JP3629638B2 - Steel column and steel beam joint structure for steel structure with high rigidity and excellent damage controllability - Google Patents

Steel column and steel beam joint structure for steel structure with high rigidity and excellent damage controllability Download PDF

Info

Publication number
JP3629638B2
JP3629638B2 JP2000064591A JP2000064591A JP3629638B2 JP 3629638 B2 JP3629638 B2 JP 3629638B2 JP 2000064591 A JP2000064591 A JP 2000064591A JP 2000064591 A JP2000064591 A JP 2000064591A JP 3629638 B2 JP3629638 B2 JP 3629638B2
Authority
JP
Japan
Prior art keywords
steel
column
axial force
joining
steel beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000064591A
Other languages
Japanese (ja)
Other versions
JP2001254436A (en
Inventor
一郎 竹内
忠義 岡田
暢芳 宇野
一朗 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Kansai Technology Licensing Organization Co Ltd
Original Assignee
Nippon Steel Corp
Kansai Technology Licensing Organization Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Kansai Technology Licensing Organization Co Ltd filed Critical Nippon Steel Corp
Priority to JP2000064591A priority Critical patent/JP3629638B2/en
Publication of JP2001254436A publication Critical patent/JP2001254436A/en
Application granted granted Critical
Publication of JP3629638B2 publication Critical patent/JP3629638B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Joining Of Building Structures In Genera (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、鋼構造建築物を構築する際にH形鋼や閉鎖断面を有する角形鋼管を柱材とし、この柱材の側部にH形鋼、I形鋼、C形鋼等からなる梁材を取り付ける、高剛性で損傷制御性に優れた鉄骨構造用の鋼製柱と鋼製梁との接合構造に関するものである。
【0002】
【従来の技術】
近年、耐震性を向上させるために、柱材として閉鎖断面を有する角形鋼管やH形鋼を用い、梁材としてH形鋼を用いた両方向ラーメン構造が多用されており、例えば、両方向ラーメン構造を得るための閉鎖断面を有する角形鋼管柱と梁材との接合には、図10に示すような通しダイヤフラム形式が一般的であり、柱材としての角形鋼管柱1pとダイヤフラム3の接合、ダイヤフラム3と梁材としての鋼製梁2との接合は溶接wによって行われている。
【0003】
このような通しダイヤフラム形式の接合構造においては、柱−梁仕口部で溶接が多用されており、柱・梁部材の溶接を含む加工作業負担が多大となり施工コスト負担が大きく、施工工期も長くなる。また、鋼製梁2は、応力の最も厳しい梁端で角形鋼管柱1pに溶接wしており、接合部の剛性を安定確保するのが難しい。また、大地震時や強風時には、柱・梁部材の塑性変形を許容するように設計されているため、被災時の補修が困難で多大の補修費用が必要になるなどの問題がある。
【0004】
そのため、最近では、図11に示すように、ダイヤフラムを用いず、閉鎖断面の角形鋼管柱1pにスプリットティーやエンドプレートなどの接合金物4sをワンサイドボルト5で接合し、この接合金物4を介して鋼製梁2を角形鋼管柱1pにボルト6で接合するようにして溶接負担を軽減する接合構造も提案されている。(参考文献 特開平11−269985号公報)この接合構造においては、柱に閉鎖断面の角形鋼管柱1p、梁に鋼製梁2を用いた引張ボルト接合部構造では、加工工数が少なく溶接技能も必要としないので、この点でダイヤフラム形式の接合構造より改善されている。
【0005】
しかし、鋼製梁2に引っ張り荷重が作用したとき、この荷重が接合金物4を介して角形鋼管柱1pの接合面に作用し、その結果、角形鋼管柱1pの面外変形で、荷重に抵抗することになり、かかる接合面の変形によりダイヤフラム形式の接合構造に比較して接合部の剛性が低下し、かつ耐力も低くなる。また、大地震や強風時には、柱・梁部材の塑性変形を許容するように設計されているため、被災時の被害が全体に及ぶことになり、補修が困難で多大の補修費用が必要になるなどの問題がある。
【0006】
【発明が解決しようとする課題】
本発明は、柱・梁部材の加工および施工の工数を節減するとともに、骨組変形の大半を支配する柱・梁の曲げ変形領域を低減することにより柱・梁部材断面のサイズを小さくしても骨組剛性を強化でき、大地震や強風による被災時には、骨組損傷制御により被害を接合要素の範囲に止め、接合要素の交換のみの補修で済む、高剛性で損傷制御性に優れた鉄骨構造用の鋼製柱と鋼製梁の接合構造を提供する。
【0007】
【課題を解決するための手段】
本発明は、以下の(1)〜(13)の発明から構成されるものである。
(1).鋼製柱と鋼製梁との接合構造において、鋼製梁の先端部が、鋼製梁に作用する軸力+剪断力に対して主に抵抗する接合要素(鋼製柱、鋼製梁から伝達される荷重を主に引張・圧縮力(軸力)、剪断力とし、この荷重に対して抵抗する機能を有する接合金物やダンパー等の接合要素を示し、以下「軸力+剪断力抵抗要素」という。)を介して鋼製柱に緊結されており、なおかつ、梁の一方のフランジが、軸力+剪断力抵抗要素の取付部より後端側で主に軸力が作用する方づえ状の接合要素(鋼製柱、鋼製梁から伝達される荷重を主に引張・圧縮力(軸力)とし、この荷重に対して抵抗する機能を有する接合金物やダンパー等の接合要素を示し、以下「軸力抵抗要素」という。)を介して鋼製柱に緊結されており、該軸力抵抗要素が、地震や強風時に建物に入力されるエネルギーを吸収し建物の耐震・耐風性能を向上させる制振機構を有するものであることを特徴とする、高剛性かつ軽量で損傷制御性に優れた鉄骨構造用の鋼製柱と鋼製梁の接合構造。
(2).鋼製柱と鋼製梁との接合構造において、鋼製梁の先端部が軸力+剪断力抵抗要素を介して鋼製柱に緊結されており、なおかつ、両方のフランジが軸力+剪断力抵抗要素の取付部より後端側で軸力抵抗要素を介して鋼製柱に緊結されており、該軸力抵抗要素が、地震や強風時に建物に入力されるエネルギーを吸収し建物の耐震・耐風性能を向上させる制振機構を有するものであることを特徴とする、高剛性で損傷制御性に優れた鉄骨構造用の鋼製柱と鋼製梁の接合構造。
(3).鋼製柱と鋼製梁との接合構造において、鋼製梁の一方のフランジが軸力抵抗要素を介して鋼製柱に緊結されており、他方のフランジが、水平板、鉛直板、つなぎ材により構成されかつ水平板と鉛直板を一体化してなる軸力+剪断力+曲げ力が作用する接合要素(鋼製柱、鋼製梁から伝達される荷重を主に引張・圧縮力(軸力)、剪断力、曲げ力とし、この荷重に対して抵抗する機能を有する接合金物やダンパー等の接合要素を示し、以下「軸力+剪断力+曲げ力抵抗要素」という。)を介して鋼製柱に緊結されており、前記軸力抵抗要素および前記軸力+剪断力+曲げ力抵抗要素が、地震や強風時に建物に入力されるエネルギーを吸収し建物の耐震・耐風性能を向上させる制振機構を有するものであることを特徴とする、高剛性で損傷制御性に優れた鉄骨構造用の鋼製柱と鋼製梁との接合構造。
(4).(1)〜(3)のいずれかにおいて、前記各接合要素と鋼製梁、および前記各接合要素と鋼製柱とが、ボルト(ボルト・ナットを意味し、以下単に「ボルト」という。)により緊結されていることを特徴とする、高剛性で損傷制御性に優れた鉄骨構造用の鋼製柱と鋼製梁の接合構造。
(5).(1)〜(4)のいずれかにおいて、軸力抵抗要素および/または軸力+剪断力+曲げ力抵抗要素が、水平板(接合要素を鋼製梁のフランジに緊結する機能を有する厚鋼板などの板状体を示し、以下「水平板」という。)、鉛直板(接合要素を鋼製柱に緊結する機能を有する厚鋼板などの板状体を示し、以下「鉛直板」という。)、つなぎ材{水平板と鉛直板を結合する機能を有する厚鋼板などの板状体、棒状体(鋼棒、鋼管、形鋼)またはこれらを組み合わせたもの、ダンパー等を示し、以下「つなぎ材」という。}により構成されていることを特徴とする、高剛性で損傷制御性に優れた鉄骨構造用の鋼製柱と鋼製梁の接合構造。
(6).(5)において、前記制振機構が、接合要素の前記つなぎ材に組み込まれた履歴型ダンパーによって形成されていることを特徴とする、高剛性で損傷制御性に優れた鉄骨構造用の鋼製柱と鋼製梁の接合構造。
(7).(6)において、前記接合要素のつなぎ材が、柱・梁部材より降伏点の低い鋼材であることを特徴とする、高剛性で損傷制御性に優れた鉄骨構造用の鋼製柱と鋼製梁の接合構造。
(8).(5)において、前記制振機構が、接合要素の前記つなぎ材に組み込まれた粘性型ダンパーによって形成されていることを特徴とする、高剛性で損傷制御性に優れた鉄骨構造用の鋼製柱と鋼製梁の接合構造。
(9).(5)〜(8)のいずれかにおいて、接合要素の水平板、鉛直板が柱・梁部材よりも降伏点の高い鋼材で形成されていることを特徴とする、高剛性で損傷制御性に優れた鉄骨構造用の鋼製柱と鋼製梁の接合構造。
(10).(6)または(7)において、前記接合要素のつなぎ材が、つなぎ材本体との間に潤滑層を介在させて座屈拘束用治具を配したものであることを特徴とする、高剛性で損傷制御性に優れた鉄骨構造用の鋼製柱と鋼製梁の接合構造。
(11).(5)〜(10)のいずれかにおいて、前記接合要素のつなぎ材が、座屈補剛構造を有するものであることを特徴とする、高剛性で損傷制御性に優れた鉄骨構造用の鋼製柱と鋼製梁の接合構造。
(12).(1)〜(11)のいずれかにおいて、前記鋼製柱と鋼製梁の接合構造が、鋼製柱の1以上の側部において、少なくとも1箇所以上の箇所で適用されていることを特徴とする、高剛性で損傷制御性に優れた鉄骨構造用の鋼製柱と鋼製梁の接合構造。
(13).(12)において、鋼製柱の両側部に接合する、軸力抵抗要素、軸力+剪断力抵抗要素、軸力+剪断力+曲げ力抵抗要素の鉛直板どうしを、該鉛直板と鋼製柱に貫通させて挿通した共通の長締めボルトで緊結したことを特徴とする、高剛性で損傷制御性に優れた鉄骨構造用の鋼製柱と鋼製梁の接合構造。
【0008】
【発明の実施の形態】
本発明は、建造物の中柱、側柱となるH形鋼柱や角形鋼管柱等の鋼製柱の側部に、鋼製梁(圧延や溶接加工によって得られるH形、I形、C形、その他の形の断面を有する各種の形鋼等からなる鋼製の梁を意味し、以下「鋼製梁」という。)を軸力抵抗要素と軸力+剪断力抵抗要素または軸力抵抗要素と剪断力抵抗要素を介して、あるいは軸力抵抗要素と軸力+剪断力+曲げ力抵抗要素を介して接合する鋼製柱と鋼製梁との接合構造であって、ブレースを配置しない高剛性骨組として設計の自由度を大きくすることができ、梁部材の断面サイズを小さくして骨組剛性を強化でき、かつ、柱・梁部材の加工および施工の工数を節減できる。
【0009】
また、鋼製柱・鋼製梁に対する軸力抵抗要素または軸力抵抗要素と軸力+剪断力+曲げ力抵抗要素により骨組損傷制御が可能で、大地震や強風による被災時には被害を極力、抵抗要素(接合要素)に止め、この抵抗要素(接合要素)の交換のみの補修に止めて補修作業負担、補修コストを軽減し、補修工期を大幅に短縮することができる。なお、柱・梁仕口部をブラケット形式としないため、柱・梁部材、抵抗要素(接合要素)を分離して輸送することにより輸送効率を大幅に向上させることができる。
【0010】
(1)の発明では、軸力抵抗要素および剪断+軸力抵抗要素を介して鋼製柱・鋼製梁を接合する鋼製柱・鋼製梁の接合構造であり、垂直荷重が鋼製梁に作用した場合の鋼製梁の回転中心が、鋼製梁端部の[軸力+剪断力抵抗要素]となり、鋼製梁フランジに取り付けられている軸力抵抗要素で鋼製梁に作用する荷重を鋼製柱に伝達する簡易な接合構造にしており、特に柱・梁部材の加工工数および施工の工数を節減することができる。
【0011】
また、鋼製柱・鋼製梁のフランジに軸力抵抗要素を取り付けることにより、柱・梁に作用する最大曲げモーメントを低減し、柱・梁部材の断面のサイズを小さくできる。また、柱・梁フランジに軸力抵抗要素を取り付けることは、骨組変形の大半を支配する柱・梁の曲げ変形領域の低減にもつながるため、断面サイズを小さくしても、なお、骨組剛性を強化できる。例えば、梁部材では応力が最も厳しくなるのは、梁端より内側となるため、梁部材断面のサイズを小さくすること(スパンを小さくするのと同じ効果)が可能である。
また、各抵抗要素(接合要素)と鋼製柱・鋼製梁が強固に一体化されていることは、被害が全体に及び大きくなる恐れがあるので、抵抗要素(接合要素)にエネルギー吸収機能を付加して損傷制御骨組として、地震や強風時に建物に入力されるエネルギーを抵抗要素(接合要素)で吸収し、建物全体の耐震、耐風性能を確保するとともに、被災時には、被害が抵抗要素(接合要素)にのみ発生させ、抵抗要素(接合要素)のみの補修にとどめられるようにすることが有効である。エネルギー吸収機構(制振機構)としては、履歴型ダンパーや粘性型ダンパーを用いることができる。
【0012】
(2)の発明では、上下の軸力抵抗要素および剪断+軸力抵抗要素を介して鋼製柱と鋼製梁を接合することにより、柱・梁の曲げ変形が生じる長さを短くし骨組剛性を強化することができる。例えば、梁部材では応力が最も厳しくなるのは、鋼製梁端より内側となるため、梁部材断面のサイズを小さくすること(スパンを小さくするのと同じ効果)が可能である。
【0013】
垂直荷重が鋼製梁に作用した場合の鋼製梁の回転中心が、鋼製梁端部の[軸力+剪断抵抗要素]となり、この抵抗要素および、鋼製梁のフランジに取り付けられている[軸力抵抗要素]により梁部材に作用する曲げ・剪断荷重を鋼製柱に伝達する接合構造にしている。ここでは、軸力抵抗要素は上下に配置するため、柱・梁部材の加工工数および施工の工数を節減および柱・梁断面のサイズを小さくする観点では、(1)の発明に比較すると十分とは言えないが、軸力抵抗要素を上下に配置するため、骨組変形の大半を支配する柱・梁の曲げ変形領域を十分に低減することが可能になり、骨組剛性をより安定的に強化することができる。なお、(2)の発明においても、(1)の発明と同様の制振機構を有する。
【0014】
(3)の発明では、鋼製梁の片側フランジが軸力抵抗要素を介して鋼製柱の側部に連結されており、もう一方のフランジが、軸力+剪断力+曲げ力抵抗要素を介して鋼製柱に緊結されているため、垂直荷重が梁に作用した場合の鋼製梁の回転中心が、[軸力+剪断力+曲げ力抵抗要素]となり、一方の鋼製梁のフランジに取り付けられている軸力抵抗要素で鋼製梁に作用する曲げ剪断荷重を鋼製柱に伝達する簡易な接合構造にしており、柱・梁部材の加工工数および施工の工数を節減することができる。
【0015】
また、鋼製柱・鋼製梁のフランジに軸力抵抗要素を取り付けることにより、骨組変形の大半を支配する柱・梁の曲げ変形領域を低減し、柱・梁に作用する最大曲げモーメントを低減可能なため、柱・梁断面のサイズを小さくしても骨組剛性を強化することができる。なお、(3)の発明においても、(1)の発明と同様の制振機構を有する。
【0016】
(1)〜(3)の発明において、鋼製柱・鋼製梁と各抵抗要素(接合要素)との緊結は、溶接でも可能ではあるが、大地震や強風時の作用応力がもっとも厳しい部位には、鋼製柱・鋼製梁と抵抗要素(接合要素)の応力分離が容易で一体破壊を生じにくいし、鋼製柱・鋼製梁と抵抗要素(接合要素)の着脱が容易なボルト接合にすることが好ましい。また、接合部の加工・施工工数の削減の観点からもボルト接合にすることが好ましい。
【0017】
また、抵抗要素(接合要素)中でも、つなぎ材を厚鋼板で形成した場合などでは、座屈して十分に機能を発揮できないことも予想されるので、例えば、つなぎ材の外周に筒状の座屈拘束用治具を配し、その内周面が、つなぎ材の外周面と摺動可能にすることが有効であり、この場合、摺動面間に潤滑処理を施すことが有効である。また、つなぎ材を、例えば断面がI型またはH型或いはT字型などのフランジやリブの座屈補剛機能を有するものにして座屈を抑制することが有効である。
【0018】
また、抵抗要素(接合要素)の交換を容易にするために、軸力抵抗要素、剪断力抵抗要素および軸力+剪断力抵抗要素、軸力+剪断力+曲げ力抵抗要素を構成する水平板、鉛直板は軽量であることが有効であり、柱・梁部材よりも降伏点が高くなるようにすることが有効である。
【0019】
なお、本発明の接合構造は、鋼製梁を鋼製柱の1〜4側部のいずれかにおいて、1箇所または上下方向の複数箇所で、鋼製梁を鋼製柱の複数の側部に接合する場合において適用が可能であり、複数の側部、複数箇所に適用する場合に接合構造をすべて同じにすることは不可欠ではない。また、鋼製柱の相対する両側部に鉛直板を接合する場合には、鉛直板どうしを該鉛直板と鋼製柱に貫通させて挿通した共通の長締めボルトで緊結することも有効である。この場合には、鋼製柱が閉鎖断面を有する角形鋼管柱であっても高価なワンサイドボルトを使用しなくてもよい。また、長締めボルトによる柱フランジの面外変形を抑える効果も期待できる。
【0020】
【実施例】
(実施例1)
以下に本発明の実施例1を図1に基づいて説明する。この実施例1は(1)の発明に係るものであり、柱材であるH形鋼の側部に梁材であるH形鋼を、軸力抵抗要素と軸力+剪断力抵抗要素を介してボルト接合したH形鋼柱とH形鋼梁の接合構造である。
【0021】
図1(a)において、1はフランジ1aに複数のボルト孔を有するH形鋼柱、2は、下フランジ2aとウエブ端部に複数のボルト孔を有する鋼製梁で、その先端のウエブ2uを、一対のアングル材4を介してH形鋼柱1のフランジ1aにボルト6で接合し、鋼製梁2の先端から距離x離れた領域で鋼製梁2の下フランジ2aを、つなぎ材7の水平板8にボルト接合し、このつなぎ材7の鉛直板9を、鋼製梁2の下フランジ2aの下面から距離y離れた領域でH形鋼柱1のフランジ1aにボルト6で接合してなるものである。アングル材4は、図1(c)に示すように、複数のボルト孔4aを有する鉛直板4cと複数のボルト孔4bを有する梁取付板4dによりに形成されたものである。
【0022】
また、つなぎ材7は、図1(b)に示すように、水平端面と垂直端面を有し、水平端面に複数のボルト孔8aを有する水平板8を接合し、垂直端面に複数のボルト孔9aを有する鉛直板9を接合してなるものであり厚鋼板を加工して形成されたものである。このつなぎ材7は、H形鋼柱1とH形鋼梁2にボルト6で接合された状態では、H形鋼柱1の軸に対して角度α(αは20〜70度)傾斜している。この実施例では、つなぎ材7(ここでは水平板8、鉛直板9を含む)は軸力抵抗要素になり、アングル材4が軸力+剪断力抵抗要素になる。図1(a)中の10は、H形鋼柱1の接合部位に設けた補強リブである。
【0023】
この実施例では、軸力抵抗要素となる、つなぎ材7は下部側にのみ設け、接合をボルト接合にしているので、高度な熟練を要し作業負担も大きい溶接を必要としない簡易な構造にすることができ、従来の溶接による接合構造に比べて、骨組剛性の低下はなく、コスト低減、施工工期の短縮などの観点で有利である。なお、つなぎ材7は、制振機構を有するものであるが、その制振機構についての図1での図示およびここでの説明は省略する。
【0024】
(実施例2)
本発明の実施例2を図2に基づいて説明する。この実施例2は(2)の発明に係るものであり、柱材であるH形鋼の側部に梁材であるH形鋼を、上下の軸力抵抗要素と軸力+剪断力抵抗要素を介してボルト接合したH形鋼柱・H形鋼梁の接合構造である。
【0025】
図2において、1はフランジ1aに複数のボルト孔を有するH形鋼柱、2は、上下フランジ2b、2aおよびウエブ端部に複数のボルト孔を有するH形鋼梁で、その先端のウエブ2uを、一対のアングル材4を介してH形鋼柱1のフランジ1aにボルト6で接合し、H形鋼梁2の先端から距離x離れた領域で下フランジ2aを、つなぎ材7aの水平板8にボルト6で接合し、このつなぎ材7aの鉛直板9を、H形鋼梁2の下フランジ2aの下面から下方へ距離y離れた領域でH形鋼柱1のフランジ1aにボルト6で接合する。
【0026】
また、H形鋼梁2の先端から距離x離れた領域でH形鋼梁2の上フランジ2bを、つなぎ材7bの水平板8にボルト6で接合し、このつなぎ材7bの鉛直板9を、H形鋼梁2の上フランジ2bの上面から上方へ距離ya離れた領域でH形鋼柱1のフランジ1aにボルト6で接合する。
【0027】
アングル材4、つなぎ材7a、7bは、実施例1と同様のものである。ただし、上側のつなぎ材7bは、下側のつなぎ材7aとは、上下方向で位置関係が反対の状態で接合される。このつなぎ材7a、7bは、H形鋼柱1とH形鋼梁2にボルト6で接合された状態では、H形鋼柱1の軸に対して角度α傾斜している。ここでは、つなぎ材7a、7b(水平板8、鉛直板9を含む)は軸力抵抗要素になり、アングル材4が軸力+剪断力抵抗要素になる。
【0028】
この実施例ではつなぎ材を一対(7a、7b)設けているので、加工および施工負担が大きく、コスト、施工工期の面では実施例1の場合より不利であるが、骨組剛性が大きく、また、実施例1の場合よりさらに大断面の柱・梁部材の接合を可能とする。なお、つなぎ材7a、7bは、制振機構を有するものであるが、その制振機構についての図2での図示およびここでの説明は省略する。
【0029】
(実施例3)
本発明の実施例3を図3に基づいて説明する。この実施例3は(3)の発明に係るものであり、柱材であるH形鋼の側部に梁材であるH形鋼梁を、下部側の軸力抵抗要素と上部側の軸力+剪断力+曲げ力抵抗要素を介してボルト接合したH形鋼柱とH形鋼梁の接合構造である。
【0030】
図3(a)において、1はフランジ1aに複数のボルト孔を有するH形鋼柱、2は上下フランジ2b、2aに複数のボルト孔を有するH形鋼梁で、H形鋼柱1のフランジ1aに、下側のつなぎ材7と、上側の三角状つなぎ材11によりボルト6で接合され先端が自由端になっているH形鋼梁である。このH形鋼梁2は、下フランジ2aを、つなぎ材7の水平板8とボルト6で接合し、つなぎ材7の鉛直板9を下フランジ2aの下面から距離y離れた領域でH形鋼柱1のフランジ1aにボルト6で接合する。
【0031】
また、H形鋼梁2の先端から距離x離れた領域で上フランジ2bを、三角状つなぎ材11の水平板12にボルト6で接合し、この三角状つなぎ材11の鉛直板13を、上フランジ2bの上面から距離yb離れた領域でH形鋼柱1のフランジ1aにボルト6で接合する。
【0032】
つなぎ材7は、実施例1と同様のものである。また、三角状つなぎ材11は、ここでは、図3(b)に示すように、L型材の鉛直板13と水平板12間に三角板11aを形成したものであり、鉛直板13にボルト孔13aを有し、水平板12にボルト孔12aを有するもので厚鋼板を加工して形成されたものである。このつなぎ材7、三角状つなぎ材11は、H形鋼柱1とH形鋼梁2にボルト6で接合された状態では、H形鋼柱1の軸に対して角度α傾斜している。
【0033】
なお、三角状つなぎ材としては、図3(c)に示すように、L型材の鉛直板13と水平板12を厚板や棒鋼、鋼管などの単体または組み合わせによる棒材11pを、H形鋼柱1の軸に対して角度α傾斜させて連結したもので、隅部に空間oを形成したものでもよい。
【0034】
ここでは、つなぎ材7(水平板8、鉛直板9を含む)が軸力抵抗要素になり、三角状つなぎ材11(水平板12、鉛直板13を含む)が軸力+剪断力+曲げ力抵抗要素になる。この実施例3の接合構造では、軸力抵抗要素となるつなぎ材7を下側に設け、軸力+剪断力+曲げ力抵抗要素となる、三角状つなぎ材11を上側に設けているが、H形鋼梁2の先端は自由端になっているため、加工および施工負担増は軽微である。コスト、施工工期の面では実施例1の場合より不利であるが、特に三角状つなぎ材11による剪断力+曲げ抵抗要素が強固で骨組剛性が大きく実施例1の場合より安定した柱・梁接合構造が得られる。
【0035】
なお、この例ではつなぎ材7を下部側に配設して軸力抵抗要素とし、三角状つなぎ材11を上側に配設して軸力+剪断力+曲げ力抵抗要素としているが、三角状つなぎ材11と同様のつなぎ材を下部側に配設して軸力+剪断力+曲げ力抵抗要素とし、つなぎ材7と同様のつなぎ材を上部側に配設して軸力抵抗要素としてもよい。また、つなぎ材7は、制振機構を有するものであるが、その制振機構についての図3での図示およびここでの説明は省略する。
【0036】
(実施例4)
本発明の実施例4を図4、図5に基づいて説明する。この実施例4は、(9)の発明に係るものであり、ここでは、実施例1と同様に、H形鋼柱1のフランジ1aにH形鋼梁2を、軸力抵抗要素となる、つなぎ材14と軸力+剪断力抵抗要素になるアングル材4を介してボルト6で接合した柱・梁接合構造において、大地震や強風時に建物に入力されるエネルギーを吸収し、建物の耐震・耐強風性能を向上させる制振機構による骨組損傷制御構造を具体的に説明したH形鋼柱とH形鋼梁の接合構造である。
【0037】
(実施例4−1)
図4(a)において、14はつなぎ材であり、中間部に制振機構として履歴型ダンパーの1種である摩擦ダンパー15を組み込んだものである。この摩擦ダンパー15は、より具体的には、図4(b)に示すように、つなぎ材本体を長さ方向に7、7に2分割し、この分割つなぎ材7、7を突き合わせ(隙間があってもよいし、吸収材を介在させて突き合わせてもよい)、突き合わせ部を含む領域の両面に、摩擦板16a、16bを当接して分割つなぎ材7、7をボルト17で接合して連結し形成されたものである。この実施例では、つなぎ材14と摩擦板16a、16bとの摩擦力を作用させることにより大地震、強風時に建物に入力されるエネルギーを吸収し、建物の耐震・耐強風性能を向上させることができる。
【0038】
この実施例4−1では、H形鋼柱1、H形鋼梁2、アングル材4、ボルト6に対する、分割つなぎ材7、7、摩擦板16a、16b、ボルト17の強度と、分割つなぎ材7、7と摩擦板16a、16b間の摩擦力を調整し、つなぎ材14による軸力抵抗を調整することにより、つなぎ材14を損傷制御材として機能させ、被災時には被害をつなぎ材14の交換に止め、従来の溶接骨組みの場合にくらべ、補修作業負担、補修コスト負担を軽減し、補修工期を大幅に短縮することが容易になる。
【0039】
(実施例4−2)
図5(a)において、18はつなぎ材であり、中間部に制振機構として粘性型ダンパーの1種であるオイルダンパー19を組み込んだものである。このオイルダンパー19は、より具体的には、図5(b)に示すように、つなぎ材本体を長さ方向に7、7に2分割し、この分割つなぎ材7、72を角筒体(円筒体でも可)20内に挿入して、この角筒体20内で突き合わせ(隙間があってもよいし、粘性材を介在させて突き合わせてもよい)、角筒体20内にオイルを充填した上で摺動可能な状態にしたものである。この実施例では、分割つなぎ材7、7と角筒体20内のオイルとの摺動抵抗力(含む粘性剤)による減衰力を作用させることにより大地震や強風時に建物に入力されるエネルギーを吸収し、建物の耐震・耐強風性能を向上させることができる。
【0040】
この実施例4−2では、H形鋼柱1、H形鋼梁2、アングル材4、ボルル6に対する、つなぎ材18と角筒体20の強度、つなぎ材18と角筒体20の間の摩擦力を調整し、つなぎ材18による軸力抵抗を調整することにより、つなぎ材18を損傷制御材として機能させ、被災時には被害をつなぎ材18の交換に止め、従来の溶接骨組みの場合にくらべ、補修作業負担、補修コスト負担を軽減し、補修工期を大幅に短縮することが容易になる。
【0041】
(実施例5)
本発明の実施例5を図6、図7に基づいて説明する。この実施例5は、(10)、(11)の発明に係るものであり、基本的には、実施例3と同様、柱材であるH形鋼の側部に梁材であるH形鋼梁を、下側の軸力抵抗要素と上側の軸力+剪断力抵抗要素を介してボルト接合したH形鋼柱のH形鋼梁接合構造であるが、下側の軸力抵抗要素、軸力+剪断力曲げ力抵抗要素に座屈補剛構造を配したものであり、特に軸力抵抗要素、軸力+剪断力曲げ力抵抗要素の座屈に対する性能をより安定させ、骨組剛性・強度をより安定にしたH形鋼柱とH形鋼梁の接合構造である。
【0042】
(実施例5−1)
図6(a)において、1はフランジ1aに複数のボルト孔を有するH形鋼柱、2は、上下フランジ2b、2aに複数のボルト孔を有するH形鋼梁で、H形鋼柱1のフランジ1aに、下側のつなぎ材21と、上側の三角状つなぎ材11oによりボルト6で接合され先端が自由端になっている。
【0043】
このH形鋼梁2は、下フランジ2aを、下側つなぎ材7の水平板8とボルト6で接合し、鉛直板9を下フランジ2aの下面から距離y離れた領域でH形鋼柱1のフランジ1aにボルト6で接合する。また、H形鋼梁2の先端から距離x離れた領域で上フランジ2bを、三角状つなぎ材11oの水平板12にボルト6で接合し、この三角状つなぎ材11oの鉛直板13を、上フランジ2bの上面から距離yb離れた領域でH形鋼柱1のフランジ1aにボルト6で接合する。
【0044】
下側のつなぎ材21は、基本的には実施例3と同様のものであるが、図6(b)に示すように、つなぎ材(本体)7の外周に、角筒状の座屈補剛治具22を配したものであり、つなぎ材(本体)7の外周面と座屈補剛治具22間には、座屈を適度に抑制するために、つなぎ材(本体)7と座屈補剛治具22が効果的に機能分担できる適度の隙間を形成したものである。ここでは、つなぎ材(本体)7と座屈補剛治具22間に潤滑層22oを介在させて、座屈を生じた場合の摩擦低減策を講じている。
【0045】
上側の三角状つなぎ材11oは、厚鋼板を加工して形成されたもので、基本的には図3(b)に示したものをベースとして、図6(c)に示すように、三角状つなぎ材11oの三角板11aの両側に、三角板11aよりやや小さい三角補強板11b、11cを当接してボルト6aで接合した座屈補剛構造を有するものである。
【0046】
この実施例5−1では、下側つなぎ材21(水平板8、鉛直板9を含む)が軸力抵抗要素になり、三角状つなぎ材11o(水平板12、鉛直板13を含む)が軸力+剪断力+曲げ力抵抗要素になる。この実施例5−1の接合構造では、実施例3との比較で言えば、軸力抵抗要素として座屈補剛治具22付きのつなぎ材21を下側に設け、軸力+剪断力+曲げ力抵抗要素として座屈補剛構造を有する三角状つなぎ材11oを上側に設けているので、座屈補剛治具22、座屈補剛構造の採用に伴い、加工コスト、施工コスト、施工工期の面では実施例3の場合より不利であるが、つなぎ材(本体)7、三角状つなぎ材11oと座屈補剛治具22、座屈補剛構造の機能分担により座屈を適度に抑制(制御)することができ、骨組剛性を大きくするとともに、座屈に対して安定した性能を有するH形鋼柱とH形鋼梁の接合構造が得られる。
【0047】
(実施例5−2)
図7(a)において、1はフランジ1aに複数のボルト孔を有するH形鋼柱、2は、上下フランジ2b、2aに複数のボルト孔を有するH形鋼梁で、H形鋼柱1のフランジ1aに、下側のつなぎ材23と、上側の三角状つなぎ材24によりボルト6で接合され先端が自由端になっている。
【0048】
このH形鋼梁2は、下フランジ2aを、下側つなぎ材23の水平板8とボルト6で接合し、鉛直板9を下フランジ2aの下面から距離y離れた領域でH形鋼柱1のフランジ1aにボルト6で接合する。また、H形鋼梁2の先端から距離x離れた領域で上フランジ2bを、三角状つなぎ材24の水平板12にボルト6で接合し、この三角状つなぎ材24の鉛直板13を、上フランジ2bの上面から距離yc離れた領域でH形鋼柱1のフランジ1aにボルト4で接合する。
【0049】
下側のつなぎ材23は、図7(b)に示すように、つなぎ材本体23aの両側端に、座屈を適度に抑制するための座屈補剛用のフランジ23fを形成したI型断面のものである。また、上側の三角状つなぎ材24は、図7(c)に示すように、三角状つなぎ材本体24aの傾斜面に、座屈を適度に抑制するための座屈補剛用のフランジ24fを形成したものである。下側のつなぎ材23および三角状のつなぎ材24は、ここでは、厚鋼板を加工して形成されたものであるが、I形鋼を切断加工して形成してもよい。
【0050】
この実施例5−2では、下側つなぎ材23(水平板8、鉛直板9を含む)が軸力抵抗要素になり、三角状つなぎ材24(水平板12、鉛直板13を含む)が軸力+剪断力+曲げ力抵抗要素になる。この実施例5−2の接合構造では、実施例3との比較で言えば、軸力抵抗要素として、座屈を適度に抑制するための座屈補剛用のフランジ23fを形成したつなぎ材23を下側に設け、軸力+剪断力+曲げ力抵抗要素として、座屈を適度に抑制するための座屈補剛用のフランジ24fを形成した三角状つなぎ材24を上側に設けるので、加工コスト、施工コスト、施工工期の面では実施例3の場合より不利であるが、座屈補剛構造を有するつなぎ材23と三角状つなぎ材24により、座屈を適度に抑制(制御)することができ、骨組剛性をさらに大きくするとともに、座屈に対してさらに安定した性能を有するH形鋼柱とH形鋼梁の接合構造が得られる。なお、つなぎ材23は、制振機構を有するものであるが、その制振機構についての図7での図示およびここでの説明は省略する。
【0051】
(実施例6)
本発明の実施例6について図8に基づいて説明する。この実施例では柱材として閉鎖断面を有する角形鋼管柱を用い、その側部に梁材であるH形鋼梁を、実施例3と同様、下部側の軸力抵抗要素と上部側の軸力+剪断力+曲げ力抵抗要素を介してボルト接合した角形鋼管柱とH形鋼梁の接合構造である。
【0052】
図8において、25は側部に複数のボルト孔を有する角形鋼管柱、2は、上下フランジ2b、2aに複数のボルト孔を有するH形鋼梁である。このH形鋼梁2は、下フランジ2aを、下側のつなぎ材23の水平板8とボルト6で接合し、下側のつなぎ材23の鉛直板9を下フランジ2aの下面から距離y離れた領域で角鋼管柱型25にワンサイドボルト5で接合する。
【0053】
また、H形鋼梁2の先端から距離x離れた領域で上フランジ2bを、三角状つなぎ材24の水平板12にボルト6で接合し、この三角状つなぎ材24の鉛直板13を、上フランジ2bの上面から距離yb離れた領域で角鋼管柱型25にワンサイドボルト5で接合する。
【0054】
下側のつなぎ材23および三角状のつなぎ材24は、基本的には実施例5−2と同様のものであり、ここでは、厚鋼板を加工して形成されたものであるが、I形鋼を切断加工して形成してもよい。ここでは、つなぎ材23(水平板8、鉛直板9を含む)が軸力抵抗要素になり、三角状つなぎ材24(水平板12、鉛直板13を含む)が軸力+剪断力+曲げ力抵抗要素になる。
【0055】
この実施例6の接合構造では、柱材として閉鎖断面を有する角形鋼管柱25を使用しているため、この角形鋼管柱とつなぎ材23の鉛直板8、三角状つなぎ材24の鉛直板12との接合にワンサイドボルト5を使用している点において異なるが、基本的には、実施例5−2と同様の効果が得られる。なお、つなぎ材23は、制振機構を有するものであるが、その制振機構についての図8での図示およびここでの説明は省略する。
【0056】
(実施例7)
本発明の実施例7について図9に基づいて説明する。この実施例では柱材として閉鎖断面を有する角形鋼管柱を用い、その両側部に対称的に梁材であるH形鋼梁を、下部側の軸力抵抗要素と上部側の軸力+剪断力+曲げ力抵抗要素を介してボルト接合した角形鋼管柱とH形鋼梁の接合構造であり、引張力が作用する抵抗要素(接合要素)の応力を、圧縮側に伝達するメカニズムを考慮し、併せて高価なワンサイドボルトの使用を回避することができる。
【0057】
図9において、25は側部に複数のボルト孔を有する角形鋼管柱、2、2は、上下フランジ2b、2aに複数のボルト孔を有するH形鋼梁であり、それぞれ、角形鋼管柱25の両側部に、下側つなぎ材23と上側の三角状つなぎ材24により対称的にボルト6と長締めボルト26を用いて接合されるものである。このH形鋼梁2、2は、それぞれ下フランジ2aを、下側のつなぎ材23の水平板8とボルト6で接合し、このH形鋼梁2、2の下フランジ2aに接合した下側のつなぎ材23の鉛直板9を、下フランジ2aの下面から距離y離れた領域で、角鋼管柱型25の側部に対称的に当接した状態で、長締めボルト26を、それぞれの鉛直板9と角鋼管柱型25を貫通するように挿通し、この長締めボルト26によって、それぞれの鉛直板9と角鋼管柱型25を接合する。
【0058】
また、H形鋼梁2、2の先端から距離x離れた領域で上フランジ2bを、それぞれ、三角状つなぎ材24の水平板12にボルト6で接合し、この三角状つなぎ材24の鉛直板13を、上フランジ2bの上面から距離yb離れた領域で角鋼管柱型25の両側部に対称的に当接した状態で、長締めボルト26を、それぞれの鉛直板13と角鋼管柱型25を貫通するように挿通し、この長締めボルト26によって、それぞれの鉛直板13と角鋼管柱型25を接合する。
【0059】
下側のつなぎ材23および三角状のつなぎ材24は、基本的には実施例6と同様のものであり、下側のつなぎ材23は、図7(b)に示すように、つなぎ材本体23aの両側端に、座屈を適度に抑制するための座屈補剛用のフランジ23fを形成したI型断面のものである。また、上側の三角状つなぎ材24は、基本的には実施例6と同様のものであり、図7(c)に示すように、三角状つなぎ材本体24aの傾斜面に、座屈を適度に抑制するための座屈補剛用のフランジ24fを形成したI型断面のものである。下側のつなぎ材23および三角状のつなぎ材24は、ここでは、厚鋼板を加工して形成されたものであるが、I形鋼を切断加工して形成してもよい。
【0060】
この実施例7では、下側つなぎ材23(水平板8、鉛直板9を含む)が軸力抵抗要素になり、三角状つなぎ材24が軸力+剪断力+曲げ力抵抗要素になる。この実施例7の接合構造では、柱材として閉鎖断面を有する角形鋼管柱25を使用しているため、この角形鋼管柱とつなぎ材23の鉛直板9、三角状つなぎ材24の鉛直板13との接合に長締めボルト26を使用している点において異なり、実施例6と同様の効果が得られる他、角形鋼管柱25の両側部に、H形鋼梁2と2を対称的に同様の接合構造によって接合されているので、面外変形拘束治具(リブプレート等)がなくても、柱の面外変形を防止することができ、強固で骨組剛性が大きく、一段と安定した柱・梁接合構造が得られる。
【0061】
また、この角形鋼管柱とつなぎ材23の鉛直板9、三角状つなぎ材24の鉛直板13との接合に、高価なワンサイドボルトを使用せずに、H形鋼梁2と2側を同時的に接合することができ、接合時間を短縮することができる。また、つなぎ材23は、制振機構を有するものであるが、その制振機構についての図9での図示およびここでの説明は省略する。
【0062】
なお、本発明は、上記の各実施例の内容に限定されるものではない、例えば、柱材条件、梁材条件、軸力抵抗要素、剪断力抵抗要素、軸力+剪断力+曲げ力抵抗要素等の材質および構造条件、各抵抗要素の制振および座屈補剛構造(含む形状、材質、)条件、各抵抗要素と柱および梁との接合条件、接合部配置条件等は、建物構造、規模、適用対象部位、柱材条件、梁条件、骨組の要求強度、周囲条件等に応じて、上記請求の範囲を満足する範囲内で選択されるもので、変更のあるものである。
【0063】
【発明の効果】
本発明においては、ブレースを配置しない高剛性骨組として設計の自由度を大きくすることができ、梁部材の断面のサイズを小さくしても骨組剛性を強化でき、かつ、柱・梁部材の加工および施工の工数を節減できる。また、柱・梁に対する軸力抵抗要素または軸力抵抗要素と軸力+剪断力+曲げ力抵抗要素により骨組損傷制御が可能で、大地震や強風による被災時には被害を極力、抵抗要素(接合要素)に止め、この抵抗要素(接合要素)の交換のみの補修に止めて補修作業負担、補修コストを軽減し、補修工期を大幅に短縮することができる。
【図面の簡単な説明】
【図1】(a)図は、本発明の柱・梁の接合構造の実施例を示す側面説明図、(b)図は、(a)図のつなぎ材の立体説明図、(c)図は、(a)図のアングル材の立体説明図。
【図2】(a)図は、本発明の柱・梁の接合構造の他の実施例を示す側面説明図、(b)図は、(a)図の平面説明図。
【図3】(a)図は、本発明の柱・梁の接合構造の他の実施例を示す側面説明図、(b)図は、(a)図の三角状つなぎ材の立体説明図、(c)図は、他の三角状つなぎ材の立体説明図。
【図4】(a)図は、本発明の柱・梁の接合構造の他の実施例を示す側面説明図、(b)図は、(a)図のつなぎ材の平面部分説明図。
【図5】(a)図は、本発明の柱・梁の接合構造の他の実施例を示す側面説明図、(b)図は、(a)図のつなぎ材の一部切欠断面平面説明図。
【図6】(a)図は、本発明の柱・梁の接合構造の他の実施例を示す側面説明図、(b)図は、(a)図のつなぎ材の部分平面一部切欠断面説明図、(b)図は、(a)図の三角状つなぎ材の立体説明図。
【図7】(a)図は、本発明の柱・梁の接合構造の他の実施例を示す側面説明図、(b)図は、(a)図のつなぎ材のAa−Aa断面説明図、(c)図は、(a)図の三角状つなぎ材の立体説明図。
【図8】(a)図は、本発明の柱・梁の接合構造の他の実施例を示す一部切欠断面側面説明図。
【図9】(a)図は、本発明の柱・梁の接合構造の他の実施例を示す一部切欠断面側面説明図。
【図10】従来の柱・梁の接合構造例を示す側面説明図。
【図11】従来の他の柱・梁の接合構造例を示す側面説明図。
【符号の説明】
1 H形鋼柱
1a フランジ
1p 角形鋼管柱
2 H形鋼梁
2a 下フランジ
2b 上フランジ
2u ウエブ
、2 H形鋼梁
3 取付板
w 溶接
4s スプリットティー
4a、4b ボルト孔
4c 鉛直板
4d 梁取付板
4 アングル材
5 ワンサイドボルト
6 ボルト
7 つなぎ材
、7 分割つなぎ材
8 水平板
8a ボルト孔
9 鉛直板
9a ボルト孔
10 補強リブ
11、11o 三角状つなぎ材
11a 三角板
11b、11c 三角補強板
12 水平板
12a ボルト孔
13 鉛直板
13a ボルト孔
14 つなぎ材
15 摩擦ダンパー
16a、16b 摩擦板
17 ボルト
18 つなぎ材
19 オイルダンパー
20 角筒体
21 つなぎ材
22 座屈補剛治具
22o 潤滑層
23 つなぎ材
23a つなぎ材本体
23f フランジ
24 三角状つなぎ材
24f フランジ
25 角形鋼管柱
26 長締めボルト
[0001]
BACKGROUND OF THE INVENTION
In the present invention, for example, when a steel structure building is constructed, an H-shaped steel or a square steel pipe having a closed cross section is used as a column, and the side of the column is formed from an H-shaped steel, an I-shaped steel, a C-shaped steel, or the like. The present invention relates to a joining structure of a steel column for steel structure and a steel beam, which has high rigidity and excellent damage controllability.
[0002]
[Prior art]
In recent years, in order to improve earthquake resistance, a bi-directional ramen structure using a square steel pipe or H-shaped steel having a closed cross section as a column material and an H-shaped steel as a beam material has been widely used. In order to join a rectangular steel pipe column having a closed cross section to obtain and a beam material, a through diaphragm type as shown in FIG. 10 is generally used, and a rectangular steel pipe column 1p as a column material and a diaphragm 3 are joined together. And the steel beam 2 as the beam material are joined by welding w.
[0003]
In such a through-diaphragm type joint structure, welding is frequently used at the column-beam joint, and the burden of processing work including welding of columns and beam members becomes large, resulting in a large construction cost burden and a long construction period. Become. Further, the steel beam 2 is welded to the square steel pipe column 1p at the beam end where the stress is severest, and it is difficult to ensure the rigidity of the joint portion stably. In addition, since it is designed to allow plastic deformation of columns and beam members during a large earthquake or strong wind, there is a problem that it is difficult to repair at the time of a disaster and a great repair cost is required.
[0004]
Therefore, recently, as shown in FIG. 11, without using a diaphragm, a metal fitting 4 s such as a split tee or an end plate is joined to a square steel pipe column 1 p having a closed cross section with a one-side bolt 5. A joint structure has also been proposed in which the steel beam 2 is joined to the square steel pipe column 1p with a bolt 6 to reduce the welding load. (Reference Literature: Japanese Patent Laid-Open No. 11-269985) In this joint structure, a tensile bolt joint structure using a square steel pipe column 1p having a closed cross section as a column and a steel beam 2 as a beam has a small number of processing steps and a welding skill. This is an improvement over the diaphragm type joint structure in this respect because it is not necessary.
[0005]
However, when a tensile load acts on the steel beam 2, this load acts on the joint surface of the square steel pipe column 1p via the joint metal 4 and, as a result, resists the load by the out-of-plane deformation of the square steel pipe column 1p. As a result, the deformation of the joint surface lowers the rigidity of the joint and lowers the yield strength as compared to the diaphragm-type joint structure. In addition, it is designed to allow plastic deformation of pillars and beam members in the event of a large earthquake or strong wind, so the damage at the time of the disaster will cover the whole, making repairs difficult and requiring significant repair costs There are problems such as.
[0006]
[Problems to be solved by the invention]
The present invention reduces the man-hours of processing and construction of columns and beam members, and reduces the column and beam member cross-section size by reducing the bending deformation region of the columns and beams that dominate most of the frame deformation. For steel structures with high rigidity and excellent damage controllability that can strengthen the rigidity of the frame, and in the event of a disaster caused by a large earthquake or strong wind, the damage is limited to the range of the joining element by controlling the damage of the framework and only the replacement of the joining element is required. Provides a joint structure between steel columns and steel beams.
[0007]
[Means for Solving the Problems]
The present invention comprises the following inventions (1) to (13).
(1). In the joining structure of steel columns and steel beams, the joining elements (from steel columns and steel beams) where the tip of the steel beam mainly resists the axial force + shearing force acting on the steel beam. The transmitted load is mainly tensile / compressive force (axial force) and shearing force, and shows the joining elements such as metal fittings and dampers that have the function of resisting this load. )), And one of the flanges of the beam is mainly subjected to axial force on the rear end side of the mounting portion of the axial force + shearing force resistance element. Square-shaped Joining elements (joint elements such as joint hardware and dampers that have the function of resisting this load, with the load transmitted from steel columns and steel beams as the main tension / compression force (axial force). It is tightly connected to the steel pillar via the "Axial force resistance element"), and this axial force resistance element absorbs the energy input to the building during earthquakes and strong winds and improves the earthquake and wind resistance performance of the building A steel column and steel beam joint structure for steel structures with high rigidity, light weight and excellent damage control, characterized by having a vibration control mechanism.
(2). In the joint structure of steel columns and steel beams, the tip of the steel beam is fastened to the steel column via an axial force + shear force resistance element, and both flanges have axial force + shear force. It is tightly connected to the steel pillar via the axial force resistance element on the rear end side from the mounting part of the resistance element, and the axial force resistance element absorbs energy input to the building during an earthquake or strong wind, A steel column and steel beam joint structure for steel structures with high rigidity and excellent damage controllability, characterized by having a vibration control mechanism that improves wind resistance.
(3). In the joining structure of a steel column and a steel beam, one flange of the steel beam is tightly connected to the steel column via an axial force resistance element, and the other flange is Consists of horizontal plate, vertical plate, and connecting material, and integrates horizontal plate and vertical plate. Joining element with axial force + shear force + bending force (loads transmitted from steel columns and steel beams are mainly tensile / compressive force (axial force), shear force, bending force) A joining element such as a joint metal or a damper having a resistance function is shown and is hereinafter referred to as “axial force + shearing force + bending force resistance element”). The axial force + shear force + bending force resistance element has a vibration control mechanism that absorbs energy input to the building during an earthquake or strong wind and improves the earthquake / wind resistance performance of the building. Steel column and steel beam joint for steel structure with excellent rigidity and damage control.
(4). In any one of (1) to (3), each joining element and the steel beam, and each joining element and the steel column are bolts (which means bolts and nuts, hereinafter simply referred to as “bolts”). The steel column and steel beam joint structure for steel structure with high rigidity and excellent damage controllability, characterized by being tightly bonded by
(5). In any one of (1) to (4), the axial force resistance element and / or the axial force + shearing force + bending force resistance element is a horizontal plate (thick steel plate having a function of binding the joining element to the flange of the steel beam) Etc., hereinafter referred to as “horizontal plate”), vertical plate (shows a plate-like body such as a thick steel plate having a function of binding the joining element to the steel column, and hereinafter referred to as “vertical plate”). , Tie material {shows a plate-like body such as a thick steel plate having a function of joining a horizontal plate and a vertical plate, a rod-like body (steel bar, steel pipe, shaped steel) or a combination thereof, a damper, etc. " }, Which has a high rigidity and excellent damage controllability, and has a steel column for steel structure and a steel beam joint structure.
(6). In (5), the vibration damping mechanism is formed by a hysteretic damper incorporated in the connecting member of the joining element, and is made of steel for steel structure with high rigidity and excellent damage controllability. Column and steel beam joint structure.
(7). In (6), the joining material of the joining element is a steel material having a lower yield point than that of the column / beam member, and having high rigidity and excellent damage controllability. Beam connection structure.
(8). In (5), the vibration damping mechanism is formed by a viscous damper incorporated in the connecting member of the joining element, and is made of steel for steel structure with high rigidity and excellent damage controllability. Column and steel beam joint structure.
(9). In any one of (5) to (8), the horizontal plate and the vertical plate of the joining element are formed of a steel material having a yield point higher than that of the column / beam member. Excellent steel column and steel beam joint structure for steel structures.
(10). (6) or (7), wherein the joining member has a high rigidity, wherein the joining member is a buckling restraining jig with a lubricating layer interposed between the joining member body and the joining member body. Steel column and steel beam joint structure for steel structure with excellent damage controllability.
(11). In any one of (5) to (10), a steel for a steel structure having high rigidity and excellent damage controllability, wherein the connecting member of the joining element has a buckling stiffening structure. Joint structure of pillar and steel beam.
(12). In any one of (1) to (11), the joining structure of the steel column and the steel beam is applied at at least one place in one or more side portions of the steel pillar. A steel column and steel beam joint structure for steel structures with high rigidity and excellent damage controllability.
(13). In (12), the vertical plates of the axial force resistance element, the axial force + shear force resistance element, and the axial force + shear force + bending force resistance element, which are joined to both sides of the steel column, A steel column and steel beam joint structure for steel structures with high rigidity and excellent damage controllability, characterized by being fastened with a common long tightening bolt inserted through the column.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, a steel beam (H-shaped, I-shaped, C-shaped obtained by rolling or welding) is applied to the side of a steel column such as an H-shaped steel column or a rectangular steel pipe column that serves as a middle column or a side column of a building. This refers to steel beams made of various shaped steels having cross-sections of shapes and other shapes, hereinafter referred to as “steel beams”) as axial force resistance element and axial force + shear force resistance element or axial force resistance It is a joint structure of steel columns and steel beams that are joined via an element and a shear force resistance element, or via an axial force resistance element and an axial force + shear force + bending force resistance element, with no braces. As a high-rigidity frame, the degree of freedom of design can be increased, the cross-sectional size of the beam member can be reduced to increase the rigidity of the frame, and the man-hours for processing and construction of the column / beam member can be reduced.
[0009]
In addition, it is possible to control frame damage by using an axial force resistance element or an axial force resistance element and an axial force + shearing force + bending force resistance element for steel columns and beams. It is possible to stop at the element (joining element) and repair only by exchanging the resistance element (joining element) to reduce the burden of repair work and repair costs, and to greatly shorten the repair work period. Since the column / beam joint is not a bracket type, transportation efficiency can be greatly improved by separating and transporting the column / beam member and the resistance element (joining element).
[0010]
In the invention of (1), the steel column / steel beam is joined to the steel column / steel beam via the axial force resistance element and the shear + axial force resistance element, and the vertical load is the steel beam. The center of rotation of the steel beam when acting on the steel beam becomes [axial force + shear force resistance element] at the end of the steel beam and acts on the steel beam with the axial force resistance element attached to the steel beam flange. It has a simple joining structure that transmits the load to the steel column, and in particular, it can reduce the man-hours for column and beam members and the man-hours for construction.
[0011]
Further, by attaching an axial force resistance element to the flange of the steel column / steel beam, the maximum bending moment acting on the column / beam can be reduced, and the size of the cross section of the column / beam member can be reduced. In addition, attaching an axial force resistance element to the column / beam flange also leads to a reduction in the bending deformation area of the column / beam, which controls most of the frame deformation. Can be strengthened. For example, in the beam member, the stress becomes most severe on the inner side from the end of the beam, so that the size of the beam member cross section can be reduced (the same effect as reducing the span).
In addition, the fact that each resistance element (joining element) and steel pillar / beam are firmly integrated may cause damage to the entire body. As a damage control framework, the energy input to the building during an earthquake or strong wind is absorbed by the resistance element (joining element) to ensure the earthquake resistance and wind resistance performance of the entire building. It is effective that it is generated only in the joining element) and only the resistance element (joining element) is repaired. As the energy absorption mechanism (vibration control mechanism), a hysteretic damper or a viscous damper can be used.
[0012]
In the invention of (2), by joining the steel column and the steel beam via the upper and lower axial force resistance elements and the shear + axial force resistance element, the length of the column / beam bending deformation is shortened and the frame Stiffness can be strengthened. For example, in the beam member, the stress is most severe inside the end of the steel beam, so that the size of the beam member cross section can be reduced (the same effect as reducing the span).
[0013]
When the vertical load is applied to the steel beam, the rotation center of the steel beam becomes [axial force + shear resistance element] at the end of the steel beam and is attached to the resistance element and the flange of the steel beam. [Axial force resistance element] has a joining structure that transmits the bending / shearing load acting on the beam member to the steel column. Here, since the axial force resistance elements are arranged above and below, it is sufficient compared with the invention of (1) in terms of reducing the man-hours for column / beam members and the man-hours for construction and reducing the size of the column / beam cross section. However, since the axial force resistance elements are arranged vertically, it becomes possible to sufficiently reduce the bending deformation area of the columns and beams that dominate the majority of the frame deformation, and to strengthen the frame rigidity more stably. be able to. The invention (2) also has the same vibration damping mechanism as the invention (1).
[0014]
In the invention of (3), one side flange of the steel beam is connected to the side part of the steel column through the axial force resistance element, and the other flange has the axial force + shearing force + bending force resistance element. Since the steel beam is tightly connected to the steel column, the rotation center of the steel beam when a vertical load is applied to the beam is [axial force + shear force + bending force resistance element], and the flange of one steel beam It has a simple joint structure that transmits the bending shear load acting on the steel beam to the steel column with the axial force resistance element attached to the steel column, which can reduce the man-hours for column and beam members and the man-hours for construction. it can.
[0015]
In addition, by attaching an axial force resistance element to the flange of a steel column or steel beam, the bending deformation area of the column or beam that controls most of the frame deformation is reduced, and the maximum bending moment acting on the column or beam is reduced. Therefore, the rigidity of the frame can be enhanced even if the size of the column / beam cross section is reduced. The invention (3) also has the same vibration damping mechanism as the invention (1).
[0016]
In the inventions of (1) to (3), the steel column / beam and each resistance element (joining element) can be joined by welding, but the part where the working stress is the most severe during a large earthquake or strong wind. The steel column / steel beam and the resistance element (joining element) can be easily separated by stress, making it difficult to cause integral failure, and the steel column / steel beam and the resistance element (joining element) can be easily attached and detached. Bonding is preferable. Moreover, it is preferable to set it as a bolt joining also from a viewpoint of reduction of the process and construction man-hour of a junction part.
[0017]
In addition, even in the case of a resistance element (joining element), it is expected that when the connecting material is formed of a thick steel plate, for example, it may be buckled and cannot fully function, so for example, a cylindrical buckling around the outer periphery of the connecting material It is effective to arrange a restraining jig so that the inner peripheral surface thereof can slide with the outer peripheral surface of the connecting material. In this case, it is effective to apply a lubrication treatment between the sliding surfaces. In addition, it is effective to suppress buckling by using a tie material having a buckling and stiffening function of a flange or a rib having a cross section of, for example, an I shape, an H shape, or a T shape.
[0018]
Further, in order to facilitate replacement of the resistance element (joining element), the horizontal plate constituting the axial force resistance element, the shear force resistance element and the axial force + shear force resistance element, and the axial force + shear force + bending force resistance element It is effective that the vertical plate is light, and it is effective to make the yield point higher than that of the column / beam member.
[0019]
In the joining structure of the present invention, the steel beam is attached to one or four sides of the steel column at one place or a plurality of places in the vertical direction, and the steel beam is attached to the plurality of sides of the steel pillar. Application is possible in the case of joining, and it is not essential that the joining structures are all the same when applied to a plurality of side portions and a plurality of locations. Also, when joining vertical plates to opposite sides of a steel column, it is also effective to fasten the vertical plates with a common long tightening bolt that is inserted through the vertical plate and the steel column. . In this case, even if the steel column is a square steel pipe column having a closed cross section, an expensive one-side bolt need not be used. Moreover, the effect which suppresses the out-of-plane deformation | transformation of the column flange by a long bolt is also expectable.
[0020]
【Example】
(Example 1)
Embodiment 1 of the present invention will be described below with reference to FIG. Example 1 relates to the invention of (1), in which an H-shaped steel as a beam is attached to a side portion of an H-shaped steel as a column material via an axial force resistance element and an axial force + shear force resistance element. This is a joint structure of an H-shaped steel column and an H-shaped steel beam that are bolted together.
[0021]
In FIG. 1A, 1 is an H-shaped steel column having a plurality of bolt holes in the flange 1a, 2 is a steel beam having a plurality of bolt holes at the lower flange 2a and the web end, and a web 2u at the tip thereof. Are joined to the flange 1a of the H-shaped steel column 1 with a bolt 6 through a pair of angle members 4, and the lower flange 2a of the steel beam 2 is connected to the flange 2a in a region separated from the tip of the steel beam 2 by a distance x. 7 is joined to the horizontal plate 8 by a bolt 6 and the vertical plate 9 of the connecting member 7 is joined to the flange 1a of the H-shaped steel column 1 by a bolt 6 in a region away from the lower surface of the lower flange 2a of the steel beam 2 by a distance y. It is made. As shown in FIG. 1C, the angle member 4 is formed by a vertical plate 4c having a plurality of bolt holes 4a and a beam mounting plate 4d having a plurality of bolt holes 4b.
[0022]
As shown in FIG. 1B, the connecting member 7 has a horizontal end face and a vertical end face, a horizontal plate 8 having a plurality of bolt holes 8a on the horizontal end face, and a plurality of bolt holes on the vertical end face. It is formed by joining vertical plates 9 having 9a, and is formed by processing a thick steel plate. The connecting material 7 is inclined by an angle α (α is 20 to 70 degrees) with respect to the axis of the H-shaped steel column 1 in a state where the bolt 7 is joined to the H-shaped steel column 1 and the H-shaped steel beam 2. Yes. In this embodiment, the connecting material 7 (including the horizontal plate 8 and the vertical plate 9 here) serves as an axial force resistance element, and the angle material 4 serves as an axial force + shear force resistance element. Reference numeral 10 in FIG. 1 (a) denotes a reinforcing rib provided at the joint portion of the H-shaped steel column 1.
[0023]
In this embodiment, the connecting member 7 serving as an axial force resistance element is provided only on the lower side, and the joint is bolted, so that a simple structure that does not require welding with a high degree of skill and a heavy work load is required. Compared to the conventional welded joint structure, there is no decrease in the frame rigidity, which is advantageous in terms of cost reduction and shortening the construction period. The connecting member 7 has a vibration damping mechanism, but the illustration of the vibration damping mechanism in FIG. 1 and the description thereof are omitted here.
[0024]
(Example 2)
A second embodiment of the present invention will be described with reference to FIG. This Example 2 relates to the invention of (2), and the H-shaped steel, which is a beam material, is attached to the side portion of the H-shaped steel, which is a column material, and the axial force resistance element and the axial force + shear force resistance element. This is a joining structure of H-shaped steel columns and H-shaped steel beams joined by bolts.
[0025]
In FIG. 2, 1 is an H-shaped steel column having a plurality of bolt holes in the flange 1a, 2 is an H-shaped steel beam having a plurality of bolt holes at the upper and lower flanges 2b and 2a and the web end, and the web 2u at the tip thereof. Are joined to the flange 1a of the H-shaped steel column 1 with a bolt 6 via a pair of angle members 4, and the lower flange 2a is connected to the horizontal plate of the connecting material 7a in a region away from the tip of the H-shaped steel beam 2 by a distance x. 8 is joined to the flange 1a of the H-shaped steel column 1 with the bolt 6 in a region where the vertical plate 9 of the connecting member 7a is separated from the lower surface of the lower flange 2a of the H-shaped steel beam 2 by a distance y. Join.
[0026]
Further, the upper flange 2b of the H-shaped steel beam 2 is joined to the horizontal plate 8 of the connecting material 7b by a bolt 6 in a region separated by a distance x from the tip of the H-shaped steel beam 2, and the vertical plate 9 of the connecting material 7b is attached. The H-shaped steel beam 2 is joined to the flange 1a of the H-shaped steel column 1 with a bolt 6 in a region away from the upper surface of the upper flange 2b of the H-shaped steel beam 2 by a distance ya.
[0027]
The angle member 4 and the connecting members 7a and 7b are the same as those in the first embodiment. However, the upper connecting member 7b is joined to the lower connecting member 7a in a state in which the positional relationship is opposite in the vertical direction. The connecting members 7 a and 7 b are inclined by an angle α with respect to the axis of the H-shaped steel column 1 in a state where the connecting members 7 a and 7 b are joined to the H-shaped steel column 1 and the H-shaped steel beam 2 by the bolt 6. Here, the connecting members 7a and 7b (including the horizontal plate 8 and the vertical plate 9) are axial force resistance elements, and the angle member 4 is an axial force + shear force resistance element.
[0028]
In this example, since a pair of connecting materials (7a, 7b) is provided, the processing and construction burden is large, and in terms of cost and construction period, it is disadvantageous compared to Example 1, but the rigidity of the framework is large, It is possible to join columns and beam members having a larger cross section than in the case of the first embodiment. The connecting members 7a and 7b have a vibration damping mechanism, but the illustration of the vibration damping mechanism in FIG. 2 and the description thereof are omitted here.
[0029]
(Example 3)
A third embodiment of the present invention will be described with reference to FIG. Example 3 relates to the invention of (3), in which an H-shaped steel beam as a beam material is connected to a side portion of an H-shaped steel as a column material, an axial force resistance element on the lower side and an axial force on the upper side. It is a joint structure of an H-shaped steel column and an H-shaped steel beam that are bolted via a + shear force + bending force resistance element.
[0030]
In FIG. 3 (a), 1 is an H-shaped steel column having a plurality of bolt holes in the flange 1a, 2 is an H-shaped steel beam having a plurality of bolt holes in the upper and lower flanges 2b, 2a, and the flange of the H-shaped steel column 1 Reference numeral 1a denotes an H-shaped steel beam which is joined by a bolt 6 with a lower connecting member 7 and an upper triangular connecting member 11 and has a free end. In this H-shaped steel beam 2, the lower flange 2a is joined to the horizontal plate 8 of the connecting member 7 with the bolt 6, and the vertical plate 9 of the connecting member 7 is connected to the H-shaped steel in a region away from the lower surface of the lower flange 2a by a distance y. The bolt 1 is joined to the flange 1 a of the column 1.
[0031]
Further, the upper flange 2b is joined to the horizontal plate 12 of the triangular connecting material 11 with a bolt 6 in a region separated by a distance x from the tip of the H-shaped steel beam 2, and the vertical plate 13 of the triangular connecting material 11 is The bolt 6 is joined to the flange 1a of the H-shaped steel column 1 in a region away from the upper surface of the flange 2b by a distance yb.
[0032]
The connecting material 7 is the same as that in the first embodiment. Further, here, the triangular connecting material 11 is formed by forming a triangular plate 11a between an L-shaped vertical plate 13 and a horizontal plate 12 as shown in FIG. 3 (b), and the vertical plate 13 has a bolt hole 13a. And having a bolt hole 12a in the horizontal plate 12 and formed by processing a thick steel plate. The connecting material 7 and the triangular connecting material 11 are inclined at an angle α with respect to the axis of the H-shaped steel column 1 in a state where the connecting material 7 and the triangular connecting material 11 are joined to the H-shaped steel column 1 and the H-shaped steel beam 2 by the bolt 6.
[0033]
As shown in FIG. 3 (c), the triangular connecting material is an L-shaped vertical plate 13 and horizontal plate 12, and a bar 11 p made of a single plate or a combination of thick plates, steel bars, steel pipes, etc. It may be connected by inclining an angle α with respect to the axis of the column 1 and having a space o at the corner.
[0034]
Here, the connecting material 7 (including the horizontal plate 8 and the vertical plate 9) is an axial force resistance element, and the triangular connecting material 11 (including the horizontal plate 12 and the vertical plate 13) is an axial force + shearing force + bending force. Become a resistance element. In the joint structure of Example 3, the connecting material 7 serving as an axial force resistance element is provided on the lower side, and the triangular connecting material 11 serving as an axial force + shearing force + bending force resistance element is provided on the upper side. Since the tip of the H-shaped steel beam 2 is a free end, the processing and construction burden increase is slight. In terms of cost and construction period, it is more disadvantageous than in the case of the first embodiment. In particular, the shearing force + bending resistance element by the triangular connecting material 11 and the bending resistance element are strong, and the rigidity of the frame is large. A structure is obtained.
[0035]
In this example, the connecting material 7 is arranged on the lower side to be an axial force resistance element, and the triangular connecting material 11 is arranged on the upper side to be an axial force + shearing force + bending force resistance element. A tie material similar to the tie material 11 is disposed on the lower side to provide an axial force + shear force + bending force resistance element, and a tie material similar to the tie material 7 is disposed on the upper side to serve as an axial force resistance element. Good. Further, the connecting member 7 has a vibration damping mechanism, but the illustration of the vibration damping mechanism in FIG. 3 and the description thereof are omitted here.
[0036]
(Example 4)
A fourth embodiment of the present invention will be described with reference to FIGS. This Example 4 relates to the invention of (9), and here, as in Example 1, the H-shaped steel beam 2 is formed on the flange 1a of the H-shaped steel column 1 and becomes an axial force resistance element. In the column / beam joint structure joined with bolts 6 through the angle member 4 which is an axial force + shear force resistance element with the connecting material 14, the energy input to the building during a large earthquake or strong wind is absorbed, and the building's earthquake resistance / This is a joint structure of an H-shaped steel column and an H-shaped steel beam, specifically explaining a frame damage control structure by a vibration control mechanism that improves the wind resistance performance.
[0037]
(Example 4-1)
In FIG. 4 (a), reference numeral 14 denotes a connecting material, and a friction damper 15 which is a type of hysteretic damper is incorporated in the middle portion as a vibration damping mechanism. More specifically, as shown in FIG. 4 (b), the friction damper 15 has a connecting material main body 7 in the length direction. 1 , 7 2 Divided into two parts, this split joint material 7 1 , 7 2 (There may be a gap or an absorptive material may be abutted), the friction plates 16a and 16b are brought into contact with both surfaces of the region including the abutting portion, and the divided binder 7 1 , 7 2 Are joined by bolts 17 and connected. In this embodiment, by applying the frictional force between the connecting material 14 and the friction plates 16a and 16b, the energy input to the building is absorbed during a large earthquake and strong wind, and the earthquake and strong wind resistance performance of the building can be improved. it can.
[0038]
In this Example 4-1, the divided connecting material 7 for the H-shaped steel column 1, the H-shaped steel beam 2, the angle material 4, and the bolt 6 is used. 1 , 7 2 , The strength of the friction plates 16a and 16b, the bolt 17 and the divided connecting material 7 1 , 7 2 By adjusting the frictional force between the friction plates 16a and 16b and adjusting the axial force resistance by the connecting material 14, the connecting material 14 functions as a damage control material, and in the event of a disaster, the damage is stopped by replacing the connecting material 14, Compared to the conventional welded framework, the burden of repair work and repair cost can be reduced, and the repair period can be greatly shortened.
[0039]
(Example 4-2)
In FIG. 5 (a), 18 is a connecting material, and an oil damper 19 which is a kind of viscous damper is incorporated in the middle part as a vibration damping mechanism. More specifically, as shown in FIG. 5 (b), the oil damper 19 has a connecting material body in the length direction. 1 , 7 2 Divided into two parts, this split joint material 7 1 , 72 is inserted into a rectangular tube body (or a cylindrical body is also acceptable) 20 and abutted in the rectangular tube body 20 (a gap may be present or a viscous material may be interposed), a rectangular tube The body 20 is filled with oil and slidable. In this embodiment, the divided connecting material 7 1 , 7 2 Absorbs energy input to the building in the event of a large earthquake or strong wind by applying a damping force due to sliding resistance (including a viscous agent) between the oil and the oil in the rectangular tube body 20 to improve the building's seismic and strong wind performance. Can be improved.
[0040]
In Example 4-2, the strength of the connecting member 18 and the rectangular tube 20 with respect to the H-shaped steel column 1, the H-shaped steel beam 2, the angle member 4, and the burl 6, and the connection between the connecting member 18 and the rectangular tube member 20. By adjusting the frictional force and adjusting the axial force resistance by the connecting material 18, the connecting material 18 functions as a damage control material, and in the event of a disaster, the damage is stopped by replacing the connecting material 18, compared to the conventional welded framework. It is easy to reduce the repair work cost and the repair cost load, and greatly shorten the repair work period.
[0041]
(Example 5)
A fifth embodiment of the present invention will be described with reference to FIGS. This Example 5 relates to the inventions of (10) and (11), and basically, as in Example 3, the H-section steel that is a beam material on the side of the H-section steel that is a column material. It is an H-shaped steel beam joint structure of an H-shaped steel column in which a beam is bolted via a lower axial force resistance element and an upper axial force + shear force resistance element. A buckling stiffening structure is arranged on the force + shear force bending force resistance element, especially the axial force resistance element, and the axial force + shear force bending force resistance element with a more stable performance against buckling. Is a joint structure of H-shaped steel column and H-shaped steel beam.
[0042]
(Example 5-1)
In FIG. 6A, 1 is an H-shaped steel column having a plurality of bolt holes in the flange 1a, and 2 is an H-shaped steel beam having a plurality of bolt holes in the upper and lower flanges 2b, 2a. The flange 1a is joined with a bolt 6 by a lower connecting member 21 and an upper triangular connecting member 11o, and the tip is a free end.
[0043]
In this H-shaped steel beam 2, the lower flange 2 a is joined with the horizontal plate 8 of the lower connecting member 7 and the bolt 6, and the vertical plate 9 is separated from the lower surface of the lower flange 2 a by a distance y from the H-shaped steel column 1. Are joined to the flange 1a with bolts 6. Further, the upper flange 2b is joined to the horizontal plate 12 of the triangular connecting material 11o with a bolt 6 in a region away from the tip of the H-shaped steel beam 2 by the bolt 6, and the vertical plate 13 of the triangular connecting material 11o is The bolt 6 is joined to the flange 1a of the H-shaped steel column 1 in a region away from the upper surface of the flange 2b by a distance yb.
[0044]
The lower connecting material 21 is basically the same as that of the third embodiment. However, as shown in FIG. 6B, a rectangular tube-shaped buckling compensation member is provided on the outer periphery of the connecting material (main body) 7. A rigid jig 22 is arranged, and between the outer peripheral surface of the connecting material (main body) 7 and the buckling stiffening jig 22, in order to appropriately suppress buckling, the connecting material (main body) 7 and the buckling compensation are provided. An appropriate gap that allows the rigid jig 22 to effectively share the functions is formed. Here, a lubricating layer 22o is interposed between the connecting material (main body) 7 and the buckling stiffening jig 22, and measures for reducing friction when buckling occurs are taken.
[0045]
The upper triangular connecting member 11o is formed by processing a thick steel plate, and basically has a triangular shape as shown in FIG. 6 (c) based on the base shown in FIG. 3 (b). It has a buckling stiffening structure in which triangular reinforcing plates 11b and 11c slightly smaller than the triangular plate 11a are brought into contact with both sides of the triangular plate 11a of the connecting member 11o and joined with bolts 6a.
[0046]
In Example 5-1, the lower connecting member 21 (including the horizontal plate 8 and the vertical plate 9) is an axial force resistance element, and the triangular connecting member 11o (including the horizontal plate 12 and the vertical plate 13) is the shaft. Force + shear force + bending force resistance element. In the joining structure of Example 5-1, in comparison with Example 3, a connecting member 21 with a buckling stiffening jig 22 is provided on the lower side as an axial force resistance element, and axial force + shear force + bending. Since the triangular connecting material 11o having a buckling stiffening structure is provided on the upper side as a force resistance element, along with the adoption of the buckling stiffening jig 22 and the buckling stiffening structure, the processing cost, the construction cost, the construction work period Although it is disadvantageous in the case of Example 3, the buckling is moderately suppressed (control) by the function sharing of the connecting material (main body) 7, the triangular connecting material 11o, the buckling stiffening jig 22, and the buckling stiffening structure. In addition, the structure of the H-shaped steel column and the H-shaped steel beam having a stable performance against buckling can be obtained.
[0047]
(Example 5-2)
In FIG. 7A, 1 is an H-shaped steel column having a plurality of bolt holes in the flange 1a, and 2 is an H-shaped steel beam having a plurality of bolt holes in the upper and lower flanges 2b, 2a. The flange 1a is joined with a bolt 6 by a lower connecting member 23 and an upper triangular connecting member 24, and the tip is a free end.
[0048]
In this H-shaped steel beam 2, the lower flange 2a is joined with the horizontal plate 8 of the lower connecting member 23 and the bolt 6, and the vertical plate 9 is separated by a distance y from the lower surface of the lower flange 2a. Are joined to the flange 1a with bolts 6. Further, the upper flange 2b is joined to the horizontal plate 12 of the triangular connecting member 24 with a bolt 6 in a region separated by a distance x from the tip of the H-shaped steel beam 2, and the vertical plate 13 of the triangular connecting member 24 is The bolt 4 is joined to the flange 1a of the H-shaped steel column 1 in a region away from the upper surface of the flange 2b by a distance yc.
[0049]
As shown in FIG. 7B, the lower joining member 23 is an I-shaped cross section in which flanges 23f for buckling and stiffening for appropriately suppressing buckling are formed at both ends of the joining member main body 23a. belongs to. Further, as shown in FIG. 7C, the upper triangular connecting member 24 has a buckling stiffening flange 24f for moderately suppressing buckling on the inclined surface of the triangular connecting member main body 24a. Formed. Here, the lower connecting material 23 and the triangular connecting material 24 are formed by processing a thick steel plate, but may be formed by cutting an I-shaped steel.
[0050]
In Example 5-2, the lower connecting member 23 (including the horizontal plate 8 and the vertical plate 9) is an axial force resistance element, and the triangular connecting member 24 (including the horizontal plate 12 and the vertical plate 13) is the shaft. Force + shear force + bending force resistance element. In the joining structure of Example 5-2, as compared with Example 3, the connecting material 23 formed with a buckling stiffening flange 23f for appropriately suppressing buckling as an axial force resistance element. Is provided on the lower side, and a triangular connecting member 24 having a flange 24f for buckling stiffening to moderately suppress buckling as an axial force + shearing force + bending force resistance element is provided on the upper side. In terms of cost, construction cost, construction period, it is more disadvantageous than in the case of Example 3, but buckling is moderately suppressed (controlled) by the connecting material 23 and the triangular connecting material 24 having a buckling stiffening structure. As a result, it is possible to obtain a joint structure of an H-shaped steel column and an H-shaped steel beam, which further increases the frame rigidity and has a more stable performance against buckling. The connecting member 23 has a vibration damping mechanism, but the illustration of the vibration damping mechanism in FIG. 7 and the description thereof are omitted here.
[0051]
(Example 6)
A sixth embodiment of the present invention will be described with reference to FIG. In this embodiment, a square steel pipe column having a closed cross section is used as a column material, and an H-shaped steel beam, which is a beam material, is used on its side portion, as in the third embodiment, and a lower side axial force resistance element and an upper side axial force are used. It is a joined structure of a square steel pipe column and an H-shaped steel beam that are bolted via a + shear force + bending force resistance element.
[0052]
In FIG. 8, 25 is a square steel pipe column having a plurality of bolt holes on the side, and 2 is an H-shaped steel beam having a plurality of bolt holes in the upper and lower flanges 2b, 2a. In this H-shaped steel beam 2, the lower flange 2a is joined to the horizontal plate 8 of the lower connecting member 23 with the bolt 6, and the vertical plate 9 of the lower connecting member 23 is separated from the lower surface of the lower flange 2a by a distance y. The one-side bolt 5 is used to join the square steel pipe column mold 25 in the region.
[0053]
Further, the upper flange 2b is joined to the horizontal plate 12 of the triangular connecting member 24 with a bolt 6 in a region separated by a distance x from the tip of the H-shaped steel beam 2, and the vertical plate 13 of the triangular connecting member 24 is The square steel pipe column mold 25 is joined with the one-side bolt 5 in a region away from the upper surface of the flange 2b by a distance yb.
[0054]
The lower joining material 23 and the triangular joining material 24 are basically the same as those in Example 5-2, and are formed by processing a thick steel plate. You may cut and form steel. Here, the connecting material 23 (including the horizontal plate 8 and the vertical plate 9) is an axial force resistance element, and the triangular connecting material 24 (including the horizontal plate 12 and the vertical plate 13) is an axial force + shearing force + bending force. Become a resistance element.
[0055]
In the joint structure of the sixth embodiment, a square steel pipe column 25 having a closed cross section is used as a column material. Therefore, the vertical plate 8 of the square steel tube column and the connecting material 23, the vertical plate 12 of the triangular connecting material 24, and Although the point which uses the one side volt | bolt 5 for this joining is fundamental, the effect similar to Example 5-2 is acquired. The connecting member 23 has a vibration damping mechanism, but the illustration of the vibration damping mechanism in FIG. 8 and the description thereof are omitted here.
[0056]
(Example 7)
A seventh embodiment of the present invention will be described with reference to FIG. In this embodiment, a square steel pipe column having a closed cross section is used as a column material, and an H-shaped steel beam as a beam material is symmetrically formed on both sides thereof, and a lower axial force resistance element and an upper axial force + shearing force are used. + It is a joint structure of a square steel pipe column and an H-shaped steel beam that are bolt-bonded via a bending force resistance element, considering the mechanism that transmits the stress of the resistance element (joining element) on which the tensile force acts to the compression side, In addition, the use of expensive one-side bolts can be avoided.
[0057]
In FIG. 9, reference numeral 25 denotes a rectangular steel pipe column having a plurality of bolt holes on the side, 2 1 2 2 Is an H-shaped steel beam having a plurality of bolt holes in the upper and lower flanges 2b, 2a. The bolts are symmetrically formed on both sides of the square steel pipe column 25 by the lower connecting member 23 and the upper triangular connecting member 24, respectively. 6 and long fastening bolts 26 are used. This H-shaped steel beam 2 1 2 2 The lower flange 2a is joined to the horizontal plate 8 of the lower connecting member 23 and the bolt 6 respectively. 1 2 2 In a state where the vertical plate 9 of the lower connecting member 23 joined to the lower flange 2a is in a state where it is symmetrically in contact with the side portion of the square steel pipe column mold 25 in a region away from the lower surface of the lower flange 2a by a distance y, The long fastening bolts 26 are inserted so as to pass through the respective vertical plates 9 and the square steel pipe column molds 25, and the respective vertical plates 9 and the square steel pipe column molds 25 are joined by the long fastening bolts 26.
[0058]
In addition, H-shaped steel beam 2 1 2 2 The upper flange 2b is joined to the horizontal plate 12 of the triangular connecting member 24 with the bolt 6 in a region separated by a distance x from the tip of the upper end of the upper end of the upper flange 2b. In a state where it is in symmetrical contact with both sides of the square steel pipe column mold 25 in the region separated by the distance yb, the long fastening bolts 26 are inserted so as to pass through the respective vertical plates 13 and the square steel pipe column mold 25, and this The vertical plates 13 and the square steel pipe column molds 25 are joined by the long fastening bolts 26.
[0059]
The lower connecting material 23 and the triangular connecting material 24 are basically the same as those in the sixth embodiment, and the lower connecting material 23 is a connecting material main body as shown in FIG. This is an I-shaped cross section in which flanges 23f for buckling and stiffening for appropriately suppressing buckling are formed on both side ends of 23a. Further, the upper triangular connecting member 24 is basically the same as that of Example 6, and moderate buckling is applied to the inclined surface of the triangular connecting member main body 24a as shown in FIG. 7C. This is an I-shaped cross section in which a flange 24f for buckling and stiffening is formed. Here, the lower connecting material 23 and the triangular connecting material 24 are formed by processing a thick steel plate, but may be formed by cutting an I-shaped steel.
[0060]
In the seventh embodiment, the lower connecting member 23 (including the horizontal plate 8 and the vertical plate 9) is an axial force resistance element, and the triangular connecting member 24 is an axial force + shear force + bending force resistance element. In the joint structure of the seventh embodiment, a rectangular steel pipe column 25 having a closed cross section is used as a column material. Therefore, the vertical plate 9 of the rectangular steel tube column and the connecting material 23, the vertical plate 13 of the triangular connecting material 24, and In addition to the fact that long fastening bolts 26 are used for joining, the same effects as in Example 6 can be obtained, and the H-shaped steel beam 2 is provided on both sides of the square steel pipe column 25. 1 And 2 2 Are joined by the same joint structure symmetrically, so that even if there is no out-of-plane deformation restraining jig (rib plate etc.), it is possible to prevent the out-of-plane deformation of the column, and it is strong and has high framework rigidity. A more stable column / beam joint structure can be obtained.
[0061]
Further, the H-shaped steel beam 2 can be used without using an expensive one-side bolt for joining the rectangular steel pipe column to the vertical plate 9 of the connecting material 23 and the vertical plate 13 of the triangular connecting material 24. 1 And 2 2 The sides can be joined simultaneously, and the joining time can be shortened. Further, the connecting member 23 has a vibration damping mechanism, but the illustration of the vibration damping mechanism in FIG. 9 and the description thereof are omitted here.
[0062]
In addition, this invention is not limited to the content of said each Example, For example, column material conditions, beam material conditions, axial force resistance element, shear force resistance element, axial force + shear force + bending force resistance Material and structure conditions of elements, vibration control and buckling stiffening structure (including shape, material, etc.) conditions of each resistance element, connection conditions between each resistance element and column and beam, joint arrangement conditions, etc. Depending on the scale, application target part, column condition, beam condition, required strength of frame, ambient condition, etc., it is selected within the range satisfying the above claims and is subject to change.
[0063]
【The invention's effect】
In the present invention, it is possible to increase the degree of freedom of design as a high-rigidity frame in which no braces are disposed, and it is possible to enhance the rigidity of the frame even if the cross-sectional size of the beam member is reduced. Man-hours for construction can be saved. In addition, it is possible to control frame damage by axial force resistance element or axial force resistance element and axial force + shearing force + bending force resistance element for columns / beams. The repair work period and cost can be reduced by repairing only the replacement of the resistance element (joining element), and the repair work period can be greatly shortened.
[Brief description of the drawings]
FIG. 1A is a side explanatory view showing an embodiment of a column / beam joint structure of the present invention, FIG. 1B is a three-dimensional explanatory view of the connecting material of FIG. These are three-dimensional explanatory drawing of the angle material of (a) figure.
2A is a side explanatory view showing another embodiment of the column / beam joint structure of the present invention, and FIG. 2B is a plan explanatory view of FIG.
3A is a side explanatory view showing another embodiment of the column / beam joint structure of the present invention, FIG. 3B is a three-dimensional explanatory view of the triangular connecting member in FIG. (C) The figure is a three-dimensional explanatory diagram of another triangular connecting material.
4A is a side explanatory view showing another embodiment of the column / beam joint structure of the present invention, and FIG. 4B is a partial plan view of the connecting member of FIG.
5A is a side explanatory view showing another embodiment of the column / beam joint structure of the present invention, and FIG. 5B is a partially cutaway cross-sectional plan view of the connecting material in FIG. 5A. Figure.
6A is a side explanatory view showing another embodiment of the column / beam joint structure of the present invention, and FIG. 6B is a partially cutaway sectional view of a partial plane of the connecting material in FIG. Explanatory drawing, (b) figure is a three-dimensional explanatory drawing of the triangular connection material of (a) figure.
7A is a side explanatory view showing another embodiment of the column / beam joint structure of the present invention, and FIG. 7B is an Aa-Aa cross-sectional explanatory view of the connecting material of FIG. (C) The figure is a solid explanatory drawing of the triangular connection material of (a) figure.
FIG. 8A is a partially cutaway sectional side view showing another embodiment of the column / beam joint structure of the present invention.
FIG. 9A is a partially cutaway sectional side view showing another embodiment of the column / beam joint structure of the present invention.
FIG. 10 is an explanatory side view showing an example of a conventional column / beam joining structure.
FIG. 11 is an explanatory side view showing another example of a conventional joining structure of pillars and beams.
[Explanation of symbols]
1 H column
1a Flange
1p square steel pipe column
2 H-shaped steel beam
2a Lower flange
2b Upper flange
2u web
2 1 2 2 H-shaped steel beam
3 Mounting plate
w Welding
4s split tee
4a, 4b Bolt hole
4c Vertical plate
4d beam mounting plate
4 Angle material
5 One side bolt
6 bolts
7 binders
7 1 , 7 2 Split binder
8 Horizontal plate
8a Bolt hole
9 Vertical plate
9a Bolt hole
10 Reinforcing ribs
11, 11o Triangular binder
11a Triangular plate
11b, 11c Triangular reinforcement plate
12 horizontal plates
12a Bolt hole
13 Vertical plate
13a Bolt hole
14 Tie
15 Friction damper
16a, 16b Friction plate
17 volts
18 binders
19 Oil damper
20 square tube
21 binder
22 Buckling stiffening jig
22o Lubrication layer
23 binders
23a Connecting material body
23f flange
24 Triangular binder
24f flange
25 square steel pipe column
26 Long tightening bolt

Claims (13)

鋼製柱と鋼製梁との接合構造において、鋼製梁の先端部が、鋼製梁に作用する軸力+剪断力に対して主に抵抗する接合要素を介して柱に緊結されており、なおかつ、梁の一方のフランジが、鋼製梁に作用する軸力+剪断力に対して主に抵抗する前記接合要素の取付部より後端側で主に軸力が作用する方づえ状の接合要素を介して柱に緊結されており、主に軸力が作用する該方づえ状の接合要素が、地震や強風時に建物に入力されるエネルギーを吸収し建物の耐震・耐風性能を向上させる制振機構を有するものであることを特徴とする、高剛性かつ軽量で損傷制御性に優れた鉄骨構造用の鋼製柱と鋼製梁の接合構造。In the joining structure of steel columns and steel beams, the tip of the steel beam is tightly connected to the column via a joining element that mainly resists axial force + shearing force acting on the steel beam. In addition, one flange of the beam is shaped like a handle where axial force mainly acts on the rear end side from the attachment portion of the joining element that mainly resists axial force + shearing force acting on the steel beam . The rod- like joining element, which is tightly connected to the pillar via the joining element and mainly acts on axial force, absorbs the energy input to the building during earthquakes and strong winds and improves the earthquake and wind resistance performance of the building A steel column and steel beam joint structure for steel structures with high rigidity, light weight and excellent damage control, characterized by having a vibration control mechanism. 鋼製柱と鋼製梁との接合構造において、鋼製梁の先端部が、鋼製梁に作用する軸力+剪断力に対して主に抵抗する接合要素を介して柱に緊結されており、なおかつ、梁の両フランジが、鋼製梁に作用する軸力+剪断力に対して主に抵抗する前記接合要素の取付部より後端側で主に軸力が作用する方づえ状の接合要素を介して柱に緊結されており、主に軸力が作用する該方づえ状の接合要素が、地震や強風時に建物に入力されるエネルギーを吸収し建物の耐震・耐風性能を向上させる制振機構を有するものであることを特徴とする、高剛性かつ軽量で損傷制御性に優れた鉄骨構造用の鋼製柱と鋼製梁の接合構造。In the joining structure of steel columns and steel beams, the tip of the steel beam is tightly connected to the column via a joining element that mainly resists axial force + shearing force acting on the steel beam. , yet, both flanges of the beam is mainly Dzue like joining direction which axial force is applied at the rear end side of the mounting portion of the joining element which mainly resistance to axial forces + shearing force acting on the steel beam The rod- shaped joint element, which is tightly connected to the pillar via an element and mainly acts on axial force, absorbs the energy input to the building during earthquakes and strong winds and improves the earthquake and wind resistance performance of the building. A steel column and steel beam joint structure for steel structures with high rigidity, light weight and excellent damage control, characterized by having a vibration mechanism. 鋼製柱と鋼製梁との接合構造において、鋼製梁の一方のフランジが、主に軸力が作用する方づえ状の接合要素を介して柱に緊結されており、他方のフランジが、水平板、鉛直板、つなぎ材により構成されかつ水平板と鉛直板を一体化してなる軸力+剪断力+曲げ力が作用する接合要素を介して柱に緊結されており、主に軸力が作用する前記方づえ状の接合要素および軸力+剪断力+曲げ力が作用する前記接合要素が、地震や強風時に建物に入力されるエネルギーを吸収し建物の耐震・耐風性能を向上させる制振機構を有するものであることを特徴とする、高剛性かつ軽量で損傷制御性に優れた鉄骨構造用の鋼製柱と鋼製梁の接合構造。In the joining structure of a steel column and a steel beam, one flange of the steel beam is fastened to the column via a joint- like joining element in which axial force mainly acts, and the other flange is It is composed of a horizontal plate, a vertical plate, and a connecting material, and is connected to the column via a joining element in which an axial force + shearing force + bending force is formed by integrating the horizontal plate and the vertical plate. said joining element the side Dzue like joining element and the axial force + shear + bending forces acting to effect, improve the earthquake-wind performance of the building to absorb energy input into the building during an earthquake or strong wind damping A steel column and steel beam joint structure for steel structures with high rigidity, light weight, and excellent damage controllability, characterized by having a mechanism. 前記各接合要素と鋼製梁、および前記各接合要素と鋼製柱とが、ボルトにより緊結されていることを特徴とする、請求項1〜請求項3のいずれかに記載の高剛性かつ軽量で損傷制御性に優れた鉄骨構造用の鋼製柱と鋼製梁の接合構造。The high rigidity and light weight according to any one of claims 1 to 3, wherein each joining element and steel beam, and each joining element and steel pillar are fastened with a bolt. Steel column and steel beam joint structure for steel structure with excellent damage controllability. 主に軸力が作用する前記方づえ状の接合要素および/または軸力+剪断力+曲げ力に抵抗する前記接合要素が、水平板、鉛直板、つなぎ材により構成されていることを特徴とする、請求項1〜請求項4のいずれかに記載の高剛性かつ軽量で損傷制御性に優れた鉄骨構造用の鋼製柱と鋼製梁の接合構造。The square-shaped joining element on which axial force mainly acts and / or the joining element that resists axial force + shearing force + bending force is composed of a horizontal plate, a vertical plate, and a connecting material. The steel pillar and steel beam joint structure for steel structures excellent in damage controllability with high rigidity and light weight according to any one of claims 1 to 4. 前記制振機構が、接合要素の前記つなぎ材に組み込まれた履歴型ダンパーによって形成されていることを特徴とする、請求項5に記載の高剛性かつ軽量で損傷制御性に優れた鉄骨構造用の鋼製柱と鋼製梁の接合構造。6. The steel structure for steel structure having high rigidity, light weight and excellent damage controllability according to claim 5, wherein the vibration damping mechanism is formed by a hysteretic damper incorporated in the connecting member of the joining element. Of steel columns and steel beams. 前記接合要素のつなぎ材が、柱・梁部材より降伏点の低い鋼材であることを特徴とする、請求項6に記載の高剛性かつ軽量で損傷制御性に優れた鉄骨構造用の鋼製柱と鋼製梁の接合構造。The steel column for a steel structure having high rigidity, light weight and excellent damage controllability according to claim 6, wherein the connecting material of the joining element is a steel material having a yield point lower than that of the column / beam member. And steel beam joint structure. 前記制振機構が、接合要素の前記つなぎ材に組み込まれた粘性型ダンパーによって形成されていることを特徴とする、請求項5に記載の高剛性かつ軽量で損傷制御性に優れた鉄骨構造用の鋼製柱と鋼製梁の接合構造。The steel structure for a steel structure having high rigidity, light weight and excellent damage controllability according to claim 5, wherein the vibration damping mechanism is formed by a viscous damper incorporated in the connecting member of the joining element. Of steel columns and steel beams. 前記接合要素の水平板、鉛直板が柱・梁部材よりも降伏点の高い鋼材で形成されていることを特徴とする、請求項5〜請求項8のいずれかに記載の高剛性かつ軽量で損傷制御性に優れた鉄骨構造用の鋼製柱と鋼製梁の接合構造。The high rigidity and light weight according to any one of claims 5 to 8, wherein the horizontal plate and the vertical plate of the joining element are formed of a steel material having a yield point higher than that of the column / beam member. Steel column and steel beam joint structure for steel structures with excellent damage controllability. 前記接合要素のつなぎ材が、つなぎ材本体との間に潤滑層を介在させて座屈拘束用治具を配したものであることを特徴とする、請求項6または請求項7に記載の高剛性かつ軽量で損傷制御性に優れた鉄骨構造用の鋼製柱と鋼製梁の接合構造。8. The high binding material according to claim 6, wherein the joining material of the joining element is a member in which a buckling restraining jig is disposed with a lubricating layer interposed between the joining material body and the joining material body. Steel column and steel beam joint structure for steel structure with rigidity, light weight and excellent damage controllability. 前記接合要素のつなぎ材が、座屈補剛構造を有するものであることを特徴とする、請求項5〜請求項10のいずれかに記載の高剛性かつ軽量で損傷制御性に優れた鉄骨構造用の鋼製柱と鋼製梁の接合構造。The steel structure having high rigidity, light weight, and excellent damage controllability according to any one of claims 5 to 10, wherein the connecting member of the joining element has a buckling stiffening structure. Steel column and steel beam joint structure. 前記鋼製柱と鋼製梁の接合構造が、鋼製柱の1以上の側部において、少なくとも1箇所以上の箇所で適用されていることを特徴とする、請求項1〜請求項11のいずれかに記載の高剛性かつ軽量で損傷制御性に優れた鉄骨構造用の鋼製柱と鋼製梁の接合構造。The joining structure of the steel column and the steel beam is applied at least at one or more locations on one or more sides of the steel column. Steel column and steel beam joint structure for steel structure with high rigidity, light weight and excellent damage controllability. 鋼製柱の両側部に接合する、主に軸力が作用する方づえ状の接合要素、鋼製梁に作用する軸力+剪断力に対して主に抵抗する接合要素、軸力+剪断力+曲げ力が作用する接合要素の鉛直板どうしを、該鉛直板と鋼製柱に貫通させて挿通した共通の長締めボルトで緊結したことを特徴とする、請求項12に記載の高剛性かつ軽量で損傷制御性に優れた鉄骨構造用の鋼製柱と鋼製梁の接合構造。 Jointed joint elements that are joined to both sides of a steel column, mainly acting on axial force , joint elements that are mainly resistant to axial force + shearing force acting on steel beams, axial force + shearing force The high rigidity and high rigidity according to claim 12, wherein the vertical plates of the joining elements on which the + bending force acts are fastened by a common long tightening bolt that is inserted through the vertical plate and the steel column. A steel column-steel beam joint structure for steel structures that is lightweight and has excellent damage controllability.
JP2000064591A 2000-03-09 2000-03-09 Steel column and steel beam joint structure for steel structure with high rigidity and excellent damage controllability Expired - Fee Related JP3629638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000064591A JP3629638B2 (en) 2000-03-09 2000-03-09 Steel column and steel beam joint structure for steel structure with high rigidity and excellent damage controllability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000064591A JP3629638B2 (en) 2000-03-09 2000-03-09 Steel column and steel beam joint structure for steel structure with high rigidity and excellent damage controllability

Publications (2)

Publication Number Publication Date
JP2001254436A JP2001254436A (en) 2001-09-21
JP3629638B2 true JP3629638B2 (en) 2005-03-16

Family

ID=18584269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000064591A Expired - Fee Related JP3629638B2 (en) 2000-03-09 2000-03-09 Steel column and steel beam joint structure for steel structure with high rigidity and excellent damage controllability

Country Status (1)

Country Link
JP (1) JP3629638B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102691351A (en) * 2012-06-02 2012-09-26 上海大学 Supporting device for arched steel among beam columns
CN105297895A (en) * 2015-11-30 2016-02-03 北方工业大学 Compound steel pipe concrete column-steel beam semi-through haunch type node
CN111255067A (en) * 2018-11-30 2020-06-09 上海宝冶集团有限公司 Vertical connecting node for assembly type building edge module and using method thereof

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3951785B2 (en) * 2002-04-23 2007-08-01 鹿島建設株式会社 Damper for beam support in concrete frame
JP5558071B2 (en) * 2009-10-02 2014-07-23 旭化成ホームズ株式会社 Reinforcement structure of frame
KR101676706B1 (en) * 2015-06-09 2016-11-16 씨엔에스이엔지주식회사 Hybrid steel frame
ITUA20163143A1 (en) * 2016-05-04 2017-11-04 Alefer S R L BUILDING STRUCTURE AND METHOD FOR ITS REALIZATION
CN106703184A (en) * 2016-12-30 2017-05-24 北京工业大学 Connection node construction of concrete-filled square steel tube column and rectangular section steel beam
CN106677336A (en) * 2016-12-30 2017-05-17 北京工业大学 Connecting joint structure of square concrete filled steel tubular column and I-shaped section steel beam
CN106869314A (en) * 2016-12-30 2017-06-20 北方工业大学 Compound steel pipe concrete column-steel beam assembled frame joint
JP6891053B2 (en) * 2017-06-21 2021-06-18 大和ハウス工業株式会社 Beam-column joint structure
CN107489197A (en) * 2017-09-09 2017-12-19 北京工业大学 A kind of assembling type steel structure H profile steel post beam column node connection device with diagonal brace
CN107366362A (en) * 2017-09-09 2017-11-21 北京工业大学 A kind of assembling type steel structure Special-Shaped Column beam column node connection device with diagonal brace
CN109024919A (en) * 2018-10-10 2018-12-18 安徽建筑大学 Combine prefabrication and assembly construction steel structure earthquake-resistant connecting node
JP2020100938A (en) * 2018-12-19 2020-07-02 丸紅建材リース株式会社 Frame structure of earth retaining wall
CN109838132B (en) * 2019-03-06 2020-09-11 东南大学 Self-positioning installation steel-wood energy dissipation combined node
CN109914594B (en) * 2019-03-28 2020-07-28 重庆工程职业技术学院 Shock attenuation formula steel construction node component
CN109898910B (en) * 2019-04-13 2024-02-02 福州大学 Assembled mild steel friction composite damper and assembling method thereof
CN110219369B (en) * 2019-07-10 2024-04-26 重庆大学 Buckling restrained beam column self-resetting node based on steel-SMA plate group element and assembling method
CN111021539B (en) * 2019-12-30 2021-02-19 北京京盛泰华金属结构有限公司 Assembling method for beam-column connecting joint of steel-structure cantilever beam
CN112942782A (en) * 2021-02-01 2021-06-11 浙江城建建设集团有限公司 Improved cantilever scaffold bearing member
CN112942800A (en) * 2021-02-02 2021-06-11 浙江城建建设集团有限公司 Bearing support at plane part of building and establishment method
KR102298130B1 (en) * 2021-03-26 2021-09-06 주식회사 천우에스엔씨 Steel beam end reinforcement system
CN114164944B (en) * 2021-12-14 2023-03-24 南京工业职业技术大学 Green building assembled steel structure frame
CN118048975B (en) * 2024-04-08 2024-07-05 中国铁路北京局集团有限公司天津房建公寓段 Upright post steel frame structure for house building
CN118407514A (en) * 2024-07-02 2024-07-30 中铁城建集团第一工程有限公司 Steel beam and installation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102691351A (en) * 2012-06-02 2012-09-26 上海大学 Supporting device for arched steel among beam columns
CN105297895A (en) * 2015-11-30 2016-02-03 北方工业大学 Compound steel pipe concrete column-steel beam semi-through haunch type node
CN111255067A (en) * 2018-11-30 2020-06-09 上海宝冶集团有限公司 Vertical connecting node for assembly type building edge module and using method thereof

Also Published As

Publication number Publication date
JP2001254436A (en) 2001-09-21

Similar Documents

Publication Publication Date Title
JP3629638B2 (en) Steel column and steel beam joint structure for steel structure with high rigidity and excellent damage controllability
JP4861067B2 (en) Steel frame
JP3858480B2 (en) Splice plate and beam joint structure
WO2009093712A1 (en) Connection metal fitting and building with the same
KR20100013104A (en) Steel plate structure and steel plate concrete wall
JP2001214541A (en) Buckling restraint brace
JP7228344B2 (en) Joint structure of reinforced concrete frame and brace and precast member
JP2875106B2 (en) Reinforcement structure and metal fittings for structural members
JP4414833B2 (en) Seismic walls using corrugated steel
JPH10140873A (en) Vibration damping structure of building
JP5132503B2 (en) Seismic structure and building
JP3684337B2 (en) Joint structure of steel column and steel beam
JP2010276080A (en) Energy absorbing member and structure in which the energy absorbing member is installed
JP4696843B2 (en) Composite beam structure
JP3772415B2 (en) Building vibration control structure
JPH0849349A (en) Structure for reinforcing steel structural member
JP2010216153A (en) Joint reinforcing structure
JP5654060B2 (en) Damper brace and damping structure
JP3941028B2 (en) Damping damper
JP4858836B2 (en) Vibration control pillar
JP7052953B2 (en) Damping structure
JP2007169899A (en) Wooden framework bearing wall
JP3671311B2 (en) Damping and reinforcing structure for existing buildings
JP3826355B2 (en) Seismic control structure of structure
JPH1171934A (en) Vibration control structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041201

R151 Written notification of patent or utility model registration

Ref document number: 3629638

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees