JP3382804B2 - Manufacturing method of grain-oriented electrical steel sheet with excellent glass coating - Google Patents

Manufacturing method of grain-oriented electrical steel sheet with excellent glass coating

Info

Publication number
JP3382804B2
JP3382804B2 JP01401697A JP1401697A JP3382804B2 JP 3382804 B2 JP3382804 B2 JP 3382804B2 JP 01401697 A JP01401697 A JP 01401697A JP 1401697 A JP1401697 A JP 1401697A JP 3382804 B2 JP3382804 B2 JP 3382804B2
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
temperature
grain
oriented electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01401697A
Other languages
Japanese (ja)
Other versions
JPH10212526A (en
Inventor
知二 熊野
浩康 藤井
義行 牛神
晃 坂井田
聖夫 向井
正雄 小野
収 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Plant Designing Corp
Original Assignee
Nittetsu Plant Designing Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Plant Designing Corp, Nippon Steel Corp filed Critical Nittetsu Plant Designing Corp
Priority to JP01401697A priority Critical patent/JP3382804B2/en
Publication of JPH10212526A publication Critical patent/JPH10212526A/en
Application granted granted Critical
Publication of JP3382804B2 publication Critical patent/JP3382804B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は方向性電磁鋼板の製
造における、脱炭焼鈍から最終仕上げ焼鈍における酸化
膜を制御したグラス皮膜の優れる方向性電磁鋼板の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented electrical steel sheet having an excellent glass film in which an oxide film is controlled during decarburization annealing to final finish annealing in the production of grain-oriented electrical steel sheet.

【0002】[0002]

【従来の技術】方向性電磁鋼板は、一般にトランスその
他の電気機器の鉄心材料として使用されるもので、磁気
特性として励磁特性と鉄損特性の優れるものが要求され
る。良好な磁気特性を得るためには磁化容易軸である<
001>軸を圧延方向に高度に揃える事が重要である。
また、板厚、結晶粒度、結晶粒度のほか皮膜の形成条件
も磁気特性に大きい影響を与えるため重要である。結晶
の方向性については、AlN或いはAlN,MnSをイ
ンヒビターとする高圧下最終冷延を特徴とする方法によ
り大幅に向上し、現在では磁束密度がほぼ理論値に近い
ものまで製造されるようになってきた。
2. Description of the Related Art Grain-oriented electrical steel sheets are generally used as iron core materials for transformers and other electrical equipment, and are required to have excellent magnetic excitation characteristics and iron loss characteristics. In order to obtain good magnetic characteristics, the axis of easy magnetization <
It is important to highly align the 001> axis in the rolling direction.
Further, the plate thickness, crystal grain size, and crystal grain size, as well as film forming conditions, are important because they have a great influence on the magnetic properties. The crystal orientation was greatly improved by a method characterized by final cold rolling under high pressure using AlN or AlN or MnS as an inhibitor, and at present, magnetic flux densities close to theoretical values are manufactured. Came.

【0003】さらに、近年では板厚の薄手化や高Si鋼
化への技術の進歩やグラス皮膜や絶縁皮膜の高張力化技
術の開発により、鉄損特性もかなりのレベルまで改善さ
れてきた。方向性電磁鋼板の需要家における使用時にお
いて、磁気特性と共に重要なのは皮膜特性である。これ
は、皮膜特性がトランス鉄心において絶縁性のみなら
ず、ビルデイングファクターや騒音発生要因となる磁気
歪み、歪み敏感度に対し影響を与えるからである。この
ように、方向性電磁鋼板の皮膜性能は製品特性に多大な
影響を与えると共に、その皮膜形成過程においては、グ
ラス皮膜の場合は鋼中インヒビターの制御や皮膜張力の
面で重要な役割を有し、絶縁皮膜の場合には、緻密さや
皮膜張力の面で重要な役割を有する。
Further, in recent years, iron loss characteristics have been improved to a considerable level by the progress of the technology for thinning the plate thickness and the high Si steel, and the development of the technology for increasing the tensile strength of the glass film and the insulating film. When the grain-oriented electrical steel sheet is used in a consumer's house, it is the film characteristic that is important together with the magnetic characteristic. This is because the film characteristics affect not only the insulating property of the transformer core, but also the building factor and the magnetic strain and strain sensitivity that cause noise. In this way, the film performance of grain-oriented electrical steel sheets has a great influence on product properties, and in the process of film formation, it has an important role in the control of inhibitor in steel and film tension in the case of glass film. However, in the case of an insulating film, it has an important role in terms of denseness and film tension.

【0004】このため、高磁束密度、低鉄損の方向性電
磁鋼板を得るためにも製造過程でのこれらの形成条件と
して、量、質、形成速度等を厳密に制御して形成するこ
とが重要である。通常、方向性電磁鋼板は最終仕上げ焼
鈍で形成するグラス皮膜(フォルステライト+スピネ
ル)と絶縁皮膜の二層皮膜によって表面処理がなされて
いる。前者は焼鈍分離剤MgOと脱炭焼鈍時に生成した
SiO2 主体の酸化膜との反応により形成するフォルス
テライト皮膜(Mg2 SiO4 )を主成分とし、本発明
のようにAlを鋼成分に利用する場合には、Al2 3
や他の焼鈍分離剤添加物によりもたらされる酸化物成分
や、こららによるスピネル構造の化合物によって構成さ
れている。このグラス皮膜はその形成状態や張力効果に
よって絶縁性、鉄損、磁歪等を改善する効果を有する。
一方、形成状態によっては、磁束密度、鉄損、占積率、
密着性、加工性、製品外観を低下させる。又、このグラ
ス皮膜は本発明のようにインヒビターとしてAlNを利
用する場合には、その形成時期、形成速度、形成量等が
鋼板界面において雰囲気ガスからの鋼中へのN化や脱
N,AlNの酸化等に影響してインヒビターAlNの安
定性に多大な影響を及ぼす。このため、適正なグラス皮
膜の形成反応を実現させることは皮膜特性と磁気特性を
両立した製品を得る上で重要である。
Therefore, in order to obtain a grain-oriented electrical steel sheet having a high magnetic flux density and a low iron loss, it is necessary to strictly control the quantity, quality, forming speed, etc. as the forming conditions of these in the manufacturing process. is important. In general, grain-oriented electrical steel sheets are surface-treated with a two-layer film consisting of a glass film (forsterite + spinel) formed by final finish annealing and an insulating film. The former uses a forsterite film (Mg 2 SiO 4 ) formed by the reaction between the annealing separator MgO and the oxide film mainly composed of SiO 2 generated during decarburization annealing, and uses Al as a steel component as in the present invention. In case of doing, Al 2 O 3
It is composed of an oxide component produced by the addition of other annealing separator additives, and a compound having a spinel structure by these. This glass film has the effect of improving the insulating property, iron loss, magnetostriction, etc. depending on the formation state and the tension effect.
On the other hand, depending on the formation state, magnetic flux density, iron loss, space factor,
Adhesion, processability, and product appearance are degraded. Further, when AlN is used as an inhibitor as in the present invention as in the present invention, the formation timing, formation rate, formation amount, etc., of N from the atmospheric gas into the steel at the interface of the steel sheet, denitrification of N, and AlN. And the stability of the inhibitor AlN is greatly affected. For this reason, it is important to realize an appropriate glass film formation reaction in order to obtain a product having both film properties and magnetic properties.

【0005】脱炭焼鈍酸化膜の形成条件によってグラス
皮膜や磁気特性を改善する技術は数々の提案がなされて
いる。特開昭59−185725号公報には、高磁束密
度方向性電磁鋼板の脱炭焼鈍工程において、脱炭焼鈍後
における鋼板酸素量を、−2500X+1163≦Y≦
−2500+1413(但しX;鋼板の板厚(mm)、
Y;鋼板の酸素量(ppm))式で与えられる範囲に制
御するものである。この発明は、脱炭焼鈍で形成する酸
化膜の酸素量を特定域に制御することにより高磁束密度
且つ低鉄損の特性が得られるというもので、酸素量と板
厚との関係で磁気特性への影響が述べられている。特開
平8−157971号公報には、インヒビター形成成分
としてMn:0.02〜0.15%、Se:0.005
〜0.06%、Al:0.010〜0.06%及びN:
0.0030〜0.0120%を含有する方向性電磁鋼
板素材の脱炭焼鈍工程で脱炭焼鈍前の鋼板表面の酸化物
量を酸素目付量で0.02〜0.10g/m2 に調整
し、その後の脱炭焼鈍を鋼板表面温度が500〜750
℃にある過程では雰囲気ガスの水素分圧を0.5〜0.
8にそれぞれ制御する方法が提案されている。この発明
では、脱炭焼鈍前の鋼板の酸化物量を制御し、昇温時と
昇温後の酸化性を制御することにより、Fe−Si−O
系の酸化物の質の違い、即ち、物質の違いにより地鉄と
雰囲気の反応を制御して二次再結晶を安定化し、磁気特
性の向上をはかるものである。又、特開平8−1439
64号公報には、冷間圧延を300〜400mmの圧延
ロールを用いたタンデム圧延を行い、脱炭焼鈍の昇温過
程及び均熱過程における水素分圧に対する水蒸気分圧の
比を調整し、昇温過程におけるPH2O/PH2を均熱過程の
それよりも低く設定することにより、従来、優れた磁気
特性を得る事が難しいとされていたロール径300mm
以上のタンデム圧延による1回圧延法の適用を可能とし
たものである。これにより、優れた磁気特性の方向性電
磁鋼板の効率よい製造を可能としたものである。又、同
様な方法として、特開平6−336616号公報には、
脱炭焼鈍の均熱過程の酸化度PH2O /PH2を0.7未満
とし、且つ、昇温過程の酸化度均熱過程より低く設定す
ることを特徴とすることにより、コイル全長、全巾にわ
たって均一なグラス皮膜を得る方法が提案されている。
しかし、これらの脱炭焼鈍の酸化膜や雰囲気ガスの制御
によるグラス皮膜や磁気特性の向上技術は、酸化膜の酸
素量やインヒビターの安定化を計るためのものであり、
コイル焼鈍におけるグラス皮膜の安定した反応制御や皮
膜の質の制御の面においては未だ十分であるとは言い難
い。
A number of proposals have been made for techniques for improving the glass film and magnetic properties depending on the conditions under which the decarburizing annealing oxide film is formed. In Japanese Patent Laid-Open No. 59-185725, in the decarburization annealing step of a high magnetic flux density grain-oriented electrical steel sheet, the steel sheet oxygen amount after decarburization annealing is -2500X + 1163 ≦ Y ≦.
-2500 + 1413 (however, X; thickness of steel plate (mm),
Y: oxygen content (ppm) of the steel plate is controlled within a range given by the formula. According to the present invention, the characteristics of high magnetic flux density and low iron loss can be obtained by controlling the oxygen content of the oxide film formed by decarburization annealing in a specific range. The impact on is stated. JP-A-8-157971 discloses that Mn: 0.02 to 0.15%, Se: 0.005 as an inhibitor-forming component.
~ 0.06%, Al: 0.010 to 0.06% and N:
In the decarburization annealing step of the grain-oriented electrical steel sheet material containing 0.0030 to 0.0120%, the amount of oxide on the surface of the steel sheet before decarburization annealing is adjusted to 0.02 to 0.10 g / m 2 in terms of oxygen basis weight. , Subsequent decarburization annealing, the steel plate surface temperature is 500 ~ 750
In the process of being at a temperature of 0 ° C, the hydrogen partial pressure of the atmospheric gas is 0.5 to 0.
8 have been proposed to control each. In the present invention, the Fe-Si-O content is controlled by controlling the amount of oxides of the steel sheet before decarburization annealing and controlling the oxidizability during and after the temperature rise.
The difference in the quality of the oxides of the system, that is, the difference in the substance, controls the reaction between the base iron and the atmosphere to stabilize the secondary recrystallization and improve the magnetic properties. Also, JP-A-8-1439
In Japanese Patent Publication No. 64, cold rolling is performed by tandem rolling using a rolling roll of 300 to 400 mm, and the ratio of water vapor partial pressure to hydrogen partial pressure in the temperature rising process and soaking process of decarburization annealing is adjusted to increase the temperature. By setting PH 2 O / PH 2 in the warming process to be lower than that in the soaking process, it was conventionally difficult to obtain excellent magnetic properties. Roll diameter 300 mm
The above-described single rolling method by tandem rolling can be applied. This enables efficient production of grain-oriented electrical steel sheets with excellent magnetic properties. Further, as a similar method, Japanese Patent Laid-Open No. 6-336616 discloses
By setting the degree of oxidation PH 2 O / PH 2 in the soaking process of decarburization annealing to be less than 0.7 and setting it to be lower than the degree of oxidation soaking process in the temperature raising process, Methods have been proposed for obtaining a uniform glass film over the width.
However, the technology for improving the glass film and magnetic properties by controlling the oxide film and atmosphere gas of these decarburization annealing is for stabilizing the oxygen content of the oxide film and the inhibitor.
It is hard to say that it is still sufficient in terms of stable reaction control of the glass film during coil annealing and control of the film quality.

【0006】[0006]

【発明が解決しようとする課題】本発明は、方向性電磁
鋼板のコイル焼鈍時に極めて均一なグラス皮膜を有し、
同時に磁気特性の良好な方向性電磁鋼板を提供すること
を目的とする。
SUMMARY OF THE INVENTION The present invention has an extremely uniform glass film during coil annealing of grain-oriented electrical steel sheets,
At the same time, it is an object to provide a grain-oriented electrical steel sheet having good magnetic properties.

【0007】[0007]

【課題を解決するための手段】本発明の均一なグラス皮
膜を有し、磁気特性の良好な方向性電磁鋼板の製造方法
においては脱炭焼鈍と焼鈍分離剤及びそれに引き続く仕
上げ焼鈍に特徴がある。最終冷延された素材は連続ライ
ンにおいて脱炭焼鈍される。この脱炭焼鈍により、一次
再結晶とCの除去及び鋼板表面にグラス皮膜を形成させ
るための酸化膜の形成が行われる。本発明においては、
先ず第一に、この脱炭焼鈍における雰囲気ガスの酸化度
PH2O/PH2を昇温から均熱まで全域にわたって0.15〜
0.59のファイヤライト生成領域に制御して焼鈍する
もので、これ以上の酸化度の脱炭焼鈍は適さない。この
際、生成する鉄酸化物量をFeOに換算して0.05〜
1.0g/m2 になるように焼鈍する。ただし、鉄酸化
物量の値は酸化膜のみを溶解し、定量したFeの値から
求めたものでg/m2 値で表す。これにより、酸化膜の
主成分となるSiO2 層が緻密となり、表層部にファイ
ヤライト構造の鉄酸化物が適切に形成される。この結
果、グラス皮膜形成における反応性が優れ、耐酸化性、
耐還元性、耐窒化性等が優れた酸化膜を形成する。
The method for producing a grain-oriented electrical steel sheet having a uniform glass film and good magnetic properties of the present invention is characterized by decarburization annealing, an annealing separator and subsequent finish annealing. . The final cold rolled material is decarburized and annealed in a continuous line. By this decarburization annealing, primary recrystallization, removal of C, and formation of an oxide film for forming a glass film on the surface of the steel sheet are performed. In the present invention,
First of all, the degree of oxidation of the atmospheric gas during this decarburization annealing
0.15 over the entire region of the PH 2 O / PH 2 from raising the temperature to the soaking
It is annealed while controlling the firelite production region to 0.59, and decarburization annealing with an oxidation degree higher than this is not suitable. At this time, the amount of iron oxide produced is converted into FeO of 0.05 to
Anneal to 1.0 g / m 2 . However, the value of the amount of iron oxide is obtained by quantifying the value of Fe obtained by dissolving only the oxide film, and is represented by g / m 2 value. As a result, the SiO 2 layer, which is the main component of the oxide film, becomes dense, and iron oxide having a firelite structure is appropriately formed on the surface layer portion. As a result, the reactivity in forming the glass film is excellent, the oxidation resistance,
An oxide film having excellent reduction resistance and nitriding resistance is formed.

【0008】本発明において、このように酸化膜を制御
するため脱炭焼鈍条件としては、800〜875℃の温
度において、N2 +H2 雰囲気下でPH2O /PH2、均熱
時間、加熱速度、通板速度、ガス量等をバランスさせて
焼鈍する。この際、前述の如く、脱炭焼鈍昇温から均熱
終了までを全域にわたって0.15〜0.59のファイ
ヤライト生成領域に制御して行うか、より好ましい条件
として、650℃以上の領域或いは昇温から均熱帯前段
(全均熱時間の30%未満)における雰囲気ガス酸化度
を均熱帯或いは残りの均熱帯領域の酸化度より低くして
焼鈍する。これにより、仕上げ焼鈍において、より優れ
た酸化膜の耐雰囲気性が達成される。次いで、本発明の
素材条件の場合、好ましくは均熱帯後半或いは冷却過程
で雰囲気ガスとしてN2 +H2 を用いる場合にはPH2O/
PH2 を0.001〜0.15,N 2 ガスを用いる場合に
は露点を−20℃〜+47℃とし、且つ熱化学平衡上S
iO2 生成領域で焼鈍が行われる。これにより、酸化膜
中のFe酸化物量が適切に保たれた状態で酸化膜表層部
と同時に内層SiO2 層部が緻密化され、後の仕上げ焼
鈍において追加酸化や還元、窒化が生じ難い酸化膜への
改質が行われる。
In the present invention, the oxide film is controlled as described above.
Therefore, as the decarburizing annealing condition, a temperature of 800 to 875 ° C is used.
In degrees, N2+ H2PH under the atmosphere2O / PH2, Soaking
Balance time, heating speed, stripping speed, gas amount, etc.
Anneal. At this time, as described above, the decarburization annealing temperature rise to the soaking
0.15-0.59 phis over the entire area until the end
Control in the jarlite generation area, or more preferable conditions
As the region above 650 ° C or the temperature rise,
Atmospheric gas oxidation degree in (less than 30% of total soaking time)
Lower than the degree of oxidation in the soaking zone or the rest of the soaking zone
Anneal. This makes it more excellent in finish annealing.
Atmosphere resistance of the oxide film is achieved. Then the invention
In the case of material conditions, preferably in the latter half of the tropical or cooling process
Atmosphere gas N2+ H2PH when using2O /
PH2 0.001-0.15, N 2When using gas
Has a dew point of −20 ° C. to + 47 ° C. and S on thermochemical equilibrium.
iO2Annealing is performed in the production area. This allows the oxide film
Oxide film surface layer with the amount of Fe oxide inside kept properly
At the same time the inner layer SiO2Layers are densified and finish firing later
For oxide film that is hard to cause additional oxidation, reduction, and nitriding in blunt
Modification is performed.

【0009】このような脱炭焼鈍条件を適用すること
は、特に、本発明の第2発明の様に低温スラブ加熱素材
を用いたストリップ窒化工程による製造の場合には絶大
な効果を発揮する。この場合の方向性電磁鋼板の製造方
法としては、鋼成分としてC:0.021〜0.075
%、Si:2.5〜4.5%、Mn:0.05〜0.4
5%、S≦0.014%、Al:0.010〜0.04
0%、N:0.0030〜0.130%、Sn:0.0
3〜0.50%を含有し、残部がFe及び不可避的不純
物からなるスラブを、1280℃未満の温度に加熱後、
熱延し、必要に応じて熱延板焼鈍した後、1回又は中間
焼鈍を挟む2回以上の冷延により最終板厚とし、脱炭焼
鈍の後ストリップ走行状態で窒化処理を行った鋼板に焼
鈍分離剤を塗布し、高温仕上げ焼鈍することを基本工程
とする。
The application of such decarburization annealing conditions exerts a great effect particularly in the case of the production by the strip nitriding process using the low temperature slab heating material as in the second aspect of the present invention. As a method of manufacturing the grain-oriented electrical steel sheet in this case, C: 0.021 to 0.075 as a steel component.
%, Si: 2.5 to 4.5%, Mn: 0.05 to 0.4
5%, S ≦ 0.014%, Al: 0.010 to 0.04
0%, N: 0.0030 to 0.130%, Sn: 0.0
After heating a slab containing 3 to 0.50% and the balance Fe and unavoidable impurities to a temperature below 1280 ° C.,
After hot-rolling, if necessary, hot-rolled sheet annealing, then cold rolling one or more times with intermediate annealing between them to obtain the final sheet thickness, and decarburization annealing to steel sheet that has undergone nitriding in strip running state. The basic process is to apply an annealing separator and then perform high temperature finish annealing.

【0010】このような成分と基本工程による場合は2
次再結晶温度が1100℃近傍と高く、グラス皮膜形成
過程の皮膜状態を介してのインヒビター(Al,Si)
Nの制御が重要であり、酸化膜の反応性や質の制御がグ
ラス皮膜のみならず、磁気特性に多大な影響をもたらす
からである。本発明の酸化膜形成、改質条件によればこ
のような問題が生じない。
When such components and basic steps are used, 2
The secondary recrystallization temperature is as high as around 1100 ° C, and inhibitors (Al, Si) via the film state during the glass film formation process
This is because the control of N is important, and controlling the reactivity and quality of the oxide film has a great influence not only on the glass film but also on the magnetic properties. According to the oxide film formation and modification conditions of the present invention, such a problem does not occur.

【0011】脱炭焼鈍後の鋼板は、次いで、同一ライン
或いは別ラインでコイル走行状態で連続的に窒化処理が
行われる。その際の最適窒化量は150〜300ppm
として処理される。その後焼鈍分離剤として、BET:
15〜40m2 /g、水和水分1.5〜3.5%のMg
O:100重量部に対し、Fe,Cl化合物の1種又は
2種以上をトータルF及び又はClとして脱炭焼鈍後の
酸化膜中の鉄酸化物量に対し、 −200X+400≦H≦−600X+950(H;ハ
ロゲン元素量(ppm)X;酸化膜中鉄酸化物量(Fe
Oとして、g/m2 )、0.05≦X≦1.0)で表さ
れる焼鈍分離剤を用いるのが第二の特徴である。
The decarburized and annealed steel sheet is then subjected to continuous nitriding treatment in the same line or another line while the coil is running. The optimum nitriding amount at that time is 150 to 300 ppm
Is treated as. After that, as an annealing separator, BET:
Mg of 15 to 40 m 2 / g and hydration water content of 1.5 to 3.5%
O: With respect to 100 parts by weight, with respect to the amount of iron oxide in the oxide film after decarburization annealing, one or two or more of Fe and Cl compounds is used as total F and / or Cl, -200X + 400≤H≤-600X + 950 (H Halogen element content (ppm) X; Iron oxide content in oxide film (Fe
The second characteristic is that an annealing separator represented by g / m 2 ) and 0.05 ≦ X ≦ 1.0) is used as O.

【0012】この際、他の添加剤として酸化物、硫酸
塩、硼酸塩等が必要に応じて添加され、スラリー状とし
て鋼板に塗布し、乾燥後、コイルに巻き取られる。次い
で、1200℃の温度で20Hrの最終焼鈍が行われ、
二次再結晶、グラス皮膜形成、純化が行われる。本発明
の第三の特徴は、この際の昇温時の雰囲気ガス条件にあ
る。本発明においては、仕上げ焼鈍昇温過程500〜9
00℃までの雰囲気ガスのN2 比率を50%以下とし、
且つ、酸化度PH2O/PH2 を熱化学平衡上ファイヤライト
生成域に保持して行われる。このような条件は、仕上げ
焼鈍時のコイルの有する水和水分、焼鈍分離剤の塗布
量、雰囲気ガス量、昇温条件等を制御して行われる。こ
の結果、仕上げ焼鈍のグラス皮膜形成までの間、追加酸
化、酸化膜の還元が生じず、追加窒化等も制御されて前
述の脱炭焼鈍や焼鈍分離剤添加剤等の改善効果が十分に
発揮されて極めて均一で優れたグラス皮膜を形成する。
At this time, other additives such as oxides, sulfates, borates, etc. are added as required, and the slurry is applied to the steel sheet, dried, and then wound into a coil. Then a final annealing of 20 hours at a temperature of 1200 ° C. is carried out,
Secondary recrystallization, glass film formation, and purification are performed. The third feature of the present invention resides in the atmospheric gas conditions at the time of temperature rise at this time. In the present invention, the finish annealing temperature rising process 500 to 9
The N 2 ratio of the atmosphere gas up to 00 ° C. is 50% or less,
In addition, the degree of oxidation PH 2 O / PH 2 is maintained in the fayalite formation region in thermochemical equilibrium. Such conditions are performed by controlling the hydration water content of the coil at the time of finish annealing, the application amount of the annealing separating agent, the amount of atmospheric gas, the temperature rising conditions and the like. As a result, additional oxidation and reduction of the oxide film do not occur until the glass film is formed during the final annealing, and additional nitriding, etc. is controlled, and the above-mentioned decarburizing annealing and annealing separating agent additives etc. are fully effective. To form a very uniform and excellent glass film.

【0013】このようにして得られたグラス皮膜つきの
鋼板は、連続ラインに於いて800〜900℃で絶縁皮
膜処理とヒートフラットニングが行われる。方向性電磁
鋼板においては前述の如く、皮膜の張力が鉄損特性、磁
歪特性の改善に効果的である。このため、例えば、特公
昭53−28375号公報に記載されているような燐酸
塩−コロイダルシリカ系の張力付与型のコーティング剤
が塗布焼き付け処理される。又、更に、鉄損改善を行う
場合には、ヒートフラットニング処理の前又は後にレー
ザー、歯型ロール、プレスロール、ケガキ、局部エッチ
ング等により深さ1〜30μm、間隔2〜15mmで圧
延方向に対し、45°〜90°の方向に点状又は線状の
歪み或いは溝形成処理が行われる。
The glass sheet-coated steel sheet thus obtained is subjected to insulation coating treatment and heat flattening at 800 to 900 ° C. in a continuous line. As described above, in the grain-oriented electrical steel sheet, the tension of the coating is effective for improving the iron loss characteristic and the magnetostrictive characteristic. Therefore, for example, a phosphate-colloidal silica-based tension-imparting coating agent as described in JP-B-53-28375 is applied and baked. Further, when further improving the iron loss, before or after the heat flattening treatment, a depth of 1 to 30 μm and an interval of 2 to 15 mm in the rolling direction by laser, tooth roll, press roll, scribing, local etching, etc. On the other hand, a point-shaped or linear strain or groove forming process is performed in the direction of 45 ° to 90 °.

【0014】本発明者等はAlN,MnSをインヒビタ
ーに用いた方向性電磁鋼板或いは脱炭焼鈍後にストリッ
プ窒化を行い、(Al,Si)N主体のインヒビターを
形成し、焼鈍分離剤と最終仕上げ焼鈍により良質のグラ
ス皮膜と磁気特性を得るためには、脱炭焼鈍における酸
化膜の質の制御、焼鈍分離剤の反応性、仕上げ焼鈍の昇
温時の雰囲気酸化度の制御をバランス良く特定域に制御
することが重要であることを突き止めた。
The present inventors performed grain nitriding electrical steel sheet using AlN, MnS as an inhibitor or strip nitriding after decarburization annealing to form an inhibitor mainly composed of (Al, Si) N, an annealing separator and a final finish annealing. In order to obtain a good quality glass film and magnetic properties, control of the quality of the oxide film during decarburization annealing, reactivity of the annealing separator, and control of the atmospheric oxidation degree at the time of temperature increase during finish annealing are well balanced in a specific range. They found that control was important.

【0015】即ち、これらの工程条件を適切にすること
は、酸化膜の極めて優れた反応性と緻密さが安定して得
られ、コイル焼鈍において重要な、仕上げ焼鈍昇温過程
でのコイル各部でのグラス皮膜形成の均一反応や酸化膜
の追加酸化や還元或いは雰囲気ガスからの追加窒化を防
止して、グラス皮膜形成時にコイル全長、全巾にわたっ
て均一な皮膜形成を行わせる。また、これにより、イン
ヒビターAlN成分が高温まで安定に保たれる。また、
ストリップ窒化プロセスの場合、高温域に於いて有効な
AlNに変化する段階まで質、量の安定化が保たれ、二
次再結晶の安定化が保たれる。この結果、磁気特性の面
においても優れた特性が得られる技術の開発に至ったも
のである。
That is, if these process conditions are made appropriate, the extremely excellent reactivity and denseness of the oxide film can be stably obtained, and in each part of the coil during the finish annealing temperature rising process, which is important in coil annealing. The uniform reaction of the glass film formation, the additional oxidation and reduction of the oxide film, and the additional nitridation from the atmospheric gas are prevented, and the uniform film formation is performed over the entire length and width of the coil during the glass film formation. In addition, this also keeps the inhibitor AlN component stable up to high temperatures. Also,
In the case of the strip nitriding process, the quality and quantity are kept stable and the secondary recrystallization is kept stable until the effective AlN is changed in the high temperature region. As a result, the development of a technique that can provide excellent magnetic properties has been achieved.

【0016】[0016]

【発明の実施の形態】次に、本発明における構成技術の
限定理由について述べる。本発明での特徴は脱炭焼鈍条
件、焼鈍分離剤、最終仕上げ焼鈍条件である。先ず、脱
炭焼鈍条件としては、800〜875℃で行われ、この
際、昇温、均熱時の雰囲気ガスの酸化度PH2O /PH2
図1に示す様に0.15〜0.59の熱化学平衡上ファ
イヤライト形成領域に制御するのが重要である。
BEST MODE FOR CARRYING OUT THE INVENTION Next, the reasons for limiting the construction technique of the present invention will be described. The features of the present invention are decarburization annealing conditions, an annealing separator, and final finishing annealing conditions. First, the decarburization annealing conditions are performed at 800 to 875 ° C., and the oxidation degree PH 2 O / PH 2 of the atmospheric gas at the time of temperature rising and soaking is 0.15 to 0 as shown in FIG. Due to the thermochemical equilibrium of 0.59, it is important to control the formation of firelite.

【0017】特に、本発明の様に(Al,Si)Nを仕
上げ焼鈍過程で昇温時950℃近傍でAlNに変化させ
てインヒビターとする工程では、仕上げ焼鈍昇温過程に
いかに表面のシール性やグラス皮膜反応性を向上して、
耐酸化性、耐還元性、耐窒化性の優れる酸化膜層とする
かが良好なグラス皮膜と二次再結晶を両立する鍵とな
る。従来の脱炭焼鈍の雰囲気制御法として提案されてい
る方法では、雰囲気ガス条件がかなり酸化度の高い領域
を中心としたもので本発明には適さない。
In particular, in the step of changing (Al, Si) N to AlN in the vicinity of 950 ° C. when the temperature is raised in the finish annealing process as an inhibitor as in the present invention, the surface sealing property is increased in the finish annealing temperature rising process. And improve the glass film reactivity,
The key to achieving both good glass film and secondary recrystallization is to use an oxide film layer having excellent oxidation resistance, reduction resistance, and nitriding resistance. The method proposed as a conventional method for controlling the atmosphere of decarburization annealing is not suitable for the present invention because the atmosphere gas condition is mainly in the region where the degree of oxidation is considerably high.

【0018】雰囲気ガスの酸化度PH2O /PH2は0.1
5未満では、脱炭性が悪くなる他本発明のFe系酸化物
量の確保が難しくなり、又必要酸化量を得る事が工業的
に難しくなるため制限される。一方、0.59超になる
と雰囲気が均熱帯領域800〜875℃でFeO生成域
となり、表面に低級なFe系酸化物(FeO)を生成す
る結果、グラス皮膜形成に有害である他、後の酸化膜改
質処理、窒化処理、仕上げ焼鈍昇温過程に還元されて、
表層部にメタル状鉄露出部を生じ、前記、耐雰囲気性を
損なうため良好なグラス皮膜や磁性が得られなくなる。
The degree of oxidation of the atmospheric gas PH 2 O / PH 2 is 0.1
When it is less than 5, decarburization is deteriorated and it is difficult to secure the amount of the Fe-based oxide of the present invention, and it is industrially difficult to obtain the required amount of oxidation, so that it is limited. On the other hand, if it exceeds 0.59, the atmosphere becomes a FeO generation region in the soaking zone 800 to 875 ° C., and a low-grade Fe-based oxide (FeO) is generated on the surface, which is harmful to the glass film formation and Oxide film reforming treatment, nitriding treatment, reduction by finish annealing temperature rise process,
A metal-like iron exposed portion is generated on the surface layer portion, and the atmosphere resistance is impaired, so that a good glass film or magnetism cannot be obtained.

【0019】この脱炭焼鈍工程では、好ましい範囲とし
て、焼鈍前段650℃以上の昇温時或いは650℃以
上、均熱帯前段30%以内の領域で均熱帯或いは残りの
均熱帯よりも酸化度を低下させて行うのが良い。この場
合、酸化膜の緻密性の向上効果と良好な脱炭性が得られ
る。昇温時の雰囲気ガスの酸化度の制御を650℃以上
としたのは、この温度以下ではほとんど鋼板の酸化が進
行せず、影響が見られないからである。又、均熱帯領域
の酸化度の低下が全均熱帯領域の30%以上に達する
と、酸化度の設定条件によっては後の酸化の制御や脱炭
に影響を及ぼし、又、本発明の鉄酸化物量の確保が困難
になり、グラス皮膜形成に悪影響をもたらすため制限さ
れる。この前段領域と後段領域に雰囲気酸化度の差をつ
ける場合、炉内に雰囲気ガス仕切装置を設けてシャープ
に差を付けるか導入ガスの露点、ガス量等の制御によっ
て雰囲気ガスの酸化度に傾斜をつける方法で行う。
In this decarburization annealing step, as a preferable range, the degree of oxidation is lower than that of the soaking zone or the remaining soaking zone in the temperature range of 650 ° C. or more before annealing, or in the region of 650 ° C. or more and within 30% of soaking zone before annealing. It is better to let it do it. In this case, an effect of improving the denseness of the oxide film and a good decarburizing property can be obtained. The control of the degree of oxidation of the atmospheric gas at the time of temperature rise is set to 650 ° C. or higher because the oxidation of the steel sheet hardly progresses below this temperature and no influence is observed. Further, when the decrease in the degree of oxidation in the soaking zone reaches 30% or more of the total soaking zone, it affects the subsequent control of oxidation and decarburization depending on the setting conditions of the degree of oxidation, and the iron oxidation of the present invention It is limited because it becomes difficult to secure the amount of material and it has an adverse effect on the glass film formation. When making a difference in the atmospheric oxidation degree between the front-stage area and the rear-stage area, an atmosphere gas partition device is provided in the furnace to make a sharp difference, or the degree of oxidation of the atmosphere gas is inclined by controlling the dew point of the introduced gas, the amount of gas, etc. The method of attaching.

【0020】本発明の成分と工程条件の場合、脱炭焼鈍
の後段或いは冷却過程で500℃までの雰囲気ガスの酸
化度を制御することにより、酸化膜表面の改質/及び又
は変質の防止が行われる。これにより、酸化膜の耐酸化
性、耐還元性、耐窒化性が向上し、優れたグラス皮膜が
得られる。この場合、雰囲気ガスにH2 +N2 ガスが用
いられる場合、PH2O /PH2を0.001〜0.15に
制御させて行われる。0.001未満では、表面の還元
が進みすぎて反応性低下をもたらすため好ましくない。
一方、0.15超では、表面の改質が不十分であった
り、冷却過程で追加酸化を生じ酸化膜のシール性低下や
グラス形成反応におけるコイル内での不均一化を生じる
ので好ましくない。0.001〜0.105の範囲であ
れば、酸化膜最表層と内層SiO2 膜の緻密化が促進さ
れ、Fe酸化物量も安定に保たれて安定した雰囲気のシ
ール効果と均一なグラス皮膜形成の効果が得られる。
In the case of the components and process conditions of the present invention, modification of the oxide film surface and / or prevention of alteration can be prevented by controlling the oxidation degree of the atmospheric gas up to 500 ° C. in the subsequent stage of decarburization annealing or in the cooling process. Done. Thereby, the oxidation resistance, reduction resistance, and nitriding resistance of the oxide film are improved, and an excellent glass film is obtained. In this case, when H 2 + N 2 gas is used as the atmosphere gas, PH 2 O / PH 2 is controlled to 0.001 to 0.15. If it is less than 0.001, the reduction of the surface proceeds too much and the reactivity decreases, which is not preferable.
On the other hand, if it exceeds 0.15, the surface is not sufficiently modified, additional oxidation is caused during the cooling process, the sealing property of the oxide film is deteriorated, and the glass forming reaction is not uniform in the coil, which is not preferable. Within the range of 0.001 to 0.105, the densification of the outermost layer of the oxide film and the inner layer SiO 2 film is promoted, the amount of Fe oxide is also kept stable, and a stable atmosphere sealing effect and uniform glass film formation are formed. The effect of is obtained.

【0021】この様に脱炭焼鈍される本発明において
は、脱炭焼鈍後のFe酸化物量は0.05〜1.0g/
2 である。本発明の場合、脱炭焼鈍雰囲気ガスの酸化
度はファイヤライト生成領域であり、Fe酸化物として
はFe2 SiO4 によりもたらされるものが主体であ
る。0.05g/m2 未満では酸化膜の反応性が不足し
てグラス皮膜形成の均一性や厚みに影響する。一方、
1.0g/m2 超では過酸化減少特有の金属斑点、スケ
ール、黒変等の欠陥が生じやすくなるため制限される。
In the present invention in which decarburization annealing is performed in this manner, the amount of Fe oxide after decarburization annealing is 0.05 to 1.0 g /
m 2 . In the case of the present invention, the degree of oxidation of the decarburizing and annealing atmosphere gas is in the firelite generation region, and the Fe oxide is mainly the one brought by Fe 2 SiO 4 . If it is less than 0.05 g / m 2 , the reactivity of the oxide film is insufficient and the uniformity and thickness of the glass film formation are affected. on the other hand,
If it exceeds 1.0 g / m 2 , defects such as metallic spots, scales, and blackening peculiar to reduction of peroxide are likely to occur, so that it is limited.

【0022】次に、低温スラブ加熱素材をストリップ窒
化プロセスで処理する場合は、出発材のスラブの成分は
重量でC:0.021〜0.075%、Si:2.5〜
4.5%、Mn:0.05〜0.45%、S:≦0.0
14%、酸可溶Al:0.010〜0.040%、N:
0.0030〜0.0130%、Sn:0.03〜0.
50%を含有し、残部がFe及び不可避不純物からな
る。
Next, when the low temperature slab heating material is processed by the strip nitriding process, the components of the starting slab are C: 0.021 to 0.075% by weight and Si: 2.5 to.
4.5%, Mn: 0.05 to 0.45%, S: ≤ 0.0
14%, acid-soluble Al: 0.010 to 0.040%, N:
0.0030 to 0.0130%, Sn: 0.03 to 0.
It contains 50% and the balance is Fe and inevitable impurities.

【0023】Cはその含有量が0.021%未満では二
次再結晶が不安定となり、二次再結晶した場合にも製品
の磁束密度がB8 で1.80Tesla程度と低いもの
にな極めてる。一方、0.075%を超えると脱炭工程
で長時間を要し、特に本発明の脱炭焼鈍雰囲気条件では
生産性を阻害する。Siはその含有量によって製品の固
有抵抗が変化する。2.5%未満では良好な鉄損値が得
られず、一方、4.5%超では冷延時に割れ、破断が多
発し、安定した冷延作業を不可能にする。
When the content of C is less than 0.021%, the secondary recrystallization becomes unstable, and even when the secondary recrystallization is performed, the magnetic flux density of the product is as low as about 1.80 Tesla at B 8. It On the other hand, if it exceeds 0.075%, it takes a long time in the decarburizing step, and particularly under the decarburizing annealing atmosphere conditions of the present invention, the productivity is impaired. The specific resistance of Si varies depending on its content. If it is less than 2.5%, a good iron loss value cannot be obtained. On the other hand, if it exceeds 4.5%, cracks and fractures frequently occur during cold rolling, making stable cold rolling operation impossible.

【0024】本第二発明の成分の特徴の一つはSを0.
014%以下とする事である。従来の公知技術の、例え
ば、特公昭47−25220号公報に開示されている技
術においては、SはMnSとして二次再結晶を生起させ
るに必要な析出物を形成する元素で、前記公知技術にお
いて最も効果を発現するS量の範囲があり、それは熱延
に先だって行われるスラブ加熱段階でMnSを固溶でき
る量として規定されていた。しかし、近年の研究におい
て二次再結晶に必要な析出物として、(Al,Si)N
を用いる低温スラブ加熱の一方向電磁鋼板の製造方法に
おいて、素材中のSi量の多いスラブを低温で加熱して
熱延する場合、Sは二次再結晶不良を助長することが見
いだされた。素材中のSi量が4.5%以下の場合は
0.014%以下好ましくは0.0070%以下であれ
ば二次再結晶不良の発生は全く生じない。
One of the characteristics of the component of the second invention is that S is 0.
It is to be 014% or less. In the conventional known technique, for example, the technique disclosed in Japanese Examined Patent Publication No. 47-25220, S is an element that forms a precipitate necessary for causing secondary recrystallization as MnS. There is a range of the amount of S that exerts the most effect, and it was defined as the amount of MnS that can be solid-dissolved in the slab heating step performed prior to hot rolling. However, in recent studies, (Al, Si) N has been used as a precipitate necessary for secondary recrystallization.
In a method for producing a one-way electrical steel sheet using a low temperature slab heating using S, S was found to promote secondary recrystallization failure when a slab containing a large amount of Si in a raw material was heated at a low temperature and hot rolled. If the Si content in the material is 4.5% or less, 0.014% or less, preferably 0.0070% or less, no secondary recrystallization failure occurs at all.

【0025】本発明では、二次再結晶に必要な析出物と
して(Al,Si)Nを用いる。従って950℃近傍の
高温で生成する必要最小限のAlNを確保するためには
酸可溶Alは0.010%以上、Nは0.0030%以
上が必要となる。しかしながら、酸可溶Alが0.04
0%を超えると熱延中のAlNが不適切となり、二次再
結晶が不安定となるため0.010〜0.040%に制
限される。一方、Nの含有量としては、0.0130%
を超えるとブリスターと呼ばれる鋼板表面の割れが発生
し、また、一次再結晶の粒径が調整できないため、0.
0030〜0.0130%に限定する。
In the present invention, (Al, Si) N is used as a precipitate necessary for secondary recrystallization. Therefore, in order to secure the minimum necessary AlN generated at a high temperature near 950 ° C., 0.010% or more of acid-soluble Al and 0.0030% or more of N are required. However, acid-soluble Al is 0.04
If it exceeds 0%, AlN during hot rolling becomes unsuitable and the secondary recrystallization becomes unstable, so it is limited to 0.010 to 0.040%. On the other hand, the content of N is 0.0130%
If it exceeds 0.1, cracks on the surface of the steel sheet called blister occur, and the grain size of primary recrystallization cannot be adjusted.
It is limited to 0030 to 0.0130%.

【0026】Mnは0.05%未満では二次再結晶が不
安定になる。しかし、多くなるとB 8 値は高くなるが一
定両以上の添加はコスト面で不利になる。このため、
0.05〜0.45%に制限される。これらの成分を出
発材とした、本発明での特徴は脱炭焼鈍条件、焼鈍分離
剤、最終仕上げ焼鈍条件である。
If Mn is less than 0.05%, secondary recrystallization is not possible.
Be stable. However, when the number increases, B 8Value is high but
Adding more than the fixed amount is disadvantageous in terms of cost. For this reason,
It is limited to 0.05 to 0.45%. Release these ingredients
The characteristics of the present invention used as the material are decarburization annealing conditions and annealing separation.
Agent, final finish annealing conditions.

【0027】次に、本発明に用いる焼鈍分離剤として
は、BET:15〜40m2 /g、水和水分:1.5〜
3.5%のMgO:100重量に対しF,Cl化合物の
1種又は2種以上をトータルF及び/又はClとして酸
化膜中のFe酸化物量に対し−200X+400≦H≦
−600X+950の関係式になるように添加する。本
発明では脱炭酸化膜の高反応性化と緻密化をベースにし
ているものの、焼鈍分離剤も重要な役割を有する。Mg
OのBETが15m2 /g未満では、グラス皮膜形成が
高温側にずれる傾向があり、仕上げ焼鈍においてコイル
外周やエッジ部の酸化や窒化の影響を受けやすくなる。
一方、40m2 /g超になると現場塗布ラインに於いて
水和水分の制御が困難になり、コイル内でのグラス皮膜
の不均一を生じる場合がある。水和水分は1.5%未満
では、板間の酸化度が不足し、コイル内、特に、コイル
焼鈍加熱時の最冷点近傍のグラス皮膜の薄膜化をもたら
すため制限される。一方、3.5%超では、仕上げ焼鈍
昇温時の雰囲気ガスが過酸化となって、コイル外周やエ
ッジ部の追加酸化酸化を生じグラス皮膜欠陥を増加す
る。更に、この追加酸化を介するインヒビターの弱体化
を生じ、磁気特性の劣化をもたらすため制限される。
Next, as the annealing separator used in the present invention, BET: 15-40 m 2 / g, hydrated water content: 1.5-
3.5% MgO: 100% by weight, with one or more F and Cl compounds as total F and / or Cl, based on the amount of Fe oxide in the oxide film, -200X + 400 ≦ H ≦
Add so that the relational expression is −600 × + 950. Although the present invention is based on making the decarboxylated film highly reactive and densified, the annealing separator also has an important role. Mg
When the BET of O is less than 15 m 2 / g, the glass film formation tends to shift to the high temperature side, and the finish annealing tends to be affected by the oxidation and nitriding of the coil outer periphery and the edge portion.
On the other hand, when it exceeds 40 m 2 / g, it becomes difficult to control the water content of hydration in the field coating line, which may cause nonuniformity of the glass film in the coil. If the hydrated water content is less than 1.5%, the degree of oxidation between the plates will be insufficient, and the glass film in the coil, especially near the coldest point during coil annealing heating, will be thinned, which is limited. On the other hand, if it exceeds 3.5%, the atmospheric gas at the time of temperature rise during finish annealing becomes peroxidized, causing additional oxidative oxidation on the outer circumference of the coil and the edge portion to increase glass film defects. Furthermore, it is limited due to weakening of the inhibitor via this additional oxidation, which leads to deterioration of the magnetic properties.

【0028】このような焼鈍分離剤主成分のMgOに添
加される反応促進剤として、F,Cl化合物は図2に示
すような範囲で添加される。このF,Cl量はベースM
gOと添加物からもたらされるもののトータル量で、 −200X+400≦H≦−600X+950(H;ハ
ロゲン元素量(ppm)X;酸化膜中鉄酸化物量(Fe
Oとして、g/m2 )、0.05≦X≦1.0)で表さ
れるFe酸化物とバランスさせて添加されなければなら
ない。F,Cl量がこの範囲未満の場合、グラス皮膜の
安定向上効果が得られない。一方、この範囲を超える
と、シモフリと呼ばれる点状の金属斑点、スケール等の
欠陥が生じる。又、極端な場合には、全面的に薄膜化傾
向が生じるようになる。
As the reaction accelerator added to MgO which is the main component of the annealing separator, the F and Cl compounds are added within the range shown in FIG. The amount of F and Cl is based on M
The total amount of gO and additives is −200X + 400 ≦ H ≦ −600X + 950 (H; halogen element amount (ppm) X; iron oxide amount in oxide film (Fe
O must be added as O in balance with the Fe oxide represented by g / m 2 ) and 0.05 ≦ X ≦ 1.0). If the amounts of F and Cl are less than this range, the effect of improving the stability of the glass film cannot be obtained. On the other hand, if it exceeds this range, defects such as dot-like metal spots and scales called shimofuri occur. Further, in an extreme case, a tendency of thinning occurs on the entire surface.

【0029】次に、仕上げ焼鈍における雰囲気ガスとし
ては、昇温時500〜900℃における雰囲気ガスのN
2 比率を50%以下とし、各温度域における酸化度を熱
化学平衡上ファイヤライト生成域に保つのが好ましい。
本発明では、鋼中インヒビターとして、(Al,Si)
Nを用いるが、仕上げ焼鈍での酸化、窒化、脱窒によ
り、これらの量や質に影響をもたらしたり、グラス皮膜
形成状態に影響を与える。特に、昇温時500℃以上で
は、前記現象から、酸化膜の変質を生じる領域であり、
グラス皮膜形成反応が活発になる900℃までの雰囲気
ガスの参加度が熱化学平衡上ファイヤライト生成領域に
制御されれば、酸化膜表面の変化が生じずグラス皮膜形
成まで安定に保たれる。昇温時500〜900℃までの
雰囲気がファイヤライト生成域よりドライ側(SiO2
生成域)では昇温長時間の中で表層の還元が生じ反応性
が低下する。この結果、コイル外周やエッジ部での皮膜
欠陥が増加する。又、脱窒が早まって二次再結晶不良を
生じる場合がある。一方、ファイヤライト生成域より酸
化側(FeO生成域)では、昇温時グラス皮膜形成前に
過剰な酸化を生じコイル外周部やエッジ部に過酸化によ
る皮膜欠陥が多発したり、二次再結晶の不均一化をもた
らすため好ましくない。
Next, as the atmosphere gas in the finish annealing, N of the atmosphere gas at a temperature rise of 500 to 900 ° C. is used.
It is preferable that the ratio of 2 is 50% or less and that the oxidation degree in each temperature range is maintained in the fayalite formation region in terms of thermochemical equilibrium.
In the present invention, as an inhibitor in steel, (Al, Si)
N is used, but the amount, quality, and the glass film formation state are affected by the oxidation, nitriding, and denitrification during finish annealing. Particularly, when the temperature is raised to 500 ° C. or higher, it is a region where the quality of the oxide film is changed from the above phenomenon,
If the degree of participation of the atmospheric gas up to 900 ° C. where the glass film forming reaction becomes active is controlled in the fayalite formation region due to thermochemical equilibrium, the oxide film surface does not change and the glass film formation is kept stable. At the time of temperature rise, the atmosphere from 500 to 900 ° C is on the dry side (SiO 2
In the production region), the surface layer is reduced over a long period of temperature rise, and the reactivity decreases. As a result, film defects on the outer circumference of the coil and the edge portion increase. Further, denitrification may be accelerated and secondary recrystallization failure may occur. On the other hand, in the oxidation side (FeO generation area) from the firelite generation area, excessive oxidation occurs before the glass film is formed at the time of temperature rise, and film defects due to overoxidation occur frequently in the coil outer peripheral portion and the edge portion, and secondary recrystallization occurs. Is not preferable because it causes non-uniformity.

【0030】[0030]

【実施例】【Example】

(実施例1)重量でC:0.076%、Si:3.25
%、Mn:0.06%、酸可溶Al:0.028%、
S:0.024%、N:0.0080%、Cu:0.0
8%、Sn:0.12%、残部をFeと不可避の不純物
からなる高磁束密度方向性電磁鋼板素材スラブを135
0℃で加熱し、熱延し、2.3mmの熱延板とした。次
いで、1120℃で2分間焼鈍し、酸洗、冷延し、最終
板厚0.22mmとした。次いで、830℃の温度で1
20秒間、N2 25%+H2 75%中で表1に示す様に
露点を変更して酸化度を制御した炉内で脱炭焼鈍を行っ
た。この際、脱炭焼鈍の後段領域で830℃の温度で1
0秒間、同一雰囲気中での酸化度を0.10として焼鈍
した。この際の酸化膜の鉄酸化物量は表1に示す通りで
ある。このコイルに焼鈍分離剤としてBET:18m2
/g、水和水分:2.5%のMgO:100重量部に対
し、TiO:2 5重量部とNaF,FeCl2 によりト
ータルF及びClをそれぞれF:200ppm、Cl:
350ppmになるように調整した焼鈍分離剤スラリー
を片面当たり7g/m2 の割合で塗布乾燥後巻き取り、
1200℃の温度で20Hrの仕上げ焼鈍を行った。そ
の後、絶縁皮膜剤として30%コロイダルシリカ:10
0ml+50%第一リン酸Al:70ml+CrO:3
9gよりなる処理剤を焼き付け後の重量で5g/m2
なるように塗布し、850℃の温度で30秒の焼き付け
処理を行い製品とした。この試験におけるグラス皮膜と
磁気特性の結果を表2に示す。
(Example 1) C: 0.076% by weight, Si: 3.25
%, Mn: 0.06%, acid-soluble Al: 0.028%,
S: 0.024%, N: 0.0080%, Cu: 0.0
8%, Sn: 0.12%, the balance is Fe and the unavoidable impurities are high magnetic flux density grain-oriented electrical steel sheet material slab 135
It heated at 0 degreeC and hot-rolled, and it set it as the hot-rolled board of 2.3 mm. Then, it was annealed at 1120 ° C. for 2 minutes, pickled and cold rolled to a final plate thickness of 0.22 mm. Then 1 at 830 ° C
Decarburization annealing was performed in a furnace in which the dew point was changed and the degree of oxidation was controlled as shown in Table 1 in N 2 25% + H 2 75% for 20 seconds. At this time, at a temperature of 830 ° C. in the latter part of the decarburization annealing,
Annealing was performed for 0 seconds in the same atmosphere with an oxidation degree of 0.10. The amount of iron oxide in the oxide film at this time is as shown in Table 1. BET: 18 m 2 as an annealing separator on this coil
/ G, hydrated water content: 2.5% MgO: 100 parts by weight, TiO: 2 5 parts by weight and total F and Cl by NaF and FeCl2: F: 200 ppm, Cl:
The annealing separator slurry adjusted to 350 ppm was applied and dried at a rate of 7 g / m 2 per side, and then wound up,
Finish annealing of 20 hours was performed at a temperature of 1200 ° C. Then, 30% colloidal silica as an insulating film agent: 10
0 ml + 50% Al primary phosphate: 70 ml + CrO: 3
A treatment agent consisting of 9 g was applied so that the weight after baking was 5 g / m 2 , and baking treatment was performed at a temperature of 850 ° C. for 30 seconds to obtain a product. Table 2 shows the results of the glass film and the magnetic properties in this test.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】この試験の結果、本発明1〜4では脱炭焼
鈍後の酸化膜表層の成分はFe2 SiO4 ,SiO2
あり、比較例1.2によるものは何れもFeOが最も強
く検出され、SiO2 成分は弱かった。又、酸化物中の
鉄酸化物量も、比較例の場合多く検出されたのに対し、
本発明では0.08〜0.26と低く、組成物、構成割
合ともかなり異なることが確認された。
As a result of this test, in the present inventions 1 to 4, the components of the oxide film surface layer after decarburization annealing were Fe 2 SiO 4 and SiO 2 , and FeO was detected most strongly in all of Comparative Examples 1.2. The SiO 2 component was weak. Further, the amount of iron oxide in the oxide was also detected in many cases in the comparative example,
In the present invention, it was as low as 0.08 to 0.26, and it was confirmed that the composition and the composition ratio were considerably different.

【0034】仕上げ焼鈍後のグラス皮膜は、本発明材の
場合、コイル外周から内周まで灰黒色の均一なグラス皮
膜が形成され、磁気特性も良好であった。一方、比較例
では、コイル外周部とエッジ部に金属斑点状やスケール
状の欠陥が多く見られ、皮膜量の分析結果においてもバ
ラツキが多く、追加酸化や還元を受けて、不安定である
事が分かった。また、磁気特性においても本発明に比し
かなり劣る結果となった。 (実施例2)重量でC:0.055%、Si:3.30
%、Mn:0.11%、酸可溶Al:0.030%、
S:0.0068%、N:0.0071%、Sn:0.
035%、残部をFeと不可避的不純物からなる素材を
1150℃でスラブ加熱の後2.6mmに熱延し、11
20℃で2分間焼鈍し、酸洗、冷延し、最終板厚0.2
9mmとした。次いで、830℃の温度で130秒間、
2 :25%+H2 :75%中で表3に示す様に露点を
変更して酸化度を制御した炉内で脱炭焼鈍を行った。こ
の際、脱炭焼鈍の後段領域で830℃の温度で10秒
間、雰囲気の酸化度を0.0020として焼鈍した。そ
の後、N2 :25%+H2 :75%+NH3雰囲気中で
鋼板N量が200ppmになるように窒化処理を行っ
た。この際の酸化膜の鉄酸化物量は表3に示す通りであ
る。このコイルに焼鈍分離剤としてBET:22m2
g、水和水分:1.8%のMgO:100重量部に対
し、TiO:2 5重量部とHCl,HFによりトータル
F及びClをそれぞれF:200ppm,Cl:250
ppmになるように調整した焼鈍分離剤スラリーを片面
当たり7g/m2 の割合で塗布乾燥後巻き取り、120
0℃の温度で20Hrの仕上げ焼鈍を行った。その後、
絶縁皮膜剤として30%コロイダルシリカ100ml+
50%第一リン酸Al:70ml+CrO:3 9gより
なる処理剤を焼き付け後の重量で5g/m2 になるよう
に塗布し、850℃の温度で30秒の焼き付け処理を行
い製品とした。この試験におけるグラス皮膜と磁気特性
の結果を表4に示す。
In the case of the material of the present invention, the glass film after finish annealing was a grayish black uniform glass film from the outer circumference to the inner circumference of the coil, and the magnetic properties were good. On the other hand, in the comparative example, many metal spot-like or scale-like defects were found in the outer peripheral portion and the edge portion of the coil, and there were many variations in the analysis result of the film amount, which was unstable due to additional oxidation or reduction. I understood. Also, the magnetic properties were considerably inferior to those of the present invention. (Example 2) C: 0.055% by weight, Si: 3.30
%, Mn: 0.11%, acid-soluble Al: 0.030%,
S: 0.0068%, N: 0.0071%, Sn: 0.
A material consisting of 035% and the balance Fe and unavoidable impurities was slab heated at 1150 ° C. and hot rolled to 2.6 mm.
Annealed at 20 ° C for 2 minutes, pickled, cold rolled, final plate thickness 0.2
It was set to 9 mm. Then, at a temperature of 830 ° C. for 130 seconds,
Decarburization annealing was performed in a furnace in which the dew point was changed and the degree of oxidation was controlled as shown in Table 3 in N 2 : 25% + H 2 : 75%. At this time, it was annealed at a temperature of 830 ° C. for 10 seconds in the latter region of the decarburization annealing with the oxidation degree of the atmosphere being 0.0020. Then, a nitriding treatment was performed in an atmosphere of N 2 : 25% + H 2 : 75% + NH 3 so that the steel sheet N content was 200 ppm. The amount of iron oxide in the oxide film at this time is as shown in Table 3. BET: 22 m 2 / as an annealing separator on this coil
g, hydrated water content: 1.8% MgO: 100 parts by weight, TiO: 2 5 parts by weight and total F and Cl by HCl and HF: F: 200 ppm, Cl: 250
The annealing separator slurry adjusted to be ppm is applied and dried at a rate of 7 g / m 2 per side, and then wound up to 120
A finish annealing of 20 hours was performed at a temperature of 0 ° C. afterwards,
30% colloidal silica 100 ml + as insulating film agent
A treatment agent consisting of 50% Al primary phosphate: 70 ml + CrO: 9 g was applied so that the weight after baking was 5 g / m 2 , and the product was baked at a temperature of 850 ° C. for 30 seconds. Table 4 shows the results of the glass film and magnetic properties in this test.

【0035】[0035]

【表3】 [Table 3]

【0036】[0036]

【表4】 [Table 4]

【0037】この試験の結果、本発明の均熱帯領域のP
H2O /PH2を0.41,0.52で脱炭焼鈍した場合に
は何れもコイル外周から内周まで全巾にわたって均一で
良好なグラス皮膜を形成した。又、皮膜密着性も良好
で、グラス皮膜量の測定結果に於いて、仕上げ焼鈍中に
おける追加酸化を受けていないことが確認された。更
に、磁気特性においても、コイル最外周部で非常に良好
で、内周部と同等の結果が得られた。一方、比較例の均
熱帯領域のPH2O /PH2が0.77の場合には、グラス
コイル外周部にスケール状欠陥が多発し、内周部コイル
最冷点部付近では皮膜厚みが非常に薄くなる結果となっ
た。この場合には、何れもコイル外周部の磁性が本発明
条件に比しかなり劣る結果となった。図3および図4は
本発明2と比較例1の焼鈍分離剤塗布後の鋼板を昇温雰
囲気を露点を制御して仕上げ焼鈍し、昇温過程で引き出
し試験を行い、鋼板酸素量と窒素量の変化を調査した結
果である。本発明材の場合、仕上げ昇温過程での追加酸
化及び追加窒化が少なく、雰囲気ガスに対し安定な事が
確認された。 (実施例3)実施例1と同一の素材スラブを熱延し、板
厚2.3mmの熱延板とした。その後、実施例1と同様
に処理し、最終板厚0.225mmの冷延板とした。次
いで、実施例1の本発明4、比較例2の雰囲気条件で8
30℃の温度で110秒の脱炭焼鈍と830℃の温度で
15秒、PH2O/PH2 =0.003で酸化膜改質処理を行
い、窒化量210ppmとなるよう窒化焼鈍後、表5に
示す組成の焼鈍分離剤スラリーを鋼板片面当たり7.5
g/m2 で塗布乾燥を行い、1200℃の温度で20H
rの最終仕上げ焼鈍を行った。その後、実施例1と同様
に絶縁皮膜剤を処理し、最終製品とした。この試験にお
けるグラス皮膜と磁気特性の結果を表6に示す。
As a result of this test, P in the soaking zone of the present invention was obtained.
When H 2 O / PH 2 was decarburized and annealed at 0.41 and 0.52, a uniform and good glass film was formed over the entire width from the outer circumference to the inner circumference of the coil. Also, the film adhesion was good, and it was confirmed from the measurement results of the glass film amount that no additional oxidation was performed during the finish annealing. Further, in terms of magnetic characteristics, the outermost part of the coil was very good, and the same results as those of the inner part were obtained. On the other hand, when the PH 2 O / PH 2 in the soaking zone of the comparative example is 0.77, scale-like defects frequently occur on the outer circumference of the glass coil, and the coating thickness is extremely close to the coldest spot on the inner circumference. The result was thin. In this case, in all cases, the magnetism of the outer peripheral portion of the coil was considerably inferior to the condition of the present invention. FIG. 3 and FIG. 4 are finish annealing of the steel sheet after the application of the annealing separating agent of the present invention 2 and the comparative example 1 by controlling the dew point of the temperature rising atmosphere, and a pull-out test was conducted in the temperature rising process. It is the result of investigating the change of. In the case of the material of the present invention, it was confirmed that the additional oxidation and the additional nitridation during the finishing temperature rising process were small, and the material was stable to the atmospheric gas. (Example 3) The same material slab as in Example 1 was hot-rolled to obtain a hot-rolled sheet having a plate thickness of 2.3 mm. After that, the same treatment as in Example 1 was performed to obtain a cold-rolled sheet having a final sheet thickness of 0.225 mm. Then, the present invention 4 of Example 1 and the atmospheric conditions of Comparative Example 2 were set to 8
After decarburization annealing at a temperature of 30 ° C. for 110 seconds and oxide temperature modification treatment at a temperature of 830 ° C. for 15 seconds with PH 2 O / PH 2 = 0.003, nitriding annealing is performed so that the nitriding amount is 210 ppm, The annealing separator slurry having the composition shown in FIG.
Coating and drying at g / m 2 and 20H at 1200 ℃
Final finishing annealing of r was performed. After that, an insulating film agent was treated in the same manner as in Example 1 to obtain a final product. Table 6 shows the results of the glass film and the magnetic properties in this test.

【0038】[0038]

【表5】 [Table 5]

【0039】[0039]

【表6】 [Table 6]

【0040】この結果、本発明の脱炭焼鈍を行い、ハロ
ゲン元素量を300ppm,600ppmに調整した焼
鈍分離剤を用いた場合には、何れもコイル全長、全面に
わたって極めて良好なグラス皮膜と磁気特性が得られ
た。一方、脱炭焼鈍の均熱帯雰囲気がPH2O /PH2
0.77の比較例では本発明の焼鈍分離剤を用いてもコ
イル外周部のスケール状欠陥やコイル内周部の薄膜化傾
向が顕著に見られ、むしろグラス皮膜の外観は悪く、磁
気特性も不良であった。又、焼鈍分離剤中のハロゲン元
素量が1100ppmと多い場合には、何れの脱炭焼鈍
でもグラス皮膜が不良で、特に比較例の脱炭焼鈍を行っ
た場合には重度の皮膜欠陥が多発した。 (実施例4)実施例2の本発明2と比較例2と同一の脱
炭焼鈍と表面改質処理及び窒化処理を行ったコイルに同
様にして焼鈍分離剤を塗布し、乾燥後コイルに巻きとっ
た。次いで、表7に示す様に最終焼鈍における昇温中9
00℃までのPH2O /PH2を変更して昇温後、1200
℃の温度で20Hrの焼鈍を行った。その後、実施例
1,2と同様に絶縁皮膜剤を処理し、最終製品とした。
この試験におけるグラス皮膜と磁気特性の結果を表8に
示す。
As a result, when the decarburizing annealing of the present invention was carried out and the annealing separating agent in which the amount of halogen elements was adjusted to 300 ppm and 600 ppm was used, the glass coating and the magnetic properties were extremely excellent over the entire coil length and the entire surface. was gotten. On the other hand, in the comparative example in which the soothing atmosphere of decarburization annealing is PH 2 O / PH 2 of 0.77, even if the annealing separating agent of the present invention is used, the scale-like defects on the outer peripheral portion of the coil and the thinning tendency on the inner peripheral portion of the coil tend to occur. The appearance of the glass film was rather poor and the magnetic properties were also poor. Further, when the amount of halogen element in the annealing separator was as large as 1100 ppm, the glass film was inferior in any decarburizing annealing, and particularly when the decarburizing annealing of the comparative example was performed, severe film defects frequently occurred. . (Example 4) The same decarburization annealing, surface modification and nitriding treatments as those of the present invention 2 of Example 2 and Comparative Example 2 were similarly coated with the annealing separating agent, dried and wound on the coil. I took it. Then, as shown in Table 7, during the temperature rise in the final annealing, 9
After changing the temperature of PH 2 O / PH 2 up to 00 ° C and raising the temperature, 1200
Annealing was performed for 20 hours at a temperature of ° C. After that, an insulating film agent was treated in the same manner as in Examples 1 and 2 to obtain a final product.
Table 8 shows the results of the glass film and magnetic properties in this test.

【0041】[0041]

【表7】 [Table 7]

【0042】[0042]

【表8】 [Table 8]

【0043】この試験の結果、本発明の脱炭焼鈍条件材
を用いた場合、何れの仕上げ焼鈍条件も均一で密着性の
良い皮膜を有するコイルが得られ、磁気特性も良好で、
特に、昇温時500〜900℃の雰囲気ガス酸化度を
0.20〜0.35のファイヤライト生成域の雰囲気で
制御した場合により優れた皮膜特性と磁気特性が得られ
た。これに対し、比較例の脱炭焼鈍で場合何れもコイル
外周部の皮膜がスケール状や金属面の露出部が多発し不
均一であり、磁気特性も不良であった。特に、仕上げ焼
鈍雰囲気ガスの酸化度が0.10〜0.25或いは0.
25〜0.55のファイヤライト生成域をはずれる雰囲
気条件の生じた場合には極めて不均一なグラス皮膜とな
った。
As a result of this test, when the decarburization-annealed material of the present invention was used, a coil having a film with uniform adhesion and good adhesion was obtained under any finish annealing condition, and the magnetic characteristics were good.
In particular, superior film properties and magnetic properties were obtained when the atmosphere gas oxidation degree at a temperature of 500 to 900 ° C. was controlled in an atmosphere of a firelite generation region of 0.20 to 0.35. On the other hand, in the case of the decarburization annealing of the comparative example, the coating on the outer peripheral portion of the coil was non-uniform because of frequent occurrence of scale-like and exposed portions of the metal surface, and the magnetic properties were also poor. In particular, the degree of oxidation of the finish annealing atmosphere gas is 0.10 to 0.25 or 0.
When an atmospheric condition deviating from the firelite production range of 25 to 0.55 was generated, an extremely nonuniform glass film was formed.

【0044】[0044]

【発明の効果】本発明によれば、脱炭焼鈍で極めてタイ
トで反応性の優れる酸化膜が形成され、焼鈍分離剤のハ
ロゲン化合物との間で更にグラス皮膜形成が促進され
る。これにより、仕上げ焼鈍中での耐酸化、耐還元、耐
窒化等に優れたグラス皮膜形成が行われ、コイル焼鈍に
おいて全長、全巾にわたって、優れた皮膜特性と磁気特
性が得られる。
According to the present invention, an extremely tight and highly reactive oxide film is formed by decarburization annealing, and the glass film formation is further promoted with the halogen compound of the annealing separator. As a result, a glass film excellent in oxidation resistance, reduction resistance, nitriding resistance and the like during finish annealing is formed, and in coil annealing, excellent film characteristics and magnetic characteristics are obtained over the entire length and width.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における脱炭焼鈍工程での酸化度を示す
図である。
FIG. 1 is a diagram showing an oxidation degree in a decarburizing annealing step in the present invention.

【図2】本発明における脱炭焼鈍酸化膜の鉄酸化物量と
焼鈍分離剤中のハロゲン元素含有量の範囲を示す図であ
る。
FIG. 2 is a diagram showing a range of an iron oxide amount of a decarburized annealing oxide film and a halogen element content in an annealing separator in the present invention.

【図3】仕上げ焼鈍昇温過程のグラス皮膜形成と追加酸
化量を鋼板酸素量の変化を示す図である。
FIG. 3 is a diagram showing changes in glass film formation, additional oxidation amount, and steel plate oxygen amount during a finish annealing temperature rising process.

【図4】仕上げ焼鈍昇温過程の鋼板の窒素量の変化を示
す図である。
FIG. 4 is a diagram showing changes in the nitrogen content of the steel sheet during the finish annealing temperature rising process.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 牛神 義行 千葉県富津市新富20−1 新日本製鐵株 式会社 技術開発本部内 (72)発明者 坂井田 晃 福岡県北九州市戸畑区飛幡町1−1 新 日本製鐵株式会社 八幡製鐵所内 (72)発明者 向井 聖夫 福岡県北九州市戸畑区飛幡町1−1 新 日本製鐵株式会社 八幡製鐵所内 (72)発明者 小野 正雄 福岡県北九州市戸畑区飛幡町1−1 新 日本製鐵株式会社 八幡製鐵所内 (72)発明者 田中 収 福岡県北九州市戸畑区大字中原46番地の 59 日鐵プラント設計株式会社内 (56)参考文献 特開 平4−183817(JP,A) 特開 平3−211232(JP,A) 特開 平4−218622(JP,A) 特開 平6−336616(JP,A) 特開 平8−143970(JP,A) 特開 平8−143975(JP,A) 特開 昭55−58331(JP,A) 特開 昭54−33839(JP,A) 特開 昭62−156226(JP,A) 特開 昭62−33782(JP,A) 特開 昭55−65367(JP,A) 特開 平7−62440(JP,A) 特公 昭57−1575(JP,B1) 特公 昭49−29409(JP,B1) 管 洋三,方向性電磁鋼鈑の低鉄損化 の開発動向,西山記念技術講座テキスト (軟磁性材料の最近の進歩),社団法人 日本鉄鋼協会,1995年2月1日,第 155・156回 (58)調査した分野(Int.Cl.7,DB名) C21D 9/46 501 C21D 8/12 C22C 38/00 303 C22C 38/06 H01F 1/16 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Yoshiyuki Ushigami Inventor Yoshiyuki Ushigami 20-1 Shintomi, Futtsu City, Chiba Nippon Steel Co., Ltd. Technology Development Headquarters (72) Inventor Akira Sakita 1 Hibatacho, Tobata-ku, Kitakyushu, Fukuoka 1 -1 Inside Nippon Steel Co., Ltd. Yawata Works (72) Inventor Seio Mukai 1-1 Tobahata-cho, Tobata-ku, Kitakyushu, Kitakyushu 1-1 New Japan Works Ltd. Yawata Works (72) Inventor Masao Ono Fukuoka Prefecture 1-1 Hibatacho, Tobata-ku, Kitakyushu City New Nippon Steel Co., Ltd. Inside Yawata Works (72) Inventor Toru Tanaka 59 Nakatsura Plant Design Co., Ltd. (46), Nakahara 46, Tobata-ku, Kitakyushu City, Fukuoka Prefecture (56) References JP-A-4-183817 (JP, A) JP-A-3-211232 (JP, A) JP-A-4-218622 (JP, A) JP-A-6-336616 (JP, A) JP-A-8-143970 (JP , A) JP-A 8-143975 (JP, A) JP-A 55-58331 (JP, A) JP-A 54-33839 (JP, A) JP-A 62-156226 (JP, A) JP-A 62-33782 (JP, A) JP 55-65367 (JP, A) JP 7-62440 (JP, A) JP 57-1575 (JP, B1) JP 49-29409 (JP, B1) Yozo Kan, Development Trend of Low Iron Loss of Directional Electromagnetic Steel Sheet, Nishiyama Memorial Technical Lecture Text (Recent Progress of Soft Magnetic Materials), Japan Iron and Steel Institute, February 1, 1995, No. 155. 156 times (58) Fields surveyed (Int.Cl. 7 , DB name) C21D 9/46 501 C21D 8/12 C22C 38/00 303 C22C 38/06 H01F 1/16

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 方向性電磁鋼板素材を熱延し、1回又は
焼鈍を挟む2回以上の冷延により最終板厚とし、次いで
脱炭焼鈍し、焼鈍分離剤を塗布し、高温仕上げ焼鈍を
し、絶縁皮膜処理とヒートフラットニングを行うことか
らなる方向性電磁鋼板の製造方法において、脱炭焼鈍に
おける雰囲気ガス酸化度PH2O /PH2を昇温から均熱終
了までの間を0.15〜0.59のファイヤライト形成
領域に制御して焼鈍し、脱炭焼鈍後の鋼板の酸化膜中の
鉄酸化物量を0.05〜1.0g/m2し、仕上げ焼
鈍における昇温時500〜900℃における雰囲気ガス
のN 2 比率を50%以下とし、且つ酸化度をファイヤラ
イト形成領域に保持して昇温することを特徴とするグラ
ス皮膜の優れる方向性電磁鋼板の製造方法。ただし、鉄
酸化物量の値は酸化膜のみを溶解し、定量したFeの値
から求めたものでg/m2 値で表したもの。
1. A grain-oriented electrical steel sheet material is hot-rolled and cold-rolled once or two or more times with annealing to obtain a final sheet thickness, then decarburized and annealed, an annealing separator is applied, and high-temperature finish annealing is performed. In the method for producing a grain-oriented electrical steel sheet, which comprises performing insulating film treatment and heat flattening, the atmospheric gas oxidation degree P H2O / P H2 during decarburization annealing is set to 0.15 from the temperature rise to the end of soaking. To 0.59 in the firelite forming region, annealing is performed, and the iron oxide amount in the oxide film of the steel sheet after decarburization annealing is set to 0.05 to 1.0 g / m 2 and finish firing is performed.
Atmosphere gas at 500 to 900 ° C.
N 2 ratio of 50% or less and the degree of oxidation is fired
A method for producing a grain-oriented electrical steel sheet having an excellent glass film, which is characterized in that the temperature is maintained in the iron forming region . However, the value of the amount of iron oxide was obtained from the quantified value of Fe by dissolving only the oxide film, and was expressed in g / m 2 value.
【請求項2】 重量でC:0.021〜0.075%、
Si:2.5〜4.5%、Mn:0.05〜0.45
%、S:≦0.014%、酸可溶A1:0.010〜
0.040%、N:0.0030〜0.0130%、S
n:0.03〜0.50%、残部がFe及び不可避的不
純物からなるスラブを1280℃未満の温度で加熱後、
熱延し、1回又は焼鈍を挟む2回以上の冷延により最終
板厚とし、次いで脱炭焼鈍をし、ストリップ窒化焼鈍の
後、焼鈍分離剤を塗布し、高温仕上げ焼鈍し、絶縁皮膜
剤処理とヒートフラットニングを行うことからなる方向
性電磁鋼板の製造方法において、脱炭焼鈍における雰囲
気ガス酸化度PH2O /PH2を昇温から均熱終了までの間
を0.15〜0.59のファイヤライト形成領域に制御
して焼鈍し、脱炭焼鈍後の鋼板の酸化膜中の鉄酸化物量
を0.05〜1.0g/m2し、仕上げ焼鈍における
昇温時500〜900℃における雰囲気ガスのN 2 比率
を50%以下とし、且つ酸化度をファイヤライト形成領
域に保持して昇温することを特徴とする、グラス皮膜の
優れる方向性電磁鋼板の製造方法。
2. C: 0.021 to 0.075% by weight,
Si: 2.5-4.5%, Mn: 0.05-0.45
%, S: ≦ 0.014%, acid-soluble A1: 0.010-
0.040%, N: 0.0030 to 0.0130%, S
n: 0.03 to 0.50%, the balance consisting of Fe and inevitable impurities is heated at a temperature of less than 1280 ° C.,
Hot-rolled, cold rolled once or two times with annealing to obtain final plate thickness, then decarburized and annealed, strip nitriding annealed, annealed separating agent applied, high-temperature finish annealed, insulation coating agent In a method for producing a grain-oriented electrical steel sheet comprising treatment and heat flattening, an atmosphere gas oxidation degree P H2O / P H2 in decarburization annealing is 0.15 to 0.59 from a temperature rise to the end of soaking. In the firelite formation region of No. 3, and the amount of iron oxide in the oxide film of the steel sheet after decarburization annealing is set to 0.05 to 1.0 g / m 2 and the finish annealing is performed.
N 2 ratio of atmospheric gas at a temperature rise of 500 to 900 ° C.
To 50% or less and the degree of oxidation to the firelite formation region
A method for producing a grain-oriented electrical steel sheet having an excellent glass film, which is characterized by holding the temperature in a range and raising the temperature .
【請求項3】 脱炭焼鈍における昇温時650℃以上或
いは650℃から均熱帯前段(全均熱時間の30%未
満)における雰囲気酸化度を均熱帯後段の酸化度より低
くして焼鈍することを特徴とする請求項1又は2記載の
グラス皮膜の優れる方向性電磁鋼板の製造方法。
3. Annealing is performed at a temperature of 650 ° C. or higher during decarburization annealing or at an atmospheric oxidation degree of 650 ° C. or lower in the former stage of soaking (less than 30% of total soaking time) lower than that in the latter stage of soaking. The method for producing a grain-oriented electrical steel sheet having an excellent glass coating according to claim 1 or 2.
【請求項4】 脱炭焼鈍における均熱時後段(全均熱時
間の30%未満)及び/又は冷却時に雰囲気ガスがN2
+H2 の場合はPH2O /PH2を0.001〜0.15、
雰囲気ガスにN2 を用いる場合には露点−20℃〜47
℃とし、且つSiO2 形成領域として焼鈍することを特
徴とする請求項1,2又は3記載のグラス皮膜の優れる
方向性電磁鋼板の製造方法。
4. The atmosphere gas is N 2 at the latter stage (less than 30% of the total soaking time) during soaking in decarburizing annealing and / or during cooling.
In the case of + H 2 , P H2O / P H2 is 0.001 to 0.15,
When N 2 is used as the atmosphere gas, the dew point is -20 ° C to 47 ° C.
The method for producing a grain-oriented electrical steel sheet having an excellent glass coating according to claim 1, 2 or 3, wherein the annealing is performed at a temperature of ℃ and as a SiO 2 forming region.
【請求項5】 焼鈍分離剤として、BET:15〜40
2 /g、水和水分:1.5〜3.5%のMgO:10
0重量部に対し、F,Cl化合物の1種又は2種以上を
トータルF及び/又はClとして酸化膜中ファイヤライ
トに対し、次式で表される範囲に制御して添加すること
を特徴とする請求項1,2,3又は4記載のグラス皮膜
の優れる方向性電磁鋼板の製造方法。 −200x+400≦H≦−600x+950 H;全ハロゲン元素量(ppm)、x;酸化膜中鉄酸化物量
(g/m2)、0.05≦x≦1.0
5. BET: 15-40 as an annealing separator
m 2 / g, hydrated water content: 1.5-3.5% MgO: 10
One part or two or more kinds of F and Cl compounds are added to 0 parts by weight as total F and / or Cl, and are added to firelite in the oxide film within a range represented by the following formula. The method for producing a grain-oriented electrical steel sheet having an excellent glass coating according to claim 1, 2, 3, or 4. −200x + 400 ≦ H ≦ −600x + 950 H; total halogen element amount (ppm), x: iron oxide amount in oxide film (g / m 2 ), 0.05 ≦ x ≦ 1.0
JP01401697A 1997-01-28 1997-01-28 Manufacturing method of grain-oriented electrical steel sheet with excellent glass coating Expired - Fee Related JP3382804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01401697A JP3382804B2 (en) 1997-01-28 1997-01-28 Manufacturing method of grain-oriented electrical steel sheet with excellent glass coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01401697A JP3382804B2 (en) 1997-01-28 1997-01-28 Manufacturing method of grain-oriented electrical steel sheet with excellent glass coating

Publications (2)

Publication Number Publication Date
JPH10212526A JPH10212526A (en) 1998-08-11
JP3382804B2 true JP3382804B2 (en) 2003-03-04

Family

ID=11849407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01401697A Expired - Fee Related JP3382804B2 (en) 1997-01-28 1997-01-28 Manufacturing method of grain-oriented electrical steel sheet with excellent glass coating

Country Status (1)

Country Link
JP (1) JP3382804B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1279747B1 (en) * 2001-07-24 2013-11-27 JFE Steel Corporation A method of manufacturing grain-oriented electrical steel sheets
JP5683076B2 (en) * 2008-03-03 2015-03-11 新日鐵住金株式会社 Oriented electrical steel sheet and manufacturing method thereof
JP6885206B2 (en) * 2017-06-14 2021-06-09 日本製鉄株式会社 Directional electromagnetic steel sheet for laser magnetic domain control and its manufacturing method
JP6911596B2 (en) * 2017-07-13 2021-07-28 日本製鉄株式会社 Unidirectional electromagnetic steel sheet with excellent film adhesion and its manufacturing method
WO2019181945A1 (en) 2018-03-20 2019-09-26 日本製鉄株式会社 Grain-oriented electrical steel sheet, and method for producing same
CN115058682A (en) * 2021-12-16 2022-09-16 刘鹏程 Method for improving nitriding efficiency of high-magnetic induction oriented silicon steel

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4929409B1 (en) * 1970-11-17 1974-08-03
GB1597656A (en) * 1977-05-20 1981-09-09 Armco Inc Process of producing an electrically insulative glass film on silicon steel
JPS54160514A (en) * 1978-06-09 1979-12-19 Nippon Steel Corp Decarburization and annealing method for directional electromagnetic steel plate
JPS5558331A (en) * 1978-10-25 1980-05-01 Kawasaki Steel Corp Forming method for forsterite insulation film of anisotropic silicon steel plate
JPS5565367A (en) * 1978-11-08 1980-05-16 Kawasaki Steel Corp Forming method for forsterite insulation coating of directional silicon steel sheet
JPS6233782A (en) * 1985-08-05 1987-02-13 Mitsubishi Mining & Cement Co Ltd Production of separating agent for annealing for grain oriented silicon steel sheet
JPS62156226A (en) * 1985-12-27 1987-07-11 Nippon Steel Corp Production of grain oriented electrical steel sheet having uniform glass film and excellent magnetic characteristic
JPH0774388B2 (en) * 1989-09-28 1995-08-09 新日本製鐵株式会社 Method for manufacturing unidirectional silicon steel sheet with high magnetic flux density
JPH0823047B2 (en) * 1990-11-19 1996-03-06 新日本製鐵株式会社 Method for producing grain-oriented electrical steel sheet with excellent magnetic and coating properties
JPH04218622A (en) * 1990-12-19 1992-08-10 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet excellent in magnetic property and adhesive strength of film
JP2786576B2 (en) * 1993-05-28 1998-08-13 川崎製鉄株式会社 Manufacturing method of grain-oriented silicon steel sheet
JPH0762440A (en) * 1993-08-26 1995-03-07 Nippon Steel Corp Manufacture of grain-oriented silicon steel sheet with highly tensile and uniform glass coating film and excellent in magnetic property
JP3091096B2 (en) * 1994-11-16 2000-09-25 新日本製鐵株式会社 Annealing separator and slurry for grain-oriented electrical steel sheet to obtain excellent glass coating and magnetic properties
JP3707085B2 (en) * 1994-11-24 2005-10-19 Jfeスチール株式会社 Method for producing grain-oriented silicon steel sheet

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
管 洋三,方向性電磁鋼鈑の低鉄損化の開発動向,西山記念技術講座テキスト(軟磁性材料の最近の進歩),社団法人日本鉄鋼協会,1995年2月1日,第155・156回

Also Published As

Publication number Publication date
JPH10212526A (en) 1998-08-11

Similar Documents

Publication Publication Date Title
JP6220891B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP3387914B1 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet with excellent film properties and high magnetic field iron loss
JP2019507244A (en) Method for producing grain-oriented electrical steel sheet
JPH05112827A (en) Manufacture of grain-oriented silicon steel sheet excellent in magnetic property and coating film pr0perty
JP3537339B2 (en) Grain-oriented electrical steel sheet having excellent film properties and magnetic properties and method for producing the same
JP3386751B2 (en) Method for producing grain-oriented silicon steel sheet with excellent coating and magnetic properties
JP3382804B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent glass coating
JP2000144249A (en) Production of grain oriented silicon steel sheet excellent in coating film characteristic and magnetic property
JP2667082B2 (en) Ultra-low iron loss grain-oriented electrical steel sheet without glass coating and method for producing the same
JP3562433B2 (en) Grain-oriented silicon steel sheet with excellent magnetic and coating properties
JPH0762440A (en) Manufacture of grain-oriented silicon steel sheet with highly tensile and uniform glass coating film and excellent in magnetic property
JP2663229B2 (en) Method for producing grain-oriented electrical steel sheet having a uniform glass film and extremely excellent magnetic properties
JPH0617137A (en) Production of grain-priented silicon steel sheet free from glass film and having high magnetic flux density
JP3021241B2 (en) Method for producing grain-oriented electrical steel sheet with extremely excellent glass coating and magnetic properties
JP3885428B2 (en) Method for producing grain-oriented electrical steel sheet
JP3061491B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPH1136018A (en) Manufacture of grain oriented silicon steel sheet having extremely excellent glass film and magnetic property
JP3716608B2 (en) Method for producing grain-oriented electrical steel sheet
JPH08165525A (en) Production of grain-oriented silicon steel sheet excellent in good glass coating and extremely good in magnetic characteristic
JP2781524B2 (en) Method for manufacturing grain-oriented electrical steel sheet with extremely excellent glass coating and magnetic properties
JPH0762443A (en) Manufacture of grain-oriented silicon steel sheet with excellent magnetic property having highly tensile glass coating film
JPH11256242A (en) Production of crain-oriented magnetic steel sheet extremely excellent in glass film and magnetic property
JPH0949027A (en) Separation agent for annealing for grain oriented silicon steel sheet excellent in surface characteristic and free from glass coating, and production of grain oriented silicon steel sheet using the same
JPH09287025A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JP4559865B2 (en) Method for producing grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111220

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111220

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121220

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121220

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131220

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131220

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees