part and the column base member or a part thereof.
[0020]
( 6 ) The buckling-restrained steel damper of (1 ) above and the upper column are joined together in advance to form a one-column through column, which is the lowest layer of the two columns of the inner pin truss frame Arranged.
[0021]
( 7 ) The end plate for joining was provided in the both ends of the through pillar of said ( 6 ).
[0022]
DETAILED DESCRIPTION OF THE INVENTION
[Embodiment 1]
FIG. 1 is a schematic diagram of a frame damping device according to Embodiment 1 of the present invention. In the figure, reference numeral 1 denotes an outer truss frame, 2 an inner truss frame, and the outer truss frame 1 includes two columns 3 erected by being pin-connected to a column base member (not shown), a horizontal member 5 and an oblique member. The inner truss frame 2 is composed of two pillars 3 erected by being pin-joined to a column base member, and a middle erected between them. The pillar 4, the horizontal member 5 and the diagonal member 6 are joined by a pin joint 7. A connecting beam 8 connects the uppermost portions of the outer truss frame 1 and the inner truss frame 2.
[0023]
Reference numeral 10 denotes a lowermost layer that bears an axial positive / negative repeated load due to bending deformation of the inner truss frame 2 or a lowermost column (hereinafter referred to as a layer corresponding to the lowermost layer) that can secure the required length of the column. Thus, it is made of extremely low yield point steel (hereinafter referred to as extremely mild steel) (hereinafter, this column 10 is referred to as extremely mild steel column). The length (height) of the extra mild steel column 10 may be equal to the height of the lowermost column 3 or may be partially provided.
[0024]
In this case, if the effective cross-sectional area of the ultra mild steel column 10 is the same as that of the conventional column 3, the primary design of the seismic design can be studied for deformation in the same manner as the conventional structure, and the short-term allowable strength is also reduced. Since it can respond only by changing the yield strength of steel materials, it can absorb a large amount of energy against repeated loads.
[0025]
According to the present embodiment configured as described above, in the event of a large earthquake, the extreme mild steel column 10 can absorb the earthquake energy by yielding at an early stage. Can be concentrated on the ultra-soft steel column 10 so that other parts are not damaged.
Moreover, since only the lowermost column 3 of the conventional structure is replaced with the ultra-soft steel column 10, the cost can be kept lower than that of the conventional vibration control structure, and the cross section of the foundation or truss frame can be reduced. Therefore, the cost increase due to seismic control can be absorbed.
[0026]
Moreover, since an acceleration response falls by providing the ultra-soft steel column 10, the fall of stored goods can be prevented. Furthermore, repair after damage is easy, and the existing frame can be repaired. Moreover, since energy can be absorbed by bending deformation of the frame, a large vibration control effect can be obtained even for a high-rise frame.
Further, since the space from the column base of the three-dimensional automatic warehouse to the lowest-level product storage space is not generally used, the vibration control structure is arranged at this position so that the operation is not affected.
[0027]
[Embodiment 2]
FIG. 2 is a schematic diagram of a vibration control structure for a frame according to Embodiment 2 of the present invention.
In the present embodiment, the diagonal layer 6 of the lowermost layer of the inner truss frame 2 in the first embodiment or a layer equivalent thereto and the middle column 4 not subjected to positive and negative repeated loads are reinforced to form a rigid joint 11. .
According to the present embodiment, in addition to the effects of the first embodiment, even after the ultra mild steel column 10 yields due to the seismic load, there is an effect of ensuring the structural stability together with the outer truss frame 1 and the connecting beam 5. can get.
[0028]
[Embodiment 3]
FIG. 3 is a schematic diagram of a frame vibration control structure according to Embodiment 3 of the present invention. In the present embodiment, the middle column 4 and the diagonal member 6 of the inner truss frame 2 in the first embodiment are integrated by pin coupling 7 to the column base member of the middle column 4.
According to the present embodiment, in addition to the effects of the first embodiment, the extremely mild steel column 10 always supports the load with the column base member of the middle column 4 after yielding, and the outer truss frame 1 and the connecting beam 8 are combined. Therefore, the structural stability can be ensured, and the load applied to the column base member supporting the ultra-soft steel column 10 is small, so that a relatively simple structure can be obtained.
In the first to third embodiments, the case where the lowermost column 3 of the inner truss frame 2 is replaced with the ultra-soft steel column 10 is shown. Good.
[0029]
[Embodiment 4]
FIG. 4 is an explanatory diagram of a main part of a frame damping device according to Embodiment 4 of the present invention. In the first to third embodiments, the case where the ultra-soft steel column 10 is provided in all or part of the lowermost layer of the column that receives the positive / negative repeated axial force or a layer equivalent thereto is shown. Instead of the mild steel column 10, a steel damper 15 which is buckled and restrained is provided.
[0030]
As shown in FIG. 4, the steel damper 15 is composed of a shaft 16 by joining, by welding, a stiffener 18 in which ordinary steel plates are joined in a cross shape to both ends of a plate-like extremely mild steel 17. This shaft member 16 is integrated by being inserted into a square or round buckling-restraining steel pipe 19.
As in the case of the first to third embodiments, the steel damper 15 is installed such that the lower end stiffener 18 is joined to the column base member, and the upper end stiffener 18 is joined to the upper column. The
[0031]
The operation and effect of the present embodiment are almost the same as those of the first embodiment, but in particular, the shaft member 16 is pulled against positive and negative axial forces and yielded in both compressive directions to buckle and restrain. Since the buckling of the shaft member 16 is restricted by the steel pipe 19, energy can be absorbed stably.
[0032]
In said Embodiment 1-4, although the case where the ultra-soft steel pillar 10 or the steel damper 15 was installed in the lowest layer of a frame or a layer according to this was shown, this invention is not limited to this, As long as it is a position that receives the positive and negative axial force of the column, it may be provided at another location.
[0033]
[Embodiment 5]
FIG. 5 is a schematic diagram of a lower layer portion of an inner truss frame of a frame damping structure according to Embodiment 5 of the present invention, and FIG. 6 is a schematic diagram of a passage column. In addition, the same code | symbol is attached | subjected to the same part as Embodiment 1-4, and description is abbreviate | omitted.
In the figure, reference numeral 20 denotes a one-way through column made of a steel damper 15a and a column 3a. The upper part is joined to the upper layer column 3 via an end plate 21, and the lower part is connected to a column base member (not shown) via an end plate 22. )).
[0034]
An example of the steel damper 15a is shown in FIG. As shown in FIG. 7A, a shaft member 16a is formed by welding and joining a stiffener 18 and a joining plate 23 obtained by joining ordinary steel plates in a cross shape to one end of a plate-like ultra-soft steel 17. In addition, it is desirable that the joining plate 23 has a necessary minimum size.
Then, as shown in FIG. 7B, after the shaft member 16a is inserted into the buckling-restraining steel pipe 19a, the end plate 22 is welded to the other end of the shaft member 16a, and further, the buckling-restraining steel tube 19a. Are joined to the end plate 22 and integrated (FIGS. 7C and 7D).
[0035]
Such a steel damper 15a is manufactured in a factory or the like, and the joining plate 23 is joined to the end plate of the pillar 3a in the factory or the like to form a through pillar 20 that can be transported to a construction site. The steel damper 15a is joined to the column 3a at a position lower than the pallet support portion 24 (horizontal member) provided in the lowermost layer of the inner truss frame 2. Thereby, when applying to a three-dimensional automatic warehouse, it does not interfere with the storing and carrying-out work of a pallet.
[0036]
In the above description, a case where the one-column through column 20 is configured by the column 3a and the steel damper 15a has been described. However, the extra soft steel column 10 described in the first embodiment is joined to the column 3a instead of the steel damper 15a. Thus, the through pillar 20 may be configured. Moreover, although the case where the through pillar 20 is provided in the inner truss frame 2 is shown, the outer truss frame 1 or both the inner truss frame 2 and the outer truss frame 1 may be provided.
[0037]
In the present embodiment configured as described above, the steel damper 15a having a vibration control function and the column 3a are integrated to form the through column 20 which is a column of the column, and is replaced with the column of the conventional column. Therefore, it can be constructed in the same process as before.
Moreover, since the pillar 3a and the steel damper 15a can be integrally formed at a factory or the like, the cost can be reduced as compared with the case where they are individually manufactured and constructed.
[0038]
As mentioned above, although Embodiment 1-5 of this invention was demonstrated, each of these embodiment may each be implemented independently and may be implemented in combination as appropriate.
[0039]
【Example】
The inventors performed time history response analysis using a framework model of a three-dimensional automatic warehouse. The model corresponds to the first embodiment, and is a three-dimensional automatic warehouse frame with a height of 30.18 m as shown in FIG. 8, and the joint is continuous in the vertical direction of the column and in the horizontal direction of the connecting beam (rigid connection) ) Except for the case of pin bonding. Moreover, the steel materials used for this are as shown in FIG. In FIG. 9, □ indicates a square steel pipe, ○ indicates a round steel pipe, and H indicates an H-shaped steel pipe.
In the actual analysis, in order to reduce the degree of freedom, the truss frame (contained part) in the vertical direction was replaced with a bending shear bar having equivalent rigidity and proof stress. Moreover, the part of the ultra-soft steel column 10 was installed so that the yield strength of the bending shear rod and the stress-strain gradient after yielding would be equivalent to the truss frame where the ultra-soft steel column 10 was arranged.
[0040]
As shown in FIG. 10, the analysis includes a model in which the ultra-soft steel column 10 is not disposed (hereinafter referred to as a conventional model), and an ultra-soft steel column 10 (indicated by a dotted line) in the lowermost layer of the truss frame excluding both ends as shown in FIG. In each of the model (hereinafter referred to as model A) in which the ultra-soft steel column 10 is disposed in the lowermost layer of some trusses (hereinafter referred to as model B) as shown in FIG. Wave, El Centro NS (north-south direction) wave, Hachinohe EW (east-west direction) wave (all of these scales were input with a maximum acceleration of 200 gal (1 gal = 1 cm / s 2 )). Further, as the ultra-soft steel column 10, two types having a yield point of 1.6 ft / cm 2 (F = 1.6) and 1.0 tf / cm 2 (F = 1.0) were used.
[0041]
FIG. 13 is a diagram showing the results of time history response analysis when a 200 gal Yokohama wave is input to each of the conventional model, model A, and model B. FIG. The ultra-soft steel column 10 was set to F = 1.6.
As is clear from the figure, the response displacement angle (FIG. 13A) and the layer shear force (FIG. 13B) both decrease in the order of the conventional model, the model B, and the model A. It was confirmed that the effect increases as the number of.
[0042]
FIG. 14 shows the result of the time history response analysis when the 200 gal elcentro wave is input to the conventional model, model A, and model B under the same conditions as in FIG. In these cases, it was found that almost the same result as in the case of the Yokohama wave was obtained.
[0043]
FIG. 16 shows the conventional model of FIG. 10 (column yield point F = 2.4), and when the yield point of the ultra mild steel column 10 of FIG. 11 is F = 1.6, the yield point is also F = 1.0. It is a diagram which shows the time history response analysis result at the time of inputting 200-gal Yokohama wave about 3 cases of model A at the time of doing.
As is apparent from the figure, it was confirmed that the effect was greater in the case of the ultra mild steel column 10 having a yield point of F = 1.0 than in other cases.
[0044]
From the time history response analysis results as described above, it has been clarified that the seismic effect varies depending on the arrangement and number of the ultra-soft steel columns 10 and the height of the yield point. Therefore, depending on the required performance, the arrangement of the ultra-soft steel columns 10 and Number, yield point can be selected.
[0045]
【The invention's effect】
The seismic control structure of the frame according to the present invention is a structure in which bending deformation is caused by a response at the time of an earthquake, and the column receives positive and negative repeated axial forces. Since it is constituted by a member that yields due to a lower load than other members, damage caused by a large earthquake can be concentrated on this member, and damage to other parts can be prevented. Moreover, cost can be reduced compared with the conventional seismic control structure.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a seismic structure for a frame according to Embodiment 1 of the present invention.
FIG. 2 is a schematic diagram of a seismic structure for a frame according to Embodiment 2 of the present invention.
FIG. 3 is a schematic diagram of a seismic structure for a frame according to Embodiment 3 of the present invention.
FIG. 4 is an explanatory diagram of a main part of a seismic structure for a frame according to a fourth embodiment of the present invention.
FIG. 5 is a schematic view of a lower layer portion of an inner truss frame of a frame earthquake-resistant structure according to a fifth embodiment of the present invention.
6 is a schematic diagram of the through column in FIG. 5;
7 is an explanatory view of the steel damper shown in FIG. 5. FIG.
FIG. 8 is an explanatory diagram of a three-dimensional automatic warehouse according to an embodiment of the present invention.
9 is a configuration table of each member in FIG. 8;
10 is an explanatory diagram of a specific example for performing a time history response analysis of the three-dimensional automatic warehouse of FIG. 8 (conventional model).
FIG. 11 is an explanatory diagram of a specific example for performing time history response analysis of the three-dimensional automatic warehouse in FIG. 8 (model A).
12 is an explanatory diagram of a specific example for performing time history response analysis of the three-dimensional automatic warehouse in FIG. 8 (model B).
13 is a diagram showing an analysis result when a Yokohama wave is input to the models of FIGS. 10 to 12; FIG.
14 is a diagram showing an analysis result when an El Centro wave is input to the models of FIGS. 10 to 12; FIG.
15 is a diagram showing an analysis result when a Hachinohe wave is input to the models of FIGS. 10 to 12. FIG.
FIG. 16 is a diagram showing the analysis results when the yield point of the conventional model and the model A extra mild steel column is 1.6 and 1.0 and a 200 gal Yokohama wave is input.
FIG. 17 is an explanatory diagram of an example of a conventional three-dimensional automatic warehouse.
FIG. 18 is an explanatory diagram of an example of a vibration control structure of a conventional three-dimensional automatic warehouse.
FIG. 19 is an explanatory diagram of another example of a vibration control structure of a conventional three-dimensional automatic warehouse.
FIG. 20 is an explanatory diagram of still another example of a conventional vibration control structure for a three-dimensional automatic warehouse.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Outer truss frame 2 Inner truss frame 3 Column 4 Middle column 5 Horizontal material 6 Diagonal material 8 Connecting beam 10 Extremely soft steel column 15, 15a Steel damper 16 Shaft material 17 Extremely soft steel 18 Stiffener 19 Steel tube 20 for buckling restraint, Through column 21, 22 End plate

Claims (7)

両側に立設された縦長の外側ピントラス骨組と、2本の柱とその中間に中柱を有し前記外側ピントラス骨組の間に立設された複数の縦長の内側ピントラス骨組との最上部が剛結合され、地震時の水平荷重を主として構造部材の軸力によって負担し、地震時に応答により曲げ変形を生じて前記内側ピントラス骨組の2本の柱に正負の繰返えし軸力を受ける立体倉庫などの架構において、
前記正負の繰返えし軸力を受ける内側ピントラス骨組の2本の柱の全部又は一部の下部を、座屈拘束された鋼製ダンパーで構成したことを特徴とする架構の制震構造。
The upper part of the vertically long outer pin truss frame standing upright on both sides and a plurality of vertically long inner pin truss frames standing between the outer pin truss frames having two columns and a middle column in the middle are rigid. A three-dimensional warehouse that is coupled and bears the horizontal load at the time of an earthquake mainly by the axial force of the structural member, undergoes bending deformation due to the response at the time of the earthquake, and receives positive and negative axial forces on the two columns of the inner pin truss frame In the frame such as
A seismic damping structure for a frame in which the lower part of all or part of two columns of the inner pin truss frame that receives the positive and negative axial forces is constituted by a buckled steel damper .
前記座屈拘束された鋼製ダンパーを、最下層又はこれに準ずる層に設けたことを特徴とする請求項1記載の架構の制震構造。Seismic structure of Frames of claim 1 Symbol mounting, characterized in that the buckling constrained steel damper, provided on the bottom layer or layers equivalent thereto. 前記座屈拘束された鋼製ダンパーが存在する内側ピントラス骨組の層の斜材と、正負の繰り返し荷重を受けない前記中柱との両者又は何れか一方を、前記座屈拘束された鋼製ダンパーが降伏したのちに、常時荷重を支持できるように補強したことを特徴とする請求項1又は2記載の架構の制震構造。And diagonal members of the inner layer Pintorasu Frames the buckling constrained steel dampers are present, both or either of the in column not subjected to positive and negative cyclic loading, the buckling constrained steel dampers 3. The frame vibration control structure according to claim 1, wherein the structure is reinforced so that a load can be supported at all times after the yielding. 前記座屈拘束された鋼製ダンパーが存する内側ピントラス骨組の層の斜材と、正負の繰り返し荷重を受けない前記中柱とを剛接合により接合したことを特徴とする請求項1〜のいずれかに記載の架構の制震構造。Claim 1-3, characterized in that said buckling constrained steel damper and diagonal members of the inner layer Pintorasu framework that exists, and joined by bonding the in columns not subjected to positive and negative cyclic loading Tsuyoshi The seismic control structure of the frame as described in any of the above. 前記座屈拘束された鋼製ダンパーを、前記内側ピントラス骨組の2本の柱と斜材若しくは前記2本の柱と水平材との接合部のうち最も低い位置の接合部と柱脚部材との間又はその一部に設けたことを特徴とする請求項1記載の架構の制震構造。 The buckled-restrained steel damper is formed by connecting a lowest joint of the two pillars and the diagonal member of the inner pin truss frame or a joint of the two pillars and the horizontal member and the column base member. The structure for controlling a frame according to claim 1, wherein the structure is provided in the space or a part thereof. 前記座屈拘束された鋼製ダンパーと、上層の柱とを予め一体に接合して一節の通し柱を形成し、該通し柱を内側ピントラス骨組の2本の柱の最下層に配置したことを特徴とする請求項1記載の架構の制震構造。 The buckling-restrained steel damper and the upper layer column are joined together in advance to form a passage through-column, and the through-column is arranged at the lowermost layer of the two columns of the inner pin truss frame. The frame damping structure according to claim 1 . 前記通し柱の両端部に接合用エンドプレートを設けたことを特徴とする請求項記載の架構の制振構造。The frame damping structure according to claim 6, wherein a joining end plate is provided at both ends of the through pillar.
JP2003008392A 2002-04-30 2003-01-16 Seismic control structure of frame Expired - Fee Related JP3991870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003008392A JP3991870B2 (en) 2002-04-30 2003-01-16 Seismic control structure of frame

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002127842 2002-04-30
JP2003008392A JP3991870B2 (en) 2002-04-30 2003-01-16 Seismic control structure of frame

Publications (2)

Publication Number Publication Date
JP2004027815A JP2004027815A (en) 2004-01-29
JP3991870B2 true JP3991870B2 (en) 2007-10-17

Family

ID=31189956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003008392A Expired - Fee Related JP3991870B2 (en) 2002-04-30 2003-01-16 Seismic control structure of frame

Country Status (1)

Country Link
JP (1) JP3991870B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006266390A (en) * 2005-03-24 2006-10-05 Sus Corp Damping device
US9409709B2 (en) 2013-03-13 2016-08-09 Symbotic, LLC Automated storage and retrieval system structure
JP7277401B2 (en) * 2020-02-20 2023-05-18 大成建設株式会社 Damping structure

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09125568A (en) * 1995-10-31 1997-05-13 Taisei Corp Earthquake resisting frame
JPH10331328A (en) * 1997-06-03 1998-12-15 Shimizu Corp Block type precast base isolation column and its member
JP2000160872A (en) * 1998-11-26 2000-06-13 Nkk Corp Earthquake damping structure and earthquake damping member
JP3814748B2 (en) * 1998-12-25 2006-08-30 株式会社竹中工務店 High attenuation frame of building
JP3728650B2 (en) * 1999-04-13 2005-12-21 清水建設株式会社 Column base support structure and earthquake-resistant building
JP3603765B2 (en) * 2000-01-05 2004-12-22 村田機械株式会社 Vibration control rack

Also Published As

Publication number Publication date
JP2004027815A (en) 2004-01-29

Similar Documents

Publication Publication Date Title
US7188452B2 (en) Sleeved bracing useful in the construction of earthquake resistant structures
KR101263078B1 (en) Connection metal fitting and building with the same
JP4861067B2 (en) Steel frame
JP3629638B2 (en) Steel column and steel beam joint structure for steel structure with high rigidity and excellent damage controllability
JP4838554B2 (en) Boiler damping support structure
JP5082131B2 (en) Distribution warehouse with seismic isolation and control functions
JP3603765B2 (en) Vibration control rack
JP7228344B2 (en) Joint structure of reinforced concrete frame and brace and precast member
JP2002338018A (en) Automatic high-rise warehouse
JP3991870B2 (en) Seismic control structure of frame
JP5483525B2 (en) Seismic wall
JP5658892B2 (en) Bearing walls and buildings
JPH09296625A (en) Building structure having earthquake-resistant construction
JP4391335B2 (en) Intermediate seismic isolation structure of existing buildings
JP2000160872A (en) Earthquake damping structure and earthquake damping member
JP4998059B2 (en) Seismic control panel and frame structure using the same
JP6754552B2 (en) Column beam frame
JP2004051271A (en) Storing shelf
JP2008297727A (en) Seismic reinforcing structure of existing building
JP6833292B2 (en) Roof seismic structure
JP6976653B2 (en) Axial force member
JP4923641B2 (en) Column-beam joints, steel frames and steel structures with excellent seismic performance
JPH1171934A (en) Vibration control structure
JP4971697B2 (en) Load bearing wall frame
JP4722560B2 (en) Building materials that effectively use the strength of reinforced steel

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20030515

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20030515

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040930

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050316

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070716

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees