JP2698011B2 - Manufacturing method of aluminum nitride sintered body - Google Patents

Manufacturing method of aluminum nitride sintered body

Info

Publication number
JP2698011B2
JP2698011B2 JP4342914A JP34291492A JP2698011B2 JP 2698011 B2 JP2698011 B2 JP 2698011B2 JP 4342914 A JP4342914 A JP 4342914A JP 34291492 A JP34291492 A JP 34291492A JP 2698011 B2 JP2698011 B2 JP 2698011B2
Authority
JP
Japan
Prior art keywords
aluminum nitride
sintered body
weight
sintering
sintering aid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4342914A
Other languages
Japanese (ja)
Other versions
JPH06191954A (en
Inventor
登 橋本
進 梶田
浩好 余田
恭史 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP4342914A priority Critical patent/JP2698011B2/en
Priority to US08/089,558 priority patent/US5330692A/en
Priority to DE4325345A priority patent/DE4325345C2/en
Priority to KR1019930014658A priority patent/KR960006249B1/en
Publication of JPH06191954A publication Critical patent/JPH06191954A/en
Application granted granted Critical
Publication of JP2698011B2 publication Critical patent/JP2698011B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、窒化アルミニウム焼
結体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an aluminum nitride sintered body.

【0002】[0002]

【従来の技術】IC等に代表されるような半導体素子の
高集積化や大電力化が進み、これに伴って、放熱性の良
い電気絶縁材料が要求されるようになった。その中で
も、特に、窒化アルミニウム焼結体からなる絶縁基板
が、熱伝導性、熱膨張性、電気絶縁性等の点で優れてい
るということから、実用化が進んでいる。
2. Description of the Related Art High integration and high power of semiconductor devices typified by ICs and the like have progressed, and accordingly, an electrical insulating material having good heat dissipation properties has been required. Among them, in particular, an insulating substrate made of an aluminum nitride sintered body has been put to practical use because it is excellent in thermal conductivity, thermal expansion, electrical insulation, and the like.

【0003】しかしながら、窒化アルミニウムは共有結
合性の化合物であり、難焼結性である。そのため、セラ
ミックスを得るために焼結助剤を用いたり、ホットプレ
スを利用したりして、緻密で高熱伝導度の窒化アルミニ
ウム焼結体を得る試みがなされている。窒化アルミニウ
ム焼結体を得るのに使われる焼結助剤としては、Y2
3 (特開昭49-111909 号) やCaO(特公昭58-49510
号) が挙げられるが、こさらを用いた場合、1800℃
以上の高い温度で焼成する必要がある。焼結助剤である
2 3 とCaOを併用使用し、1700℃程度の温度
で焼成することが提案されている(特開昭61-117160
号) が、熱伝導度が十分でない。
[0003] However, aluminum nitride has a covalent bond.
It is a compound having compatibility and is hardly sintered. Therefore, Sera
Use a sintering aid to obtain a mix,
Aluminum nitride of high density and high thermal conductivity
Attempts have been made to obtain sintered ceramics. Aluminum nitride
Sintering aids used to obtain sinteredTwoO
Three(JP-A-49-111909) and CaO (JP-B-58-49510)
No.), but when using Kosara, 1800 ° C.
It is necessary to fire at the above high temperature. Sintering aid
Y TwoOThreeAnd CaO in combination at a temperature of about 1700 ° C
It has been proposed to calcinate in JP-A-61-117160
No), but the thermal conductivity is not enough.

【0004】また、焼結助剤であるY2 3 とLaB6
を併用したり(特開平03-146471 号) 、焼結助剤である
CaOとLaB6 を併用する(特開平03-197366 号)こ
とが提案されている。この場合、熱伝導度は十分である
が、1900℃の高い焼成温度が必要となる。焼成温度
が高い場合、エネルギーコスト(ランニングコスト)が
高くなる等の問題が出てくる。
In addition, sintering additives Y 2 O 3 and LaB 6
It has been proposed to use a combination of CaO and LaB 6 as sintering aids (Japanese Patent Laid-Open No. 197366/1991). In this case, the thermal conductivity is sufficient, but a high firing temperature of 1900 ° C. is required. When the firing temperature is high, problems such as an increase in energy cost (running cost) arise.

【0005】加えて、焼成温度が高い場合、焼成工程で
必要となるセッター等の治具・備品が高価な材質のもの
に限られるという不都合もある。一方、得られる窒化ア
ルミニウム基板は、パワーモジュールの使用に最適な基
板なのであるが、このような用途においては、120W
/mK以上の熱伝導率のあることが好ましいため、これ
が可能であれば有用性は増すことになる。
[0005] In addition, when the firing temperature is high, there is a disadvantage that jigs and equipment such as setters required in the firing step are limited to expensive materials. On the other hand, the obtained aluminum nitride substrate is an optimal substrate for use in a power module.
Since it is preferable that the thermal conductivity is not less than / mK, the utility increases if this is possible.

【0006】[0006]

【発明が解決しようとする課題】この発明は、上記事情
に鑑み、熱伝導率の高い窒化アルミニウム焼結体を低い
焼成温度で得ることのできる方法を提供することを課題
とする。
SUMMARY OF THE INVENTION In view of the above circumstances, an object of the present invention is to provide a method capable of obtaining an aluminum nitride sintered body having a high thermal conductivity at a low firing temperature.

【0007】[0007]

【課題を解決するための手段】前記課題を解決するた
め、この発明にかかる窒化アルミニウム焼結体の製造方
法は、窒化アルミニウム粉末に焼結助剤を添加し成型し
てなる成形体を、非酸化性雰囲気で焼成することにより
焼結させる窒化アルミニウム焼結体の製造方法におい
て、前記窒化アルミニウム粉末の比表面積が4.0m2
/g以上で8.0m 2 /g以下(比表面積より求めた平
均粒径が0.23μm以上で0.46μm以下)の範囲
にあり、前記焼結助剤として、下記の焼結剤a,bを下
記の範囲の添加量で併用のかたちで用いるとともに、前
記非酸化性雰囲気での焼成を1640℃以下の温度で行
うようにしている。
Means for Solving the Problems To solve the above problems,
The method for producing the aluminum nitride sintered body according to the present invention
The method is to add a sintering aid to aluminum nitride powder and mold it.
By firing in a non-oxidizing atmosphere
In manufacturing method of aluminum nitride sintered body to be sintered
The specific surface area of the aluminum nitride powder is 4.0 mTwo
/ M over 8.0m Two/ G or less (flat surface determined from specific surface area)
(Equivalent particle size is 0.23 μm or more and 0.46 μm or less)
And the following sintering agents a and b are
Use in the form of a combination with
The firing in a non-oxidizing atmosphere is performed at a temperature of 1640 ° C. or less.
I am trying to do it.

【0008】「焼結助剤a」:稀土類酸化物、および、
前記焼成で稀土類酸化物となる化合物からなる稀土類化
合物群のうちの少なくとも一種を、焼結体全体100重
量%のうち0.5〜10重量%の範囲で添加(焼成で稀
土類酸化物となる化合物は酸化物に換算) 「焼結助剤b」:アルカリ土類酸化物、および、前記焼
成でアルカリ土類酸化物となる化合物からなるアルカリ
土類化合物群のうちの少なくとも一種を、焼結体全体1
00重量%のうち0.1〜10重量%の範囲で添加(焼
成でアルカリ土類酸化物となる化合物は酸化物に換算) この発明において、焼結助剤として、下記の焼結剤cを
下記の範囲の添加量で上記の焼結剤a,bと併用のかた
ちで用いる形態は有用性が高い。
"Sintering aid a": rare earth oxide, and
At least one member of the rare earth compound group consisting of compounds that become rare earth oxides by firing is added in a range of 0.5 to 10% by weight based on 100% by weight of the entire sintered body (rare earth oxides by firing) "Sintering aid b": at least one member of the group consisting of alkaline earth oxides and alkaline earth compounds consisting of compounds that become alkaline earth oxides upon firing. The whole sintered body 1
In the present invention, the following sintering agent c is added as a sintering aid in the range of 0.1 to 10% by weight in the range of 0.1 to 10% by weight. The form used in combination with the above sintering agents a and b in the following range of the addition amount is highly useful.

【0009】「焼結助剤c」:LaB6 を、焼結体全体
100重量%のうち0.05〜3重量%の範囲で添加
(焼成で稀土類酸化物となる化合物は酸化物に換算) さらに、この発明において、非酸化性雰囲気での焼成を
1625℃以下の温度で行ったり、あるいは、含有酸素
量が1.8重量%以下の窒化アルミニウム粉末(以下、
「AlN粉末」と言う)を用いたりする形態も有用性が
高い。
"Sintering aid c": LaB 6 is added in the range of 0.05 to 3% by weight based on 100% by weight of the whole sintered body (a compound which becomes a rare earth oxide upon firing is converted to an oxide. Further, in the present invention, firing in a non-oxidizing atmosphere is performed at a temperature of 1625 ° C. or lower, or an aluminum nitride powder having an oxygen content of 1.8% by weight or less (hereinafter, referred to as
Use of “AlN powder”) is also highly useful.

【0010】以下、この発明を、より具体的に説明す
る。窒化アルミニウム焼結体の製造方法において、低温
焼成で緻密な焼結体を得るという点では、AlN粉末の
粒径を細かくすることが非常に有用なのであるが、比表
面積が10.0〜14.0m2 /g以上のAlN粉末は
1600℃以下の温度での緻密化を可能とさせる。しか
し、AlN粉末は粒径が細かくなると含有酸素量が増
え、通常の還元窒化法で得た比表面積が10.0m2
g以上のAlN粉末では、含有酸素量が1.8重量%を
超えるようになる。他の方法で得た比表面積が10.0
2 /g以上のAlN粉末では含有酸素量が1.5重量
%程度のものもないことはないが、このようなAlN粉
末は表面に安定な酸化物層を有していないため、製造過
程なしい貯蔵の段階に劣化し易く実際の焼成段階まで初
期の低含有酸素量を維持することは困難であり、有効な
酸化抑制をとるとコスト面で引き合わなくなる。
Hereinafter, the present invention will be described more specifically. In the method for manufacturing an aluminum nitride sintered body, it is very useful to reduce the particle size of the AlN powder in terms of obtaining a dense sintered body by firing at a low temperature, but the specific surface area is 10.0 to 14. An AlN powder of 0 m 2 / g or more enables densification at a temperature of 1600 ° C. or less. However, as the particle size of the AlN powder becomes smaller, the oxygen content increases, and the specific surface area obtained by the ordinary reduction nitriding method is 10.0 m 2 /
With AlN powder of g or more, the oxygen content exceeds 1.8% by weight. The specific surface area obtained by another method is 10.0
AlN powder of m 2 / g or more does not have an oxygen content of about 1.5% by weight, but such an AlN powder does not have a stable oxide layer on the surface. It is easy to deteriorate to a poor storage stage, and it is difficult to maintain the initial low oxygen content until the actual sintering stage.

【0011】この発明では、上記の不純物酸素の含有量
をうまく抑えるために、AlN粉末に対し一定程度の粒
径を確保するようにする一方、粒径確保に伴う焼結性低
下を焼結助剤でうまく補うようにしているのである。つ
まり、発明者らは、鋭意検討の結果、比表面積が4.0
2 /g以上で8.0m2 /g以下のAlN粉末に対し
焼結剤aを0.5〜10重量%、焼結助剤bを0.1〜
10重量%の範囲で併用することにより、1640℃以
下あるいは1625℃以下の低温の焼成で緻密で120
W/mK以上さらには130W/mKの高熱伝導率の窒
化アルミニウム焼結体が得られるということを見い出
し、これにより、上記の発明を完成させることが出来た
のである。
According to the present invention, in order to properly suppress the content of the above-described impurity oxygen, a certain degree of particle size is ensured with respect to the AlN powder. They are trying to make up for it. That is, as a result of intensive studies, the inventors found that the specific surface area was 4.0.
0.5 to 10% by weight of sintering agent a and 0.1 to 10% by weight of sintering agent b based on AlN powder of m 2 / g or more and 8.0 m 2 / g or less.
When used together in the range of 10% by weight, it can be densely fired at a low temperature of 1640 ° C. or
The inventors have found that an aluminum nitride sintered body having a high thermal conductivity of not less than W / mK and further 130 W / mK can be obtained, thereby completing the above invention.

【0012】AlN粉末の比表面積が8.0m2 /gを
越すと含有酸素量が2.0重量%以上となり、低温焼成
で高熱伝導率化を図ることが難しくなるため、AlN粉
末には比表面積が8.0m2 /g未満で含有酸素量が
1.8重量%以下のものが好ましい。AlN粉末は、普
通、還元窒化反応法で作製されたものが使われる。還元
窒化反応法以外の方法で作製されたもので比表面積が
4.0m2 /g以上で含有酸素量の非常に少ないものも
あるが安定性に欠け製造過程での劣化で焼成時には還元
窒化反応法で作製されたAlN粉末と同程度の酸素含有
量となる。製造過程での劣化を防ぐため不活性ガスでの
取扱も考えられるが実用的ではない。
If the specific surface area of the AlN powder exceeds 8.0 m 2 / g, the oxygen content becomes 2.0% by weight or more, and it becomes difficult to increase the thermal conductivity by firing at a low temperature. Those having a surface area of less than 8.0 m 2 / g and an oxygen content of 1.8% by weight or less are preferred. As the AlN powder, one produced by a reductive nitridation reaction method is usually used. Some are produced by a method other than the reductive nitridation reaction method and have a specific surface area of 4.0 m 2 / g or more and a very small amount of oxygen content. However, they lack stability and are deteriorated during the production process. The oxygen content is about the same as the AlN powder produced by the method. In order to prevent deterioration during the manufacturing process, handling with an inert gas can be considered, but this is not practical.

【0013】また、発明者らは、焼結剤a,bに焼結助
剤(ホウ化ランタン=LaB6 )cを併用すれば、より
高熱伝導率が図れることも見いだしている。LaB6
添加量を増すほど熱伝導率は増加するのであるが、3重
量%を越すと焼結性を低下させる傾向がある。このため
LaB6 の添加量は使用するAlN粉末の比表面積つま
り酸素含有量と密接に関係する。比表面積が小さくて焼
結性は比較的低いが酸素含有量は少なく熱伝導率の点で
は比較的良好なAlN粉末の場合はLaB6 の添加量を
少なくする。逆に、比表面積が大きくて焼結性は比較的
よいが酸素含有量が多くて熱伝導率の点では余りよくな
いAlN粉末の場合は、熱伝導率を確保するためにLa
6 の添加量を多くする。
The inventors have also found that a higher thermal conductivity can be achieved by using a sintering agent (lanthanum boride = LaB 6 ) c in combination with the sintering agents a and b. The thermal conductivity increases as the amount of LaB 6 increases, but if it exceeds 3% by weight, the sinterability tends to decrease. Therefore, the amount of LaB 6 added is closely related to the specific surface area of the AlN powder used, that is, the oxygen content. In the case of AlN powder having a small specific surface area and relatively low sinterability but a low oxygen content and relatively good thermal conductivity, the amount of LaB 6 added is reduced. Conversely, in the case of AlN powder having a large specific surface area and relatively good sinterability, but having a high oxygen content and not so good in terms of thermal conductivity, La is used to secure thermal conductivity.
Increasing the addition amount of B 6.

【0014】焼結助剤aの稀土類化合物における稀土類
元素としては、Y,La,Dy,Er,Ce,Sm,N
d,Gd,Pr,Ho,Ybなどが挙げられるが、特
に、Y,Laが好適である。焼結助剤aの使用にあたっ
ては、稀土類酸化物を複数種併用したり、焼成で稀土類
酸化物となる化合物を複数種併用したり、稀土類酸化物
と焼成で稀土類酸化物となる化合物とを併用したりする
ようにしてもよい。焼成で稀土類酸化物となる化合物と
しては、炭酸化物、硝酸化物、水酸化物、しゅう酸化物
などの形態のものが挙げられる。
The rare earth elements in the rare earth compound of the sintering aid a include Y, La, Dy, Er, Ce, Sm, N
Examples thereof include d, Gd, Pr, Ho, and Yb, and Y and La are particularly preferable. When using the sintering aid a, a plurality of rare earth oxides are used in combination, or a plurality of compounds that become a rare earth oxide when fired are used in combination, or a rare earth oxide and a rare earth oxide become fired. You may make it use together with a compound. Compounds that become rare earth oxides upon firing include those in the form of carbonates, nitrates, hydroxides, oxalates, and the like.

【0015】焼結助剤bのアルカリ土類化合物における
アルカリ土類元素としては、Mg,Ca,Sr,Baな
どが挙げられるが、特に、Caが好適である。焼結助剤
bの使用にあたっては、アルカリ土類酸化物も複数種併
用したり、焼成でアルカリ土類酸化物となる化合物を複
数種併用したり、アルカリ土類酸化物と焼成でアルカリ
土類酸化物となる化合物とを併用したりするようにして
もよい。焼成でアルカリ土類酸化物となる化合物として
は、炭酸化物、硝酸化物、水酸化物、しゅう酸化物など
の形態のものが挙げられる。
Examples of the alkaline earth element in the alkaline earth compound of the sintering aid b include Mg, Ca, Sr, and Ba, with Ca being particularly preferred. When using the sintering aid b, a plurality of alkaline earth oxides may be used in combination, a plurality of compounds which become alkaline earth oxides by firing may be used in combination, or an alkaline earth oxide may be used by firing together with the alkaline earth oxides. A compound that becomes an oxide may be used in combination. Examples of the compound which becomes an alkaline earth oxide upon firing include those in the form of a carbonate, a nitrate, a hydroxide, and an oxalate.

【0016】焼結助剤cであるLaB6 は、純度が9
9.9%以上で、その粒径は窒化アルミニウム粉末と均
一に分散させるために10μm未満が好ましい。焼成
は、1500〜1640℃(好ましくは1625℃以
下)の温度範囲で3〜6時間程度の時間行う。焼成雰囲
気は非酸化性雰囲気である。N2 やArなどの不活性ガ
ス雰囲気やH2 等の還元性ガス雰囲気、不活性ガスと還
元性ガスとの混合ガス雰囲気などが挙げられる。
LaB 6 which is a sintering aid c has a purity of 9%.
It is preferably 9.9% or more, and the particle size is preferably less than 10 μm in order to uniformly disperse with the aluminum nitride powder. The calcination is performed in a temperature range of 1500 to 1640 ° C. (preferably 1625 ° C. or less) for about 3 to 6 hours. The firing atmosphere is a non-oxidizing atmosphere. Examples of the atmosphere include an inert gas atmosphere such as N 2 and Ar, a reducing gas atmosphere such as H 2 , and a mixed gas atmosphere of an inert gas and a reducing gas.

【0017】[0017]

【作用】この発明の場合、比表面積が4.0m2 /g以
上で8.0m2 /g以下の酸素含有量の少ないAlN粉
末の焼結性を焼結剤a,bを適切な量で併用することで
補い、1640℃以下さらには1625℃以下の低温の
焼成で緻密で120W/mK以上の高熱伝導率の窒化ア
ルミニウム焼結体が得られるようになった。
According to the present invention, the sinterability of AlN powder having a specific surface area of not less than 4.0 m 2 / g and not more than 8.0 m 2 / g and having a low oxygen content can be adjusted by sintering agents a and b in appropriate amounts. By supplementing them together, it becomes possible to obtain a dense aluminum nitride sintered body having a high thermal conductivity of 120 W / mK or more by firing at a low temperature of 1640 ° C. or less and further at a temperature of 1625 ° C. or less.

【0018】LaB6 を添加した場合、AlN粉末の表
層に存在する或る種のアルミニウム酸化物と焼結助剤の
稀土類酸化物およびアルカリ土類酸化物、LaB6 との
間に反応生成した複合酸化物のうち(液相を生成する化
合物の詳細は不明であるが)或る種の低融点物質が焼結
の促進効果をもつとともに系内の熱伝導度に悪影響を及
ぼす不純物酸素をトラップし熱伝導度の障壁となる粒界
相から取り除く効果をもつものと考えられる。
When LaB 6 was added, a reaction product was formed between certain aluminum oxides present on the surface layer of the AlN powder and rare earth oxides and alkaline earth oxides of the sintering aid, LaB 6 . Certain low-melting substances among composite oxides (although the details of the compound that forms the liquid phase are unknown) have the effect of promoting sintering and trap impurity oxygen that has a negative effect on the thermal conductivity of the system. It is considered that this has the effect of removing from the grain boundary phase that acts as a barrier for thermal conductivity.

【0019】このような焼結助剤の働きに加え、AlN
粉末の比表面積が4.0m2 /g以上とすることでAl
N粉末の表面エネルギーの増加による活性化が相乗的に
作用することによって従来の焼結温度よりも低温域で緻
密化が促進、同時に高熱伝導化が図られる。焼結助剤に
LaB6 を併用した場合、高熱伝導率の窒化アルミニウ
ム焼結体を得やすくなる。
In addition to the sintering aid, AlN
By setting the specific surface area of the powder to 4.0 m 2 / g or more, Al
The activation due to the increase in the surface energy of the N powder acts synergistically to promote densification at a temperature lower than the conventional sintering temperature, and at the same time, to achieve high thermal conductivity. When LaB 6 is used in combination with the sintering aid, it becomes easier to obtain an aluminum nitride sintered body having high thermal conductivity.

【0020】また、1640℃以下の低温焼成は、エネ
ルギーコストを低減させるだけでなく、焼成工程で必要
となる高価なh−BNセッターの長寿命化を可能とした
り、h−BNに代えて安価な酸化物(例えば、アルミ
ナ)系の材質の使用を可能とする上、焼成用の炉の構造
(断熱材の材質等)も安価なものに変更が可能となるた
め、結果的な焼成コストの大きな低減が出来るようにな
る。これらの低減効果は、焼成温度が1625℃以下の
場合に顕著である。
The low-temperature firing at 1640 ° C. or lower not only reduces the energy cost, but also enables a longer life of the expensive h-BN setter required in the firing step, and a low cost alternative to h-BN. Oxide (eg, alumina) -based materials can be used, and the structure of the firing furnace (such as the material of the heat insulating material) can be changed to inexpensive materials. A large reduction can be achieved. These reduction effects are remarkable when the firing temperature is 1625 ° C. or lower.

【0021】窒化アルミニウム粉末の含有酸素量が1.
8重量%以下であれば、高熱伝導率の窒化アルミニウム
焼結体を得やすくなる。
The oxygen content of the aluminum nitride powder is 1.
When the content is 8% by weight or less, it becomes easy to obtain an aluminum nitride sintered body having a high thermal conductivity.

【0022】[0022]

【実施例】以下、この発明の実施例を説明する。この発
明は下記の実施例に限らない。 −実施例1− 比表面積が5.0m2 /g、含有酸素量が1.25重量
%のAlN粉末に、下記の焼結助剤を添加し、イソプロ
ピルアルコールを溶媒にしてボールミルで混合した。
Embodiments of the present invention will be described below. The present invention is not limited to the following embodiments. Example 1 The following sintering aid was added to AlN powder having a specific surface area of 5.0 m 2 / g and an oxygen content of 1.25% by weight, and mixed with a ball mill using isopropyl alcohol as a solvent.

【0023】 「焼結助剤a」:Y2 3 ,2.0重量%の添加量 「焼結助剤b」:CaCO3 ,(CaO換算で)0.5
重量%の添加量 「焼結助剤c」:LaB6 ,0.1重量%の添加量 得られた混合粉末を、直径20mm,高さ10mmの円
板状に成型したのち、1.5ton/cm2 の圧力でラ
バープレスし、BN容器に収納し、窒素を含む非酸化性
雰囲気で、1600℃の温度で4時間常圧焼成を行い、
窒化アルミニウム焼結体を得た。
“Sintering aid a”: Y 2 O 3 , addition amount of 2.0% by weight “Sintering aid b”: CaCO 3 , (in terms of CaO) 0.5
Wt% of the added amount "sintering aid c": LaB 6, after the mixed powder obtained amount of 0.1 wt%, was molded to a diameter 20 mm, disc-shaped height 10 mm, 1.5 ton / The rubber was pressed at a pressure of 2 cm 2 , stored in a BN container, and fired under normal pressure at a temperature of 1600 ° C. for 4 hours in a non-oxidizing atmosphere containing nitrogen.
An aluminum nitride sintered body was obtained.

【0024】−実施例2− 焼結助剤cのLaB6 の添加量が、0.20重量%であ
る他は、実施例1と同様にして、窒化アルミニウム焼結
体を得た。 −実施例3− 焼結助剤cのLaB6 の添加量が、0.30重量%であ
る他は、実施例1と同様にして、窒化アルミニウム焼結
体を得た。
Example 2 An aluminum nitride sintered body was obtained in the same manner as in Example 1, except that the addition amount of LaB 6 as the sintering aid c was 0.20% by weight. Example 3 An aluminum nitride sintered body was obtained in the same manner as in Example 1, except that the amount of LaB 6 added to the sintering aid c was 0.30% by weight.

【0025】−実施例4− 焼結助剤cのLaB6 の添加量が、0.40重量%であ
る他は、実施例1と同様にして、窒化アルミニウム焼結
体を得た。 −実施例5− 焼結助剤cのLaB6 の添加量が、0.50重量%であ
り、焼成温度が1620℃の温度である他は、実施例1
と同様にして、窒化アルミニウム焼結体を得た。
Example 4 An aluminum nitride sintered body was obtained in the same manner as in Example 1 except that the amount of LaB 6 added to the sintering aid c was 0.40% by weight. Example 5 Example 1 was repeated except that the amount of LaB 6 added to the sintering aid c was 0.50% by weight and the firing temperature was 1620 ° C.
In the same manner as in the above, an aluminum nitride sintered body was obtained.

【0026】−実施例6− AlN粉末の比表面積が4.5m2 /gであって、含有
酸素量が1.10重量%であって、焼結助剤cのLaB
6 を添加しなかった他は、実施例1と同様にして、窒化
アルミニウム焼結体を得た。 −実施例7− AlN粉末の比表面積が6.5m2 /gであって、含有
酸素量が1.40重量%であって、下記の焼結助剤a〜
cを添加するとともに1580℃の温度で4時間常圧焼
成を行った他は、実施例1と同様にして、窒化アルミニ
ウム焼結体を得た。
Example 6 The specific surface area of the AlN powder was 4.5 m 2 / g, the oxygen content was 1.10% by weight, and LaB of the sintering aid c was used.
An aluminum nitride sintered body was obtained in the same manner as in Example 1 except that 6 was not added. -Example 7- The specific surface area of the AlN powder is 6.5 m 2 / g, the oxygen content is 1.40% by weight, and the following sintering aids a to
An aluminum nitride sintered body was obtained in the same manner as in Example 1, except that c was added and normal pressure firing was performed at a temperature of 1580 ° C. for 4 hours.

【0027】 「焼結助剤a」:Y2 3 ,2.0重量%の添加量 「焼結助剤b」:CaCO3 ,(CaO換算で)0.4
重量%の添加量 「焼結助剤c」:LaB6 ,0.6重量%の添加量 −実施例8− AlN粉末の比表面積が8.0m2 /gであって、含有
酸素量が1.75重量%であって、下記の焼結助剤a〜
cを添加するとともに1570℃の温度で4時間常圧焼
成を行った他は、実施例1と同様にして、窒化アルミニ
ウム焼結体を得た。
“Sintering aid a”: Y 2 O 3 , addition amount of 2.0% by weight “Sintering aid b”: CaCO 3 , (in terms of CaO) 0.4
Wt% of the added amount "sintering aid c": LaB 6, 0.6 wt% of the added amount - a specific surface area of 8.0 m 2 / g of Example 8- AlN powder, oxygen content 1 .75% by weight and the following sintering aids a to
An aluminum nitride sintered body was obtained in the same manner as in Example 1 except that c was added and baking was carried out at 1570 ° C. under normal pressure for 4 hours.

【0028】 「焼結助剤a」:Y2 3 ,3.0重量%の添加量 「焼結助剤b」:CaCO3 ,(CaO換算で)0.5
重量%の添加量 「焼結助剤c」:LaB6 ,0.5重量%の添加量 −実施例9− AlN粉末の比表面積が4.0m2 /gであって、含有
酸素量が1.0重量%であって、下記の焼結助剤a〜c
を添加した他は、実施例1と同様にして、窒化アルミニ
ウム焼結体を得た。
“Sintering aid a”: Y 2 O 3 , 3.0 wt% added amount “Sintering aid b”: CaCO 3 , (in terms of CaO) 0.5
Wt% of the added amount "sintering aid c": LaB 6, the addition amount of 0.5 wt% - a specific surface area in Example 9-AlN powder 4.0 m 2 / g, oxygen content 1 0.0% by weight, and the following sintering aids ac:
An aluminum nitride sintered body was obtained in the same manner as in Example 1 except that was added.

【0029】 「焼結助剤a」:Y2 3 ,3.0重量%の添加量 「焼結助剤b」:CaCO3 ,(CaO換算で)2.0
重量%の添加量 「焼結助剤c」:LaB6 ,0.1重量%の添加量 −実施例10− AlN粉末の比表面積が5.5m2 /gであって、含有
酸素量が1.32重量%であって、下記の焼結助剤a〜
cを添加した他は、実施例1と同様にして、窒化アルミ
ニウム焼結体を得た。
“Sintering aid a”: Y 2 O 3 , 3.0 wt% added amount “Sintering aid b”: CaCO 3 , (in terms of CaO) 2.0
Wt% of the added amount "sintering aid c": LaB 6, 0.1 wt% of the added amount - a specific surface area of Example 10- AlN powder 5.5 m 2 / g, oxygen content 1 .32% by weight and the following sintering aids a to
An aluminum nitride sintered body was obtained in the same manner as in Example 1 except that c was added.

【0030】 「焼結助剤a」:Y2 3 ,5.0重量%の添加量 「焼結助剤b」:CaCO3 ,(CaO換算で)1.0
重量%の添加量 「焼結助剤c」:LaB6 ,0.8重量%の添加量 −実施例11− AlN粉末の比表面積が7.5m2 /gであって、含有
酸素量が1.60重量%であり、下記の焼結助剤a〜c
を添加した他は、実施例1と同様にして、窒化アルミニ
ウム焼結体を得た。
“Sintering aid a”: Y 2 O 3 , addition amount of 5.0% by weight “Sintering aid b”: CaCO 3 , (in terms of CaO) 1.0
Wt% of the added amount "sintering aid c": LaB 6, 0.8 wt% of the added amount - a specific surface area of Example 11- AlN powder 7.5 m 2 / g, oxygen content 1 60% by weight, and the following sintering aids a to c
An aluminum nitride sintered body was obtained in the same manner as in Example 1 except that was added.

【0031】 「焼結助剤a」:Y2 3 ,7.0重量%の添加量 「焼結助剤b」:CaCO3 ,(CaO換算で)1.0
重量%の添加量 「焼結助剤c」:LaB6 ,1.0重量%の添加量 −実施例12− AlN粉末の比表面積が4.8m2 /gであって、含有
酸素量が1.21重量%であり、下記の焼結助剤a,b
を添加した他は、実施例1と同様にして、窒化アルミニ
ウム焼結体を得た。
“Sintering aid a”: Y 2 O 3 , addition amount of 7.0% by weight “Sintering aid b”: CaCO 3 , (in terms of CaO) 1.0
Wt% of the added amount "sintering aid c": LaB 6, 1.0 wt% of the added amount - a specific surface area of Example 12-AlN powder 4.8 m 2 / g, oxygen content 1 Sintering aids a and b
An aluminum nitride sintered body was obtained in the same manner as in Example 1 except that was added.

【0032】 「焼結助剤a」:Y2 3 ,1.0重量%の添加量 「焼結助剤b」:CaCO3 ,(CaO換算で)1.0
重量%の添加量 −実施例13− AlN粉末の比表面積が4.6m2 /gであって、含有
酸素量が1.15重量%であり、下記の焼結助剤a〜c
を添加した他は、実施例1と同様にして、窒化アルミニ
ウム焼結体を得た。
“Sintering aid a”: Y 2 O 3 , addition amount of 1.0% by weight “Sintering aid b”: CaCO 3 , (in terms of CaO) 1.0
Wt% of the added amount - a specific surface area of Example 13-AlN powder 4.6 m 2 / g, 1.15% by weight oxygen content, a to c sintering aid below
An aluminum nitride sintered body was obtained in the same manner as in Example 1 except that was added.

【0033】 「焼結助剤a」:Y2 3 ,3.0重量%の添加量 「焼結助剤b」:CaCO3 ,(CaO換算で)2.0
重量%の添加量 「焼結助剤c」:LaB6 ,0.5重量%の添加量 −実施例14− AlN粉末の比表面積が6.0m2 /gであって、含有
酸素量が1.3重量%であって、下記の焼結助剤a〜c
を添加するとともに1620℃の温度で4時間常圧焼成
を行った他は、実施例1と同様にして、窒化アルミニウ
ム焼結体を得た。
“Sintering aid a”: Y 2 O 3 , 3.0 wt% added amount “Sintering aid b”: CaCO 3 , (in terms of CaO) 2.0
Wt% of the added amount "sintering aid c": LaB 6, addition of 0.5% by weight - a specific surface area of 6.0 m 2 / g in Example 14- AlN powder, oxygen content 1 0.3% by weight, and the following sintering aids a to c
And sintered at normal temperature for 4 hours at a temperature of 1620 ° C. for 4 hours to obtain an aluminum nitride sintered body in the same manner as in Example 1.

【0034】 「焼結助剤a」:Y2 3 ,2.0重量%の添加量 「焼結助剤a」:La2 3 ,1.0重量%の添加量 「焼結助剤b」:CaCO3 ,(CaO換算で)0.5
重量%の添加量 「焼結助剤c」:LaB6 ,2.0重量%の添加量 −比較例1− AlN粉末の比表面積が3.3m2 /gであって、含有
酸素量が0.8重量%であって、下記の焼結助剤a,b
を添加するとともに1620℃の温度で4時間常圧焼成
を行った他は、実施例1と同様にして、窒化アルミニウ
ム焼結体を得た。
“Sintering aid a”: Y 2 O 3 , 2.0 wt% added amount “Sintering aid a”: La 2 O 3 , 1.0 wt% added amount “Sintering aid a” b ": CaCO 3 , 0.5 (in terms of CaO)
Wt% of the added amount "sintering aid c": LaB 6, 2.0 wt% of the added amount - a specific surface area of Comparative Example 1-AlN powder 3.3 m 2 / g, oxygen content 0 0.8% by weight and the following sintering aids a and b
And sintered at normal temperature for 4 hours at a temperature of 1620 ° C. for 4 hours to obtain an aluminum nitride sintered body in the same manner as in Example 1.

【0035】 「焼結助剤a」:Y2 3 ,2.0重量%の添加量 「焼結助剤b」:CaCO3 ,(CaO換算で)0.5
重量%の添加量 −比較例2− AlN粉末の比表面積が3.5m2 /gであって、含有
酸素量が1.0重量%であって、下記の焼結助剤a〜c
を添加した他は、実施例1と同様にして、窒化アルミニ
ウム焼結体を得た。
“Sintering aid a”: Y 2 O 3 , addition amount of 2.0% by weight “Sintering aid b”: CaCO 3 , 0.5 (in terms of CaO)
Comparative Example 2 The specific surface area of the AlN powder was 3.5 m 2 / g, the oxygen content was 1.0 wt%, and the following sintering aids a to c
An aluminum nitride sintered body was obtained in the same manner as in Example 1 except that was added.

【0036】 「焼結助剤a」:Y2 3 ,2.0重量%の添加量 「焼結助剤b」:CaCO3 ,(CaO換算で)1.0
重量%の添加量 「焼結助剤c」:LaB6 ,1.0重量%の添加量 −比較例3− AlN粉末の比表面積が3.3m2 /gであって、含有
酸素量が0.8重量%であって、下記の焼結助剤a〜c
を添加した他は、実施例1と同様にして、窒化アルミニ
ウム焼結体を得た。
“Sintering aid a”: Y 2 O 3 , addition amount of 2.0% by weight “Sintering aid b”: CaCO 3 , (in terms of CaO) 1.0
Wt% of the added amount "sintering aid c": LaB 6, 1.0 wt% of the added amount - the specific surface area of Comparative Example 3- AlN powder is a 3.3 m 2 / g, oxygen content 0 0.8% by weight and the following sintering aids ac:
An aluminum nitride sintered body was obtained in the same manner as in Example 1 except that was added.

【0037】 「焼結助剤a」:Y2 3 ,1.0重量%の添加量 「焼結助剤b」:CaCO3 ,(CaO換算で)2.0
重量%の添加量 「焼結助剤c」:LaB6 ,0.2重量%の添加量 −比較例4− AlN粉末の比表面積が9.0m2 /gであって、含有
酸素量が2.1重量%であって、下記の焼結助剤a〜c
を添加するとともに1570℃の温度で4時間常圧焼成
を行った他は、実施例1と同様にして、窒化アルミニウ
ム焼結体を得た。
“Sintering aid a”: Y 2 O 3 , addition amount of 1.0% by weight “Sintering aid b”: CaCO 3 , (in terms of CaO) 2.0
Addition amount by weight “Sintering aid c”: LaB 6 , addition amount by 0.2% by weight Comparative Example 4 AlN powder having a specific surface area of 9.0 m 2 / g and an oxygen content of 2 0.1% by weight, and the following sintering aids a to c
And sintered at normal pressure for 4 hours at a temperature of 1570 ° C. for 4 hours to obtain an aluminum nitride sintered body in the same manner as in Example 1.

【0038】 「焼結助剤a」:Y2 3 ,2.0重量%の添加量 「焼結助剤b」:CaCO3 ,(CaO換算で)0.4
重量%の添加量 「焼結助剤c」:LaB6 ,0.8重量%の添加量 実施例および比較例で得られた各窒化アルミニウム焼結
体を、直径10mm、厚み3mmの大きさに研磨した
後、相対密度の測定、および、レーザーフラッシュ法に
よる熱伝導率の測定を行った。製造条件や測定結果を、
表1および表2に記す。
“Sintering aid a”: Y 2 O 3 , addition amount of 2.0% by weight “Sintering aid b”: CaCO 3 , (in terms of CaO) 0.4
Addition amount of weight% “Sintering aid c”: LaB 6 , addition amount of 0.8% by weight Each of the aluminum nitride sintered bodies obtained in Examples and Comparative Examples was reduced to a size of 10 mm in diameter and 3 mm in thickness. After polishing, the relative density was measured, and the thermal conductivity was measured by a laser flash method. Manufacturing conditions and measurement results
The results are shown in Tables 1 and 2.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【表2】 [Table 2]

【0041】実施例および比較例の焼結体についてのデ
ータを比較から、この発明が、比表面積が4.0m2
g以上で8.0m2 /g以下のAlN粉末と焼結助剤
a,bさらには焼結助剤cの適正量のもとでの併用によ
り、1625℃以下の低温焼成でも、緻密で120W/
mK以上の高熱伝導性窒化アルミニウムを得ることの出
来るものであることが分かる。また、実施例において、
セッターとしてアルミナ製のセッターを用いた場合も、
セッターを殆ど損なわずに実施できることも確認した。
By comparing the data on the sintered bodies of the examples and comparative examples, the present invention shows that the specific surface area is 4.0 m 2 /
g of 8.0 m 2 / g or less and sintering aids a and b and c. /
It can be seen that high thermal conductivity aluminum nitride of mK or more can be obtained. In the embodiment,
When using an alumina setter as the setter,
It was also confirmed that the setter could be performed with little loss.

【0042】[0042]

【発明の効果】この発明にかかる窒化アルミニウム焼結
体の製造方法では、適切な粒径の窒化アルミニウム粉末
と、稀土類化合物、アルカリ土類化合物という適切な種
類の焼結助剤が適切な添加量で併用されているため、1
640℃以下という低温の焼成で、緻密で熱伝導率の高
い高品質の窒化アルミニウム焼結体を低コストで得られ
るようになり、したがって、この発明は非常に有用であ
る。
In the method for producing an aluminum nitride sintered body according to the present invention, an aluminum nitride powder having an appropriate particle size and an appropriate type of sintering aid such as a rare earth compound and an alkaline earth compound are appropriately added. 1
By firing at a low temperature of 640 ° C. or lower, a dense and high-quality aluminum nitride sintered body having high thermal conductivity can be obtained at low cost, and therefore, the present invention is very useful.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 恭史 大阪府門真市大字門真1048番地松下電工 株式会社内 (56)参考文献 特開 昭63−134570(JP,A) 特開 昭63−319265(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Yasufumi Tanaka 1048 Kazuma Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Works, Ltd. (56) References JP-A-63-134570 (JP, A) JP-A-63-319265 ( JP, A)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 窒化アルミニウム粉末に焼結助剤を添加
し成型してなる成形体を、非酸化性雰囲気で焼成するこ
とにより焼結させる窒化アルミニウム焼結体の製造方法
において、前記窒化アルミニウム粉末の比表面積が4.
0m2 /g以上で8.0m2 /g以下の範囲にあり、前
記焼結助剤として、下記の焼結剤a,bを下記の範囲の
添加量で併用のかたちで用いるとともに、前記非酸化性
雰囲気での焼成を1640℃以下の温度で行うことを特
徴とする窒化アルミニウム焼結体の製造方法。 「焼結助剤a」:稀土類酸化物、および、前記焼成で稀
土類酸化物となる化合物からなる稀土類化合物群のうち
の少なくとも一種を、焼結体全体100重量%のうち
0.5〜10重量%の範囲で添加(焼成で稀土類酸化物
となる化合物は酸化物に換算) 「焼結助剤b」:アルカリ土類酸化物、および、前記焼
成でアルカリ土類酸化物となる化合物からなるアルカリ
土類化合物群のうちの少なくとも一種を、焼結体全体1
00重量%のうち0.1〜10重量%の範囲で添加(焼
成でアルカリ土類酸化物となる化合物は酸化物に換算)
1. A method for producing an aluminum nitride sintered body, comprising sintering a molded body formed by adding a sintering aid to aluminum nitride powder and firing the molded body in a non-oxidizing atmosphere. Has a specific surface area of 4.
0 m 2 / g or more and 8.0 m 2 / g or less, and the following sintering agents a and b are used in combination with the following sintering agents in the following ranges of addition amounts and A method for producing an aluminum nitride sintered body, characterized in that firing in an oxidizing atmosphere is performed at a temperature of 1640 ° C. or lower. "Sintering aid a": at least one selected from the group consisting of a rare earth oxide and a compound which becomes a rare earth oxide by the above-mentioned calcination is added to 0.5% of 100% by weight of the whole sintered body. (A compound which becomes a rare earth oxide upon firing is converted to an oxide) "Sintering aid b": an alkaline earth oxide and an alkaline earth oxide upon firing At least one of the alkaline earth compound group consisting of
Add in the range of 0.1 to 10% by weight of 00% by weight (compounds that become alkaline earth oxides by firing are converted to oxides)
【請求項2】 焼結助剤として、下記の焼結剤cを下記
の範囲の添加量で焼結剤a,bと併用のかたちで用いる
請求項1記載の窒化アルミニウム焼結体の製造方法。 「焼結助剤c」:LaB6 を、焼結体全体100重量%
のうち0.05〜3重量%の範囲で添加(焼成で稀土類
酸化物となる化合物は酸化物に換算)
2. The method for producing an aluminum nitride sintered body according to claim 1, wherein the following sintering agent c is used in combination with the sintering agents a and b in the following addition amounts as sintering aids. . "Sintering aid c": the LaB 6, the sintered body the entire 100% by weight
Of which are added in the range of 0.05 to 3% by weight (compounds that become rare earth oxides by firing are converted to oxides)
【請求項3】 非酸化性雰囲気での焼成を1625℃以
下の温度で行う請求項1または2記載の窒化アルミニウ
ム焼結体の製造方法。
3. The method for producing an aluminum nitride sintered body according to claim 1, wherein firing in a non-oxidizing atmosphere is performed at a temperature of 1625 ° C. or less.
【請求項4】 窒化アルミニウム粉末の含有酸素量が、
1.8重量%以下である請求項1から3までのいずれか
に記載の窒化アルミニウム焼結体の製造方法。
4. The oxygen content of the aluminum nitride powder is as follows:
The method for producing an aluminum nitride sintered body according to any one of claims 1 to 3, wherein the content is 1.8% by weight or less.
JP4342914A 1992-12-22 1992-12-22 Manufacturing method of aluminum nitride sintered body Expired - Fee Related JP2698011B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP4342914A JP2698011B2 (en) 1992-12-22 1992-12-22 Manufacturing method of aluminum nitride sintered body
US08/089,558 US5330692A (en) 1992-12-22 1993-07-12 Process for producing an aluminum nitride sintered product
DE4325345A DE4325345C2 (en) 1992-12-22 1993-07-28 Process for producing an aluminum nitride sintered product
KR1019930014658A KR960006249B1 (en) 1992-12-22 1993-07-30 Process for producing an aluminium sintered product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4342914A JP2698011B2 (en) 1992-12-22 1992-12-22 Manufacturing method of aluminum nitride sintered body

Publications (2)

Publication Number Publication Date
JPH06191954A JPH06191954A (en) 1994-07-12
JP2698011B2 true JP2698011B2 (en) 1998-01-19

Family

ID=18357502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4342914A Expired - Fee Related JP2698011B2 (en) 1992-12-22 1992-12-22 Manufacturing method of aluminum nitride sintered body

Country Status (2)

Country Link
JP (1) JP2698011B2 (en)
KR (1) KR960006249B1 (en)

Also Published As

Publication number Publication date
KR960006249B1 (en) 1996-05-11
KR940013679A (en) 1994-07-15
JPH06191954A (en) 1994-07-12

Similar Documents

Publication Publication Date Title
JPH08507038A (en) Low temperature firing route for aluminum nitride ceramics
US5154863A (en) Aluminum nitride-based sintered body and process for the production thereof
JPH0649613B2 (en) Aluminum nitride sintered body and manufacturing method thereof
JP2698011B2 (en) Manufacturing method of aluminum nitride sintered body
JP2698009B2 (en) Manufacturing method of aluminum nitride sintered body
JP2698014B2 (en) Manufacturing method of aluminum nitride sintered body
JP2000128643A (en) Highly heat conductive silicon nitride-based sintered compact and its production
JP2666942B2 (en) Aluminum nitride sintered body
JP2742600B2 (en) Aluminum nitride sintered body and method for producing the same
JPS6217076A (en) Aluminum nitride powder composition
JP2962466B2 (en) Aluminum nitride sintered body
JP3434963B2 (en) Aluminum nitride sintered body and method for producing the same
JP2000044351A (en) Silicon nitride-based heat radiating member and its production
JP2772580B2 (en) Method for producing aluminum nitride sintered body
JP2535139B2 (en) Heat dissipation board
JPH0977559A (en) Aluminum nitride sintered compact and its production
JPH06219846A (en) Production of aluminum nitride sintered compact
JPH0566339B2 (en)
JPH068220B2 (en) Aluminum nitride sintered body and manufacturing method thereof
JP2851712B2 (en) Aluminum nitride circuit board
JPS61227967A (en) High heat conductivity ceramics and manufacture
JP2772581B2 (en) Black aluminum nitride sintered body
JPH11180774A (en) Silicon nitride-base heat radiating member and its production
JPH0881266A (en) Production of aluminum nitride sintered compact
JPH06321640A (en) Manufacture of aluminum nitride sintered body

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees