JP2691837B2 - Method for manufacturing high magnetic flux density grain-oriented electrical steel sheet with good workability - Google Patents

Method for manufacturing high magnetic flux density grain-oriented electrical steel sheet with good workability

Info

Publication number
JP2691837B2
JP2691837B2 JP4302729A JP30272992A JP2691837B2 JP 2691837 B2 JP2691837 B2 JP 2691837B2 JP 4302729 A JP4302729 A JP 4302729A JP 30272992 A JP30272992 A JP 30272992A JP 2691837 B2 JP2691837 B2 JP 2691837B2
Authority
JP
Japan
Prior art keywords
steel sheet
oriented electrical
electrical steel
annealing
grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4302729A
Other languages
Japanese (ja)
Other versions
JPH06145804A (en
Inventor
穂高 本間
収 田中
浩昭 増井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4302729A priority Critical patent/JP2691837B2/en
Publication of JPH06145804A publication Critical patent/JPH06145804A/en
Application granted granted Critical
Publication of JP2691837B2 publication Critical patent/JP2691837B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、グラス被膜(フォルス
テライト被膜) を有さない方向性電磁鋼板、特に切断
性、打ち抜き性等の加工性に著しく優れた高磁束密度超
低鉄損方向性電磁鋼板の製造方法に関する。
FIELD OF THE INVENTION The present invention relates to a grain-oriented electrical steel sheet having no glass coating (forsterite coating), particularly a high magnetic flux density and an ultra-low iron loss orientation which is remarkably excellent in machinability such as cutting property and punching property. The present invention relates to a method for manufacturing an electromagnetic steel sheet.

【0002】[0002]

【従来の技術】方向性電磁鋼板は、一般に軟磁性材料と
して、主としてトランスその他の電気機器の鉄心として
使用されるもので、磁気特性として、励磁特性と鉄損特
性が良好であることが要求される。良好な磁気特性を得
るためには、磁化容易軸である<001>軸を圧延方向
に高度に揃えることが重要である。また、板厚、結晶粒
度、固有抵抗、被膜なども磁気特性に大きな影響を与え
るため重要である。
2. Description of the Related Art Grain-oriented electrical steel sheets are generally used as a soft magnetic material, mainly as an iron core of transformers and other electric equipment, and are required to have good magnetic excitation characteristics and iron loss characteristics. It In order to obtain good magnetic properties, it is important that the <001> axis, which is the axis of easy magnetization, is highly aligned in the rolling direction. Further, the plate thickness, the grain size, the specific resistance, the coating, etc. have a great influence on the magnetic properties, and are important.

【0003】結晶の方向性については、AlN、MnS
をインヒビターとして利用した高圧下最終冷延を特徴と
する方法により大幅に向上し、現在では磁束密度が理論
値に近いものまで製造されるようになってきた。一方、
方向性電磁鋼板の需要家における使用時に、磁気特性と
共に重要なのは被膜に起因する加工性である。通常、方
向性電磁鋼板は最終仕上焼鈍時に形成するグラス被膜と
絶縁被膜の二層被膜によって表面が処理されている。グ
ラス被膜は焼鈍分離剤のMgOと脱炭焼鈍時に形成する
SiO2 の反応生成物であるフォルステライト(Mg2
SiO4 ) が主成分の被膜である。このセラミックス被
膜は硬質で耐摩耗性が強く、電磁鋼板加工時のスリッ
ト、切断、打ち抜きなどの工具類の耐久性に著しい悪影
響を及ぼす。例えば、グラス被膜を有する方向性電磁鋼
板の打ち抜き加工を行う場合には、金型の摩耗が生じ、
数千回程度の打ち抜きによって、打ち抜いたときにシー
トの返りが大きくなり、使用時に問題が生じる程の返り
が生じる。このため、金型の再研磨、新品との取り替え
が必要になる。これは、需要家における鉄心加工時の作
業能率を低下させ、またコスト上昇を招く結果になる。
また、電磁鋼板自体の磁気特性に対しては、たしかに被
膜張力による鉄損の改善効果があるが、形成状態によっ
ては被膜厚みの増加などによって、非磁性体による磁束
密度の低下の問題がある。このため、鋼板板厚の厚い材
料のように被膜張力による鉄損改善効果が期待できない
ような材料や、他の手段で磁区細分化を行い、鉄損が改
善できるケース等では、むしろ前記問題からグラス被膜
を有しない方向性電磁鋼板が望まれる。
[0003] Regarding the crystal orientation, AlN, MnS
The method has been greatly improved by a method characterized by final cold rolling under high pressure, using as an inhibitor, and now magnetic flux density has been manufactured to a value close to the theoretical value. on the other hand,
When used in the consumer of grain-oriented electrical steel sheets, what is important along with magnetic properties is workability due to the coating. Usually, the surface of a grain-oriented electrical steel sheet is treated by a two-layer coating of a glass coating and an insulating coating formed at the time of final finish annealing. The glass film is a reaction product of MgO which is an annealing separator and SiO 2 which is formed during decarburization annealing and is forsterite (Mg 2
SiO 4 ) is the main film. This ceramic coating is hard and has strong wear resistance, and exerts a markedly adverse effect on the durability of tools such as slits, cutting and punching when processing electromagnetic steel sheets. For example, when punching a grain-oriented electrical steel sheet having a glass coating, die wear occurs,
By punching a few thousand times, the return of the sheet becomes large when punching, and the return is such that a problem occurs during use. Therefore, it is necessary to re-polish the mold and replace it with a new one. This results in a reduction in the work efficiency of the core processing by the customer and an increase in cost.
Further, although it has an effect of improving iron loss due to the film tension with respect to the magnetic characteristics of the electromagnetic steel sheet itself, there is a problem that the magnetic flux density decreases due to the non-magnetic material due to an increase in the film thickness depending on the formation state. For this reason, in the case of a material such as a steel plate having a large thickness, for which the effect of improving iron loss due to film tension cannot be expected, or in a case where the magnetic domain is subdivided by other means and the iron loss can be improved, the above problem is rather reduced. A grain-oriented electrical steel sheet having no glass coating is desired.

【0004】とりわけ、近年では磁区細分化技術とし
て、光学的、機械的、化学的な手段による技術が発達
し、グラス被膜の張力なしでも鉄損の改善が得られるよ
うになり、むしろグラス被膜を有さない方向性電磁鋼板
の方が磁化の際の時壁移動のピンニング現象を起こすグ
ラス被膜の内部酸化層等の悪影響がないため有利である
ことも解ってきた。このためグラス被膜を有さない高磁
束密度方向性電磁鋼板の開発は需要家では種々の使用条
件を考える際に重要で、ニーズが高まっている。
In particular, in recent years, as a magnetic domain subdivision technique, a technique developed by optical, mechanical and chemical means has been developed so that iron loss can be improved without the tension of the glass coating. It has also been found that the grain-oriented electrical steel sheet which does not have the advantage is free from adverse effects such as the internal oxide layer of the glass coating that causes the pinning phenomenon of wall movement during magnetization. Therefore, the development of a high magnetic flux density grain-oriented electrical steel sheet having no glass coating is important for consumers when considering various usage conditions, and needs are increasing.

【0005】特に、現在、方向性電磁鋼板にかわる軟磁
性材料として、非晶質合金がクローズアップされている
が、磁束密度が低い、占積率が低い、加工性が劣悪等、
実用化に際して様々な困難に直面している。従って、鉄
損特性において非晶質合金と対抗し得る方向性電磁鋼板
を開発するために、グラス被膜を有さない材料を開発す
ることが重要となってきている。
At present, amorphous alloys are being used as a soft magnetic material in place of grain-oriented electrical steel sheets, but the magnetic flux density is low, the space factor is low, and the workability is poor.
We are facing various difficulties in practical application. Therefore, in order to develop a grain-oriented electrical steel sheet that can counter an amorphous alloy in iron loss characteristics, it has become important to develop a material having no glass coating.

【0006】グラス被膜を有さない方向性電磁鋼板の製
造方法としては、例えば特開昭53−22113号公報
に開示のものがある。これは、脱炭焼鈍において酸化膜
の厚みを3μm以下とし、焼鈍分離剤として含水珪酸塩
鉱物粉末を5〜40%含有する微粒子のアルミナを用
い、これを鋼板に塗布し、仕上焼鈍することからなる。
これによると、酸化膜を薄くし、さらに含水珪酸塩鉱物
の配合によって、剥離し易いグラス被膜が形成され、金
属光沢を有するものが得られるとされている。焼鈍分離
剤によりグラス被膜の形成を抑制する方法としては、特
開昭56−65983号公報に示されるように、水酸化
アルミニウム不純物除去用添加物20重量部、抑制物質
10重量部を配合した焼鈍分離剤を鋼板に塗布し、0.
5μm以下の薄いグラス被膜を形成する方法がある。ま
た、特開昭59−96278号公報には、脱炭焼鈍で形
成した酸化層のSiO2 との反応が弱いAl2 3 と、
1300℃以上の高温で焼成し、活性を低下させたMg
Oとからなる焼鈍分離剤が提案されている。これによる
と、フォルステライトの形成が抑制されるというもので
ある。
As a method for producing a grain-oriented electrical steel sheet having no glass coating, there is one disclosed in, for example, JP-A-53-22113. This is because the thickness of the oxide film is reduced to 3 μm or less in decarburization annealing, and fine alumina containing 5 to 40% of hydrated silicate mineral powder is used as an annealing separating agent, which is applied to a steel plate and finish-annealed. Become.
According to this, it is said that a glass film that is easy to peel off is formed by thinning the oxide film and further by incorporating a hydrous silicate mineral, and that having a metallic luster is obtained. As a method for suppressing the formation of a glass film by an annealing separator, as disclosed in JP-A-56-65983, annealing is performed by adding 20 parts by weight of an additive for removing impurities of aluminum hydroxide and 10 parts by weight of a suppressing substance. The separating agent is applied to the steel sheet, and
There is a method of forming a thin glass film having a thickness of 5 μm or less. Further, in JP-A-59-96278, Al 2 O 3 having a weak reaction with SiO 2 in an oxide layer formed by decarburization annealing,
Mg whose activity was reduced by firing at a high temperature of 1300 ° C or higher
An annealing separator composed of O and O has been proposed. According to this, formation of forsterite is suppressed.

【0007】これらの先行技術は、いずれも通常のオリ
エントコアと呼ばれる磁束密度がB 8 値で1.88T以
下と低く、従って鉄損値も高い低級な方向性電磁鋼板を
ベースとする技術であり、本発明のように、超低鉄損を
実現するための条件を満たす方向性電磁鋼板を安定して
得る技術を開発するには至っていない。
All of these prior arts are conventional orientations.
The magnetic flux density called the ent core is B 8Value of 1.88T or less
A low-grade grain-oriented electrical steel sheet with a low bottom and therefore a high iron loss value
It is a technology based on the ultra low iron loss as in the present invention.
Stable grain oriented electrical steel sheets that meet the requirements for realization
The technology to gain is not yet developed.

【0008】[0008]

【発明が解決しようとする課題】本発明は、打ち抜き
性、スリット性、切断性等が極めて優れた、ほぼ均一に
グラス被膜のない高磁束密度超低鉄損方向性電磁鋼板を
工業的に安価に製造する方法を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention provides an industrially inexpensive high magnetic flux density ultra-low iron loss grain-oriented electrical steel sheet having extremely excellent punching properties, slitting properties, cutting properties, etc. and having almost no glass coating. It is an object of the present invention to provide a manufacturing method.

【0009】本発明の要旨とするところは下記のとおり
である。 (1) 重量で、Si:1.0〜7.0%、酸可溶性A
l:0.010〜0.070%を含有し、残部がFe及
び不純物からなる鋼塊あるいはスラブを、熱延し、冷延
し、一次再結晶焼鈍し、焼鈍分離剤を塗布した後、高温
仕上焼鈍を行うことによって方向性電磁鋼板を製造する
方法において、仕上焼鈍中昇温過程で800℃に達して
から以降のいずれかの時期に、F、Cl、Br、I、
S、Seのうち1種または2種以上を構成元素とする気
体を焼鈍雰囲気とともに導入することを特徴とする加工
性の良好な高磁束密度方向性電磁鋼板の製造方法。
The gist of the present invention is as follows. (1) Si: 1.0 to 7.0% by weight, acid-soluble A
1: Hot-rolling, cold-rolling, primary recrystallization annealing, applying an annealing separator, and then applying high temperature to a steel ingot or slab containing 0.010 to 0.070% and the balance being Fe and impurities In a method of manufacturing a grain-oriented electrical steel sheet by performing finish annealing, at any time after the temperature reaches 800 ° C. during the temperature rising process during finish annealing, F, Cl, Br, I,
A method for producing a high magnetic flux density grain-oriented electrical steel sheet having good workability, which comprises introducing a gas having one or more of S and Se as constituent elements together with an annealing atmosphere.

【0010】(2) 前項記載の気体の雰囲気中濃度が
鋼板直上で50ppm以上5000ppm以下であるこ
とを特徴とする前項1記載の加工性の良好な高磁束密度
方向性電磁鋼板の製造方法。以下本発明を詳細に説明す
る。本発明は、二次再結晶粒の高い方位集積度を保ちな
がら、被膜を有さない方向性電磁鋼板を製造する高温仕
上焼鈍条件を提示するものである。
(2) The high magnetic flux density grain-oriented electrical steel sheet having good workability according to the above item 1 , wherein the gas concentration in the atmosphere as described in the above item is 50 ppm or more and 5000 ppm or less directly above the steel sheet. Production method. Hereinafter, the present invention will be described in detail. The present invention provides high-temperature finish annealing conditions for producing a grain-oriented electrical steel sheet having no coating while maintaining a high degree of orientational recrystallization grain orientation integration.

【0011】従来より、被膜形成の良否と二次再結晶の
良否に相関があることは知られており、被膜を形成しな
いことが高磁束密度化に影響を与えることが予想され
た。本発明はこの影響を明確にし、被膜のない高磁束密
度材を得るための一連の実験結果を基づいてなされた。
本発明の材料の成分について、Siは、鉄損特性を得る
ため、1.0%は必要である。上限は加工性の点から
7.0%に限定される。またAlは良好なインヒビター
を形成出来る範囲として0.010〜0.070%に限
定される。
It has been conventionally known that there is a correlation between the quality of film formation and the quality of secondary recrystallization, and it was expected that not forming a film would affect the increase in magnetic flux density. The present invention has been made on the basis of a series of experimental results for clarifying this effect and obtaining a coating-free high magnetic flux density material.
Regarding the components of the material of the present invention, Si is required to be 1.0% in order to obtain iron loss characteristics. The upper limit is limited to 7.0% from the viewpoint of workability. Further, Al is limited to a range of 0.010 to 0.070% as a range capable of forming a good inhibitor.

【0012】通常、方向性電磁鋼板の被膜は、脱炭焼鈍
時に形成される鋼板表面上のSiO 2 スケールと、高温
仕上焼鈍時焼付き防止のために塗布するMgOよりなる
焼鈍分離剤とが反応して生成する。そこでこの反応を阻
止するために脱炭焼鈍板の表面を酸洗して通常の二次再
結晶焼鈍を行ったところ、確かに被膜は形成しなかった
が、それと同時に二次再結晶も極めて不良なものとなっ
た。これは即ち、二次再結晶に際して被膜の存在が重要
な役割を果たしていることを意味する。
Normally, the coating of grain-oriented electrical steel sheet is decarburized and annealed.
SiO formed on the surface of steel sheet TwoScale and high temperature
Made of MgO applied to prevent seizure during finish annealing
It is generated by reacting with the annealing separator. So this reaction is blocked
The surface of the decarburized annealed plate is pickled to prevent
When crystal annealing was performed, no film was formed.
However, at the same time, secondary recrystallization became extremely poor.
Was. This means that the presence of a coating is important for secondary recrystallization.
It means that it plays a role.

【0013】そこで、被膜形成のタイミングの二次再結
晶に及ぼす影響を知るために、以下のような実験を行っ
た。通常の脱炭板に通常の焼鈍分離剤を塗布し、仕上焼
鈍炉の中に入れて、昇温速度15℃/Hrで600〜1
200℃の温度までH2 50%、N2 50%で焼鈍し
た。この鋼板を酸洗して表面の酸化物を除去し、焼鈍を
中断した温度まで急速に加熱した後1200℃までの焼
鈍を実行した。このときに得られた材料の二次再結晶状
態と被膜形成状態を図1に示す。これから800〜90
0℃の間まで通常の被膜を作っておけば、二次再結晶は
良好になることがわかった。
Therefore, in order to know the influence of the timing of film formation on the secondary recrystallization, the following experiment was conducted. A normal decarburizing plate is coated with a normal annealing separator, put in a finishing annealing furnace, and the temperature rise rate is 15 ° C / Hr.
It was annealed to a temperature of 200 ° C. with H 2 50% and N 2 50%. The steel sheet was pickled to remove oxides on the surface, rapidly heated to the temperature at which the annealing was interrupted, and then annealed to 1200 ° C. FIG. 1 shows the state of secondary recrystallization and film formation of the material obtained at this time. 800-90 from now on
It was found that the secondary recrystallization becomes good if a normal film is formed up to 0 ° C.

【0014】この知見をもとに、仕上焼鈍中にあらかじ
め被膜を形成し、二次再結晶に影響を与えなくなる段階
から被膜を除去する方法を考えた。先の実験で行ったよ
うに仕上焼鈍を中断して鋼板を酸洗する方法は極めて非
生産的である。そこで鋼板を腐食する機能を持つ気体を
用い、気相エッチングすることを試みた。以下に、HC
lガスによる例を用いて説明する。被膜を有する成品板
をHClガスを含む雰囲気中で焼鈍を行ったところ、地
鉄と被膜の界面が腐食されて被膜が剥離することを知見
した。
Based on this finding, a method of forming a coating film during finish annealing and removing the coating film from the stage where secondary recrystallization is not affected was considered. The method of interrupting the finish annealing and pickling the steel sheet as in the previous experiment is extremely unproductive. Therefore, we tried vapor-phase etching using a gas that corrodes the steel sheet. Below, HC
An example using 1 gas will be described. It was found that when the product plate having a coating film was annealed in an atmosphere containing HCl gas, the interface between the base metal and the coating film was corroded and the coating film was peeled off.

【0015】そこで仕上焼鈍中にさまざまな温度からH
Clガスを導入することを試みたところ、800〜90
0℃からガスを導入することによって、被膜を形成せ
ず、かつ二次再結晶も良好な鋼板を得ることができた。
以下に、上記の知見をもとに行った一連の実験結果から
得られた最適条件を示し、本発明の構成要件について説
明する。
Therefore, during the finish annealing, the H
An attempt to introduce Cl gas resulted in 800-90
By introducing the gas from 0 ° C., it was possible to obtain a steel sheet which did not form a coating film and also had good secondary recrystallization.
The optimum conditions obtained from a series of experimental results based on the above findings will be shown below, and the constituent features of the present invention will be described.

【0016】仕上焼鈍中昇温過程で800℃に達してか
ら以降のいずれかの時期に、F、Cl、Br、I、S、
Seのうちの1種または2種以上を構成元素とする気体
(エッチングガス)の雰囲気中濃度を、鋼板直上で50
〜5000ppmと規定した理由は次のとおりである。
即ち、エッチングガス量が50ppmに満たない時は被
膜と地鉄の間に被膜を完全に剥離するのに十分な化合物
の生成が得られなかったので下限を50ppmとし、他
方5000ppmを超えると鋼板表面が極端に粗くなる
ばかりでなく、生成した化合物が鋼板に食い込んで除去
できなくなったり、鋼板内部にガス成分が拡散浸透した
りして磁気特性を劣化させるので、上限を5000pp
mとした。ちなみにPを含むガスを用いた場合は、Pが
鋼板内部でFe3 Pを形成して磁気特性を劣化させる。
At any time after reaching 800 ° C. during the temperature rising process during finish annealing, F, Cl, Br, I, S,
The atmospheric concentration of a gas (etching gas) containing one or more of Se as constituent elements is set to 50 just above the steel plate.
The reason for defining ~ 5000 ppm is as follows.
That is, when the amount of etching gas was less than 50 ppm, sufficient compound formation was not obtained between the coating and the base metal so that the coating could be completely peeled off, so the lower limit was set to 50 ppm, while if it exceeded 5000 ppm, the steel plate surface Not only becomes extremely rough, but also the produced compound bites into the steel plate and cannot be removed, and the gas components diffuse and penetrate into the steel plate, deteriorating the magnetic properties, so the upper limit is 5000 pp.
m. Incidentally, when a gas containing P is used, P forms Fe 3 P inside the steel sheet and deteriorates the magnetic characteristics.

【0017】次に、仕上焼鈍工程でのエッチングガス導
入の時期に就いてであるが、これは二次再結晶に必要な
インヒビターの劣化防止の観点から決定される。二次再
結晶は通常早いもので850℃から開始し、遅くとも1
050℃で終了する。この時期においては鋼板の一定部
以上が被膜によって覆われていることが必要である。そ
の理由は、この時期に被膜が存在しないと、雰囲気ガス
と地鉄中のインヒビターが反応してインヒビター分解速
度が必要以上に早くなることを防ぐ効果(即ちシール効
果) が得られず、磁気特性が劣化するためである。
Next, regarding the timing of introducing the etching gas in the finish annealing step, this is determined from the viewpoint of preventing deterioration of the inhibitor necessary for secondary recrystallization. Secondary recrystallization is usually fast, starting at 850 ° C and at the latest 1
Finish at 050 ° C. At this time, it is necessary that a certain portion or more of the steel sheet be covered with the coating. The reason is that if there is no film at this time, the effect of preventing the inhibitor decomposition rate from unnecessarily increasing due to the reaction between the atmospheric gas and the inhibitor in the base iron (that is, the sealing effect) cannot be obtained, and the magnetic properties Is deteriorated.

【0018】ところで、被膜形成は昇温中800℃、遅
くとも900℃に開始する。従って800℃以降にエッ
チングガスを導入することが必要である。この理由は、
以下の通りである。昇温中800℃以降にエッチングガ
スを導入することは、一度若干なりとも被膜を形成し、
その後剥離することになる。この結果高い磁束密度が得
られる。これは800℃からのエッチングガス導入によ
りインヒビターのシール効果を妨げずに被膜を剥離した
ためである。即ちエッチングガス導入から被膜剥離まで
はある一定の時間を要し、この期間を加味した限界の温
度が800℃である。ガスの導入はこれ以降の時期であ
ればいつでもよいが、反応を完全に終了させるために十
分な時間が確保できるタイミングであることが必要であ
る。例えば、鋼板表面で500ppmになるようにHC
lガスを導入したときは、昇温中900℃からガスの導
入を開始し、1200℃から均熱になる過程を経て40
時間を要した。
By the way, the film formation starts at 800 ° C. during the temperature rise and at 900 ° C. at the latest. Therefore, it is necessary to introduce the etching gas after 800 ° C. The reason for this is
It is as follows. Introducing the etching gas at 800 ° C or higher during the temperature rise forms a film at least once,
After that, it will be peeled off. As a result, a high magnetic flux density can be obtained. This is because the film was peeled off without disturbing the sealing effect of the inhibitor by introducing the etching gas from 800 ° C. That is, it takes a certain time from the introduction of the etching gas to the peeling of the coating film, and the limit temperature considering this period is 800 ° C. The gas may be introduced at any time thereafter, but it is necessary to ensure that the time is sufficient to complete the reaction. For example, HC should be adjusted to 500 ppm on the steel plate surface.
When the 1 gas was introduced, the introduction of the gas was started from 900 ° C. during the temperature rising, and the temperature was changed from 1200 ° C.
It took time.

【0019】本発明の主眼は、仕上焼鈍中に二次再結晶
に必要なインヒビターの強度を十分確保しながら、フォ
ルステライト等からなる表面被膜を除去することにあ
る。方向性電磁鋼板の二次再結晶過程においてインヒビ
ターは、二次再結晶直前までは結晶粒の成長を抑え、二
次再結晶の進行と共に強度を減少させる。このようなイ
ンヒビター強度変化の制御のためにフォルステライト被
膜は重要な役割を果たしている。
The main object of the present invention is to remove the surface coating made of forsterite or the like while sufficiently securing the strength of the inhibitor required for secondary recrystallization during finish annealing. In the secondary recrystallization process of the grain-oriented electrical steel sheet, the inhibitor suppresses the growth of crystal grains until just before the secondary recrystallization, and decreases the strength as the secondary recrystallization progresses. The forsterite coating plays an important role in controlling such changes in inhibitor strength.

【0020】特に、高B8 を実現するのに有効といわれ
ているAlNをインヒビターとする方向性電磁鋼板の場
合は、被膜によるシール効果を利用して、必要以上に窒
化しないように、あるいは脱窒の進行が進みすぎないよ
うにする。これにより、二次再結晶までインヒビターを
適切な状態に保つのである。
Particularly, in the case of grain-oriented electrical steel sheet using AlN as an inhibitor, which is said to be effective for achieving high B 8 , the sealing effect of the coating is utilized to prevent excessive nitridation or denitration. Make sure that the progress of nitriding does not go too far. As a result, the inhibitor can be used until secondary recrystallization.
Keep it right.

【0021】本発明のように被膜を形成しないことを目
的とする電磁鋼板の製造方法の場合には、被膜によるイ
ンヒビターコントロールの効果が十分得られにくい。そ
こで、本発明では、二次再結晶に必要なインヒビターを
確保するときには通常通り被膜を形成させ、必要性がな
くなった時点で被膜を破壊するか、あるいは鋼板から被
膜を剥離する。本発明では、上記の例に用いたClを構
成元素とするガス以外に雰囲気ガス中にF、Br、I、
S、Seを構成元素とするガスを含有させる。これらの
ガスは、被膜と地鉄の界面でFeと反応して化合物を造
る。これらの化合物は被膜と地鉄の間に層を形成して被
膜の密着性を極端に劣化させるか、あるいは高温焼鈍に
よって気化し、地鉄から被膜を剥離させる。その結果地
鉄は通常に二次再結晶を完了した状態で被膜がない鋼板
が得られることになる。
In the case of the method for producing an electromagnetic steel sheet for which no coating is formed as in the present invention, it is difficult to sufficiently obtain the inhibitor control effect by the coating. Therefore, in the present invention, when securing an inhibitor necessary for secondary recrystallization, a film is formed as usual, and the film is destroyed when it is no longer necessary, or the film is peeled from the steel sheet. In the present invention, in addition to the gas having Cl as a constituent element used in the above example, F, Br, I,
A gas containing S and Se as constituent elements is contained. These gases react with Fe at the interface between the coating and the base iron to form a compound. These compounds form a layer between the coating and the base iron to extremely deteriorate the adhesion of the coating, or vaporize by high temperature annealing to separate the coating from the base iron. As a result, a base steel can be obtained as a steel sheet having no coating in a state where secondary recrystallization is normally completed.

【0022】[0022]

【0023】[0023]

【実施例】【Example】

〔実施例1〕重量で、Si:3.25%、C:0.08
2%、Mn:0.61%、S:0.022%、Al:
0.021%、N:0.009%を含み、残部実質的に
Feからなる鋼のスラブを、1380℃でスラブ加熱し
た後、熱延し、1130℃での熱延板焼鈍および酸洗を
経て板厚0.220mmまで冷間圧延した。この鋼板を
830℃の湿潤雰囲気中で脱炭焼鈍してC:11ppm
とした後、表1に示す焼鈍分離剤を鋼板表裏面にそれぞ
れ6g/m2 ずつ塗布し、仕上焼鈍を行った。仕上焼鈍
は室温から1200℃まで20℃/hrの昇温速度で加
熱し、その後1200℃で20時間保定した。焼鈍雰囲
気は、昇温中はN2 :50%+H2 :50%、1200
℃保定中はH2 :100%である。この時、表1に示す
条件でエッチングガスを焼鈍炉中に導入した。
[Example 1] Si: 3.25% by weight, C: 0.08 by weight
2%, Mn: 0.61%, S: 0.022%, Al:
A steel slab containing 0.021% and N: 0.009% and the balance substantially consisting of Fe is heated at 1380 ° C., then hot-rolled, and hot-rolled sheet annealed at 1130 ° C. and pickled. Then, it was cold-rolled to a plate thickness of 0.220 mm. This steel sheet was decarburized and annealed in a humid atmosphere at 830 ° C. and C: 11 ppm
After that, 6 g / m 2 of the annealing separator shown in Table 1 was applied to the front and back surfaces of the steel sheet, respectively, and finish annealing was performed. The finish annealing was performed by heating from room temperature to 1200 ° C. at a temperature rising rate of 20 ° C./hr, and then holding at 1200 ° C. for 20 hours. The annealing atmosphere is N 2 : 50% + H 2 : 50%, 1200 during the temperature rise.
H 2 : 100% during holding at ℃. At this time, the etching gas was introduced into the annealing furnace under the conditions shown in Table 1.

【0024】表1からわかるように、800℃未満の低
い温度からガスを導入すると、二次再結晶が不安定にな
って磁気特性が劣化する。これは、二次再結晶が開始す
る前にインヒビターが抜けてしまったためと考えられ
る。雰囲気中のエッチングガス濃度が低いと被膜が形成
されたままになる。また、形成された被膜は逆に欠陥の
極めて少ない良好なものであった。ガスの導入量が多す
ぎたものは、鋼板表面の性状が悪く、また極めて錆易い
ものであった。錆は軽酸洗で落とすことができたが、鋼
板表面の凹凸が激しく、またガス成分が鋼中に拡散して
いて磁気特性はかなり劣化していた。
As can be seen from Table 1, when the gas is introduced at a low temperature of less than 800 ° C., the secondary recrystallization becomes unstable and the magnetic properties deteriorate. It is considered that this is because the inhibitor was removed before the secondary recrystallization was started. If the etching gas concentration in the atmosphere is low, the film remains formed. On the contrary, the formed film was good with very few defects. If the amount of introduced gas was too large, the properties of the steel sheet surface were poor, and it was extremely easy to rust. Rust could be removed by light pickling, but the surface of the steel sheet was severely uneven, and the gas components were diffused into the steel, and the magnetic properties were considerably degraded.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【0027】[0027]

【0028】[0028]

【0029】[0029]

【発明の効果】本発明によればグラス被膜を有しない磁
気特性の良好な方向性電磁鋼板を得ることができる。
According to the present invention, it is possible to obtain a grain-oriented electrical steel sheet having good magnetic properties and having no glass coating.

【図面の簡単な説明】[Brief description of the drawings]

【図1】仕上焼鈍温度と磁束密度(B8 ) との関係を示
す図である。
FIG. 1 is a diagram showing a relationship between a finish annealing temperature and a magnetic flux density (B 8 ).

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量で、Si:1.0〜7.0%、酸可
溶性Al:0.010〜0.070%を含有し、残部が
Fe及び不純物からなる鋼塊あるいはスラブを、熱延
し、冷延し、一次再結晶焼鈍し、焼鈍分離剤を塗布した
後、高温仕上焼鈍を行うことによって方向性電磁鋼板を
製造する方法において、仕上焼鈍中昇温過程で800℃
に達してから以降のいずれかの時期に、F、Cl、B
r、I、S、Seのうち1種または2種以上を構成元素
とする気体を焼鈍雰囲気とともに導入することを特徴と
する加工性の良好な高磁束密度方向性電磁鋼板の製造方
法。
1. A steel ingot or slab containing Si: 1.0 to 7.0%, acid-soluble Al: 0.010 to 0.070% by weight, and the balance being Fe and impurities, is hot-rolled. In the method for producing a grain-oriented electrical steel sheet by performing high-temperature finish annealing after applying cold-rolling, primary recrystallization annealing, and applying an annealing separator, 800 ° C. in the temperature rising process during finish annealing.
F, Cl, B at any time after reaching
A method for producing a high magnetic flux density grain-oriented electrical steel sheet having good workability, which comprises introducing a gas having one or more of r, I, S, and Se as constituent elements together with an annealing atmosphere.
【請求項2】 請求項1において示された気体の雰囲気
中濃度が鋼板直上で50ppm以上5000ppm以下
であることを特徴とする請求項1記載の加工性の良好な
高磁束密度方向性電磁鋼板の製造方法。
2. The atmosphere of gas according to claim 1.
The method for producing a high magnetic flux density grain-oriented electrical steel sheet with good workability according to claim 1, wherein the medium concentration is 50 ppm or more and 5000 ppm or less directly above the steel sheet.
JP4302729A 1992-11-12 1992-11-12 Method for manufacturing high magnetic flux density grain-oriented electrical steel sheet with good workability Expired - Fee Related JP2691837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4302729A JP2691837B2 (en) 1992-11-12 1992-11-12 Method for manufacturing high magnetic flux density grain-oriented electrical steel sheet with good workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4302729A JP2691837B2 (en) 1992-11-12 1992-11-12 Method for manufacturing high magnetic flux density grain-oriented electrical steel sheet with good workability

Publications (2)

Publication Number Publication Date
JPH06145804A JPH06145804A (en) 1994-05-27
JP2691837B2 true JP2691837B2 (en) 1997-12-17

Family

ID=17912460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4302729A Expired - Fee Related JP2691837B2 (en) 1992-11-12 1992-11-12 Method for manufacturing high magnetic flux density grain-oriented electrical steel sheet with good workability

Country Status (1)

Country Link
JP (1) JP2691837B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112021013592A2 (en) * 2019-01-16 2021-09-28 Nippon Steel Corporation METHOD TO MANUFACTURE AN ELECTRIC STEEL SHEET WITH ORIENTED GRAIN
CN117737594A (en) * 2024-02-19 2024-03-22 内蒙古矽能电磁科技有限公司 Rare earth-containing ultrathin oriented silicon steel and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0663036B2 (en) * 1987-08-31 1994-08-17 新日本製鐵株式会社 Method for producing grain-oriented electrical steel sheet having metallic luster
JPS6462476A (en) * 1987-08-31 1989-03-08 Nippon Steel Corp Separation at annealing agent for grain-oriented magnetic steel sheet

Also Published As

Publication number Publication date
JPH06145804A (en) 1994-05-27

Similar Documents

Publication Publication Date Title
US4888066A (en) Method for producing grain-oriented electrical steel sheet with very high magnetic flux density
JP3846064B2 (en) Oriented electrical steel sheet
JP2953978B2 (en) Thick grain-oriented electrical steel sheet having no glass coating with excellent insulating coating properties and method for producing the same
JP2004332071A (en) Method for producing high magnetic flux density grain-oriented magnetic steel sheet
JP2620171B2 (en) Method for producing high magnetic flux density grain-oriented electrical steel sheet without glass coating
JP2691837B2 (en) Method for manufacturing high magnetic flux density grain-oriented electrical steel sheet with good workability
JP2667082B2 (en) Ultra-low iron loss grain-oriented electrical steel sheet without glass coating and method for producing the same
JP2691828B2 (en) Ultra low iron loss grain oriented electrical steel sheet with extremely high magnetic flux density.
JP2592740B2 (en) Ultra-low iron loss unidirectional electrical steel sheet and method of manufacturing the same
JP2003193134A (en) Method of producing grain oriented silicon steel sheet having excellent magnetic property and coating property
JP3382804B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent glass coating
JP3061491B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP2003342642A (en) Process for manufacturing grain-oriented electrical steel sheet showing excellent magnetic properties and coating film properties
JP3011609B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties and less glass coating
JP2000034521A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JP7230931B2 (en) Method for manufacturing grain-oriented electrical steel sheet
JP2671084B2 (en) High magnetic flux density grain-oriented electrical steel sheet having excellent iron loss characteristics and method for producing the same
JP2671088B2 (en) High magnetic flux density grain-oriented electrical steel sheet with excellent magnetic properties and remarkably excellent iron core workability, and manufacturing method thereof
JPH0949027A (en) Separation agent for annealing for grain oriented silicon steel sheet excellent in surface characteristic and free from glass coating, and production of grain oriented silicon steel sheet using the same
JPH08279408A (en) Manufacture of unidirectional electromagnetic steel sheet being excellent in magnetic characteristics
JP2647334B2 (en) Manufacturing method of high magnetic flux density, low iron loss grain-oriented electrical steel sheet
JP2634801B2 (en) High magnetic flux density directional silicon iron plate with excellent iron loss characteristics
JP2603170B2 (en) Method for producing high magnetic flux density ultra-low iron loss grain-oriented electrical steel sheet with excellent workability
JP3357615B2 (en) Method for manufacturing oriented silicon steel sheet with extremely low iron loss
JP2706039B2 (en) Method for manufacturing mirror-oriented silicon steel sheet

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970715

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070905

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees