JPH04218622A - Production of grain-oriented silicon steel sheet excellent in magnetic property and adhesive strength of film - Google Patents

Production of grain-oriented silicon steel sheet excellent in magnetic property and adhesive strength of film

Info

Publication number
JPH04218622A
JPH04218622A JP41161490A JP41161490A JPH04218622A JP H04218622 A JPH04218622 A JP H04218622A JP 41161490 A JP41161490 A JP 41161490A JP 41161490 A JP41161490 A JP 41161490A JP H04218622 A JPH04218622 A JP H04218622A
Authority
JP
Japan
Prior art keywords
annealing
atmosphere
steel sheet
film
grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP41161490A
Other languages
Japanese (ja)
Inventor
Bunjiro Fukuda
福田 文二郎
Hirotake Ishitobi
石飛 宏威
Katsuro Yamaguchi
山口 勝郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP41161490A priority Critical patent/JPH04218622A/en
Publication of JPH04218622A publication Critical patent/JPH04218622A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To produce a grain-oriented silicon steel sheet excellent in magnetic properties and adhesive strength of film by regulating the furnace atmosphere in the course of temp. rise to a nonoxidizing atmosphere at the time of applying decarburizing annealing to a silicon-containing steel stock. CONSTITUTION:A silicon-containing steel stock of about 3.28% Si content is hot-rolled, and the resulting plate is cold-rolled once or is cold-rolled twice or more while process- annealed between the cold rolling stages so as to be formed to the final sheet thickness. Subsequently, the resulting cold rolled steel sheet is subjected to decarburizing annealing and further to finish annealing. At this time, in the above decarburizing annealing, the furnace atmosphere in the course of temp. rise until a decarburizing soaking temp. of about 750-900 deg.C is reached is regulated to nonoxidizing atmosphere. As the above atmosphere, a dry gas, such as Ar, He, N2, and H2, is used. In the course of soaking after temp. rise, the atmosphere is regulated to wet-gas atmosphere. By this method, the grain-oriented silicon steel sheet improved in iron loss and magnetic flux density and excellent in adhesive strength of film, external appearance, and space factor can be obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、磁気特性及び被膜特
性に優れた方向性電磁鋼板の製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a method for producing grain-oriented electrical steel sheets with excellent magnetic properties and coating properties.

【0002】0002

【従来の技術】方向性電磁鋼板は主に変圧器の鉄心とし
て用いられ、鉄心材料として、電磁的には鉄損が低く、
また磁束密度、層間抵抗が高く、さらに機械的には占積
率が高くかつ絶縁被膜の密着性が良いこと等が要求され
る。
[Prior Art] Grain-oriented electrical steel sheets are mainly used as cores of transformers, and as core materials, they have low electromagnetic core loss.
In addition, it is required to have high magnetic flux density and interlayer resistance, and mechanically, it must have a high space factor and good adhesion of the insulating film.

【0003】かかる方向性電磁鋼板の製造方法は、2次
再結晶に必要なインヒビター例えばMnS, MnSe
, AlN等を含む方向性電磁鋼スラブを加熱して熱間
圧延を行った後、必要に応じて焼鈍を行い、1回または
中間焼鈍をはさむ2回以上の冷間圧延を行って最終製品
板厚とし、ついで脱炭焼鈍を行った後、鋼板に MgO
などの焼鈍分離剤を塗布し、しかるのち仕上げ焼鈍を行
って製造される。 かかる工程の中で脱炭焼鈍の目的は、鋼板に 0.01
0〜0.100 %程度含まれるC量を 0.003%
以下程度にして磁気特性を向上させること、また冷間圧
延した鋼板を適正に1次再結晶させ、その後の仕上げ焼
鈍において適正な2次再結晶を起こさせること、さらに
鋼板表層部にSiO2等を主成分とする酸化被膜を生成
させることである。この酸化被膜は仕上げ焼鈍過程にお
いて焼鈍分離剤の MgOと次式、 SiO2+2MgO → Mg2SiO4のように反応
し、フォルステライト被膜(Mg2SiO4)を生成す
る。
[0003] This method for producing grain-oriented electrical steel sheets uses an inhibitor necessary for secondary recrystallization, such as MnS, MnSe
, After heating and hot rolling a grain-oriented electrical steel slab containing AlN, etc., annealing is performed as necessary, and cold rolling is performed once or twice or more with intermediate annealing in between to form a final product board. After thickening and then decarburizing annealing, the steel plate is coated with MgO.
It is manufactured by applying an annealing separator such as, and then performing final annealing. In this process, the purpose of decarburization annealing is to give the steel plate 0.01
0 to 0.100% The amount of C contained is 0.003%
To improve the magnetic properties to the following extent, to properly primary recrystallize the cold-rolled steel sheet, and to cause appropriate secondary recrystallization in the subsequent final annealing, and to add SiO2, etc. to the surface layer of the steel sheet. It is to generate an oxide film which is the main component. This oxide film reacts with MgO, an annealing separator, in the final annealing process as shown in the following formula: SiO2+2MgO→Mg2SiO4 to form a forsterite film (Mg2SiO4).

【0004】このフォルステライト被膜は、通常、この
被膜の上に塗布されるりん酸塩等の上塗り被膜と共に鋼
板の電気絶縁性を向上させたり、鋼板に張力を与え磁気
特性を良くする等の重要な作用を持つ。フォルステライ
ト被膜は、鋼板に対する密着性が良くかつ薄く均一であ
る必要があり、そうでない場合には、鋼板を曲げ加工し
たり切断する時に被膜が剥離したり、また磁気特性や占
積率が劣化する。フォルステライト被膜の生成は先に述
べたように脱炭焼鈍過程で生成するSiO2等の酸化被
膜と焼鈍分離剤の MgOとが反応して形成されるので
、フォルステライト被膜の性質は焼鈍分離剤の特性と共
に脱炭焼鈍時に生成される酸化被膜の性状等に大きく影
響される。すなわち良好なフォルステライト被膜を形成
させる上で脱炭焼鈍工程は重要な意味を持つ。
[0004] This forsterite coating is usually used together with an overcoat such as phosphate coated on top of this coating to improve the electrical insulation of the steel sheet and to provide tension to the steel sheet to improve its magnetic properties. It has a certain effect. The forsterite coating must have good adhesion to the steel plate and be thin and uniform; otherwise, the coating may peel off when the steel plate is bent or cut, and the magnetic properties and space factor may deteriorate. do. As mentioned earlier, the forsterite film is formed by the reaction between the oxide film such as SiO2 produced during the decarburization annealing process and the annealing separator MgO, so the properties of the forsterite film depend on the annealing separator. In addition to the characteristics, it is greatly influenced by the properties of the oxide film produced during decarburization annealing. In other words, the decarburization annealing process has an important meaning in forming a good forsterite film.

【0005】さて脱炭工程は、H2, N2を主体とす
る湿潤混合ガス雰囲気中すなわち酸化性雰囲気中で均熱
温度 750〜900 ℃で行われている。従来の技術
としては、例えば特開昭59−185725号公報に開
示されているような焼鈍雰囲気の露点を50〜75℃に
コントロールする方法、また特開昭54−160514
号公報に示されているような雰囲気の酸化度P(PH2
O)/P(H2)を脱炭の前半で0.15以上とし後半
で0.75以下でかつ前半より低くする方法などが知ら
れている。
[0005] The decarburization process is carried out at a soaking temperature of 750 to 900°C in a wet mixed gas atmosphere mainly containing H2 and N2, that is, in an oxidizing atmosphere. Conventional techniques include, for example, a method of controlling the dew point of the annealing atmosphere to 50 to 75°C as disclosed in JP-A-59-185725, and a method disclosed in JP-A-54-160514.
The degree of oxidation P (PH2
A known method is to set O)/P(H2) to 0.15 or more in the first half of decarburization and to 0.75 or less in the second half and lower than the first half.

【0006】[0006]

【発明が解決しようとする課題】しかしながら上記した
ように、酸化性雰囲気の酸化度をコントロールしたとし
ても、必ずしも十分満足のいく電磁気的性質や機械的性
質をもつフォルステライト被膜を生成させることはでき
なかった。
[Problems to be Solved by the Invention] However, as mentioned above, even if the degree of oxidation of the oxidizing atmosphere is controlled, it is not always possible to produce a forsterite film with sufficiently satisfactory electromagnetic and mechanical properties. There wasn't.

【0007】[0007]

【課題を解決するための手段】この発明は、従来技術が
脱炭焼鈍の昇温過程から上記したような酸化性雰囲気で
焼鈍を行っていたため昇温過程でも鋼板表面に酸化膜が
生成され、この時に生じる酸化膜が良質のフォルステラ
イト膜生成に悪影響を及ぼすとの観点から鋭意研究を重
ねた結果、開発されたものであり、脱炭焼鈍における昇
温過程の炉内雰囲気を非酸化性にすることにより、従来
になく、磁気特性や密着性等の優れた方向性電磁鋼板が
得られることの新規知見に立脚するものである。
[Means for Solving the Problems] The present invention is based on the prior art, in which annealing was performed in the above-mentioned oxidizing atmosphere during the temperature raising process of decarburization annealing, and an oxide film was formed on the surface of the steel sheet even during the temperature raising process. This was developed as a result of intensive research from the viewpoint that the oxide film produced at this time has a negative effect on the formation of a high-quality forsterite film, and it has been developed to make the atmosphere in the furnace non-oxidizing during the heating process during decarburization annealing. This is based on the new knowledge that by doing so, it is possible to obtain a grain-oriented electrical steel sheet with excellent magnetic properties, adhesion, etc., which has never existed before.

【0008】すなわちこの発明は、含けい素鋼素材を、
熱間圧延し、ついで1回又は中間焼鈍を含む2回以上の
冷間圧延を施して最終板厚としたのち、脱炭焼鈍を施し
、さらに仕上げ焼鈍を施す一連の工程によって一方向性
けい素鋼板を製造するに当り、  脱炭焼鈍における昇
温過程の炉内雰囲気を非酸化性とすることからなる磁気
特性、被膜密着性の優れた方向性電磁鋼板の製造方法で
ある。
[0008] That is, the present invention uses a silicon-containing steel material,
Unidirectional silicon is produced through a series of steps of hot rolling, then cold rolling once or twice or more including intermediate annealing to obtain the final thickness, decarburizing annealing, and final annealing. This is a method for producing grain-oriented electrical steel sheets with excellent magnetic properties and film adhesion, which involves making the furnace atmosphere non-oxidizing during the temperature raising process during decarburization annealing.

【0009】以下、この発明を由来するに至った実験結
果について説明する。従来の脱炭焼鈍技術は、鋼板が 
750〜900 ℃の脱炭均熱温度に至るまでの昇温過
程も酸化度P(PH2O)/P(H2)が大略0.10
〜0.80の酸化性雰囲気で焼鈍されていた。この昇温
過程の時間は、30秒から5分程度の時間を要しており
、従ってこの間でも鋼板は酸化されていた。このような
脱炭均熱温度より低い温度で生成される鋼板表層酸化膜
は、脱炭焼鈍の均熱時の脱炭を阻害するばかりか、脱炭
焼鈍後の酸化膜にも悪い影響を与えるのではないかとの
予想のもとに実験を行った。その結果、従来の焼鈍方法
のように昇温過程から酸化性雰囲気で焼鈍する場合に較
べて昇温過程を非酸化性雰囲気で焼鈍すると、鉄損、磁
束密度が向上するだけでなく、被膜の密着性、外観さら
には占積率までが向上することが新たに見出されたので
ある。
[0009] Below, the experimental results that led to this invention will be explained. Conventional decarburization annealing technology
During the heating process up to the decarburization soaking temperature of 750 to 900 °C, the oxidation degree P(PH2O)/P(H2) is approximately 0.10.
It was annealed in an oxidizing atmosphere of ~0.80. This temperature raising process took about 30 seconds to 5 minutes, and therefore the steel plate was oxidized even during this time. Such a steel plate surface oxide film that is formed at a temperature lower than the decarburization soaking temperature not only inhibits decarburization during soaking during decarburization annealing, but also has a negative effect on the oxide film after decarburization annealing. The experiment was conducted based on the assumption that this would be the case. As a result, compared to the conventional annealing method where annealing is performed in an oxidizing atmosphere from the temperature raising stage, annealing in a non-oxidizing atmosphere during the temperature raising stage not only improves iron loss and magnetic flux density, but also improves the coating. It has been newly discovered that adhesion, appearance, and even space factor are improved.

【0010】0010

【作用】昇温過程を非酸化性にすることにより特性が向
上する理由としては、次のようなことが考えられる。す
なわち従来法のように昇温過程から酸化性雰囲気で焼鈍
すると均熱温度よりも低い温度の昇温過程でも酸化被膜
が生成されるが、このような均熱温度より低い温度で生
成される酸化被膜はフォルステライト形成や磁気特性に
悪影響を及ぼすことが考えられる。これに対し、この発
明法のように昇温過程を非酸化性雰囲気にすれば、従来
法と異なった酸化被膜が生成し、これが磁気特性、被膜
特性に好影響を与えていると考えられる。
[Operation] The following may be the reason why the properties are improved by making the heating process non-oxidizing. In other words, when annealing is performed in an oxidizing atmosphere from the heating process as in the conventional method, an oxide film is generated even during the heating process at a temperature lower than the soaking temperature. It is thought that the coating has a negative effect on forsterite formation and magnetic properties. On the other hand, if the heating process is performed in a non-oxidizing atmosphere as in the method of this invention, an oxide film different from that of the conventional method is formed, and this is thought to have a favorable effect on the magnetic properties and film properties.

【0011】この発明の脱炭焼鈍に供せられる鋼板は、
MnS, MnSe,AlN等のインヒビターを含む電
磁鋼板のスラブを、熱間圧延後、必要に応じて焼鈍を行
った後、1回ないし中間焼鈍を含む2回以上の冷間圧延
によって最終製品板厚まで圧延した鋼板であり、この鋼
板を脱炭焼鈍する際に、その昇温過程を非酸化性雰囲気
にするのである。
[0011] The steel plate subjected to decarburization annealing of the present invention is
A slab of electrical steel sheet containing inhibitors such as MnS, MnSe, AlN, etc. is hot-rolled, annealed as necessary, and then cold-rolled once or twice or more including intermediate annealing to reduce the thickness of the final product. When this steel plate is decarburized and annealed, the temperature is raised in a non-oxidizing atmosphere.

【0012】具体的には、Ar, Ne等の不活性ガス
やN2等の中性ガスあるいはH2等の還元性ガスを用い
る。これらのガスには水分が含まれることもあるので十
分乾燥したドライガスを使用する必要がある。鋼板は昇
温後、均熱されるが、均熱温度は通常の脱炭焼鈍の温度
で良い。均熱時の雰囲気は、通常、H2やH2+N2等
の湿潤ガスを用い、その酸化度はP(PH2O)/P(
H2)で0.10〜0.80程度の酸化度で良いが、均
熱後半部の酸化度はこれより下げても良い。また均熱前
半の一部が昇温過程に引き続き非酸化性であっても脱炭
作用に支障のない限りこの発明の効果は認められる。昇
温過程と均熱過程で焼鈍雰囲気を変える場合は、例えば
炉内にしきり板等を設置し雰囲気ガスの混合が起きない
ようにする方法がある。均熱後の冷却過程は、すでに被
膜形成が終わっているので、公知の方法で良い。そして
かかる脱炭焼鈍後MgO を主成分とする焼鈍分離剤を
塗布したのち、約1200℃で仕上げ焼鈍を行い必要に
応じて上塗りコーティングを塗布し、製品とする。
Specifically, an inert gas such as Ar or Ne, a neutral gas such as N2, or a reducing gas such as H2 is used. Since these gases may contain moisture, it is necessary to use sufficiently dry dry gases. After the steel plate is heated, it is soaked, and the soaking temperature may be a normal decarburization annealing temperature. The atmosphere during soaking is usually a humid gas such as H2 or H2+N2, and the oxidation degree is P(PH2O)/P(
H2) may have an oxidation degree of about 0.10 to 0.80, but the oxidation degree in the second half of soaking may be lower than this. Furthermore, even if a part of the first half of the soaking is non-oxidizing after the temperature raising process, the effects of the present invention can be recognized as long as the decarburization effect is not hindered. When changing the annealing atmosphere between the temperature raising process and the soaking process, there is a method, for example, of installing a partition plate or the like in the furnace to prevent mixing of atmospheric gases. The cooling process after soaking may be carried out by any known method since the film formation has already been completed. After the decarburization annealing, an annealing separator containing MgO 2 as a main component is applied, followed by final annealing at about 1200° C., and a top coating is applied as necessary to produce a product.

【0013】[0013]

【実施例】実施例1 C:0.040 %, Si:3.28%, Mn:0
.070 %, Se:0.020 %およびSb:0
.025 %を含有する方向性電磁鋼板素材を、熱間圧
延後、 975℃、2分間の中間焼鈍を挟む2回の冷間
圧延を施して0.23mm厚の最終板厚まで圧延した。 ついでこの鋼板を次に述べる条件で脱炭焼鈍を行った。 条件A:室温から 820℃まで50秒で昇温したのち
、 820℃で2分間均熱し、その後冷却した。焼鈍雰
囲気は露点60℃の水素55%、窒素45%の湿潤混合
ガスとした。 条件B:昇温、均熱、冷却は条件Aと同じにし、昇温過
程では焼鈍雰囲気として非酸化性のN2ガスを用い、均
熱以降は露点60℃の水素55%、窒素45%の湿潤混
合ガスとした。
[Example] Example 1 C: 0.040%, Si: 3.28%, Mn: 0
.. 070%, Se: 0.020% and Sb: 0
.. After hot rolling, a grain-oriented electrical steel sheet material containing 0.025% was cold-rolled twice with intermediate annealing at 975° C. for 2 minutes to a final sheet thickness of 0.23 mm. This steel plate was then subjected to decarburization annealing under the conditions described below. Condition A: The temperature was raised from room temperature to 820°C in 50 seconds, then soaked at 820°C for 2 minutes, and then cooled. The annealing atmosphere was a wet mixed gas of 55% hydrogen and 45% nitrogen with a dew point of 60°C. Condition B: Temperature raising, soaking, and cooling are the same as condition A, and non-oxidizing N2 gas is used as the annealing atmosphere during the heating process, and after soaking, the humidity is 55% hydrogen and 45% nitrogen with a dew point of 60°C. A mixed gas was used.

【0014】ついでこれらの脱炭焼鈍板に、 MgOを
主成分とする焼鈍分離剤を塗布した後、1200℃の仕
上げ焼鈍を行い、その後りん酸塩とコロイダルシリカを
主成分とする上塗りコーティングを施し製品とした。か
くして得られた製品の1.7 T,50Hzにおける鉄
損W17/50、磁界800A/mにおける磁束密度B
8 、被膜の曲げ密着性、製品の占積率および被膜の外
観について調査した結果を、表1に示す。なお被膜の曲
げ密着性は、直径10〜50mmφ(5mm間隔) の
丸棒にエプスタイン試片を巻きつけ被膜の剥離しない最
小径で示した。
[0014] Next, these decarburized annealed plates were coated with an annealing separator mainly composed of MgO, and then subjected to final annealing at 1200°C, and then a top coating mainly composed of phosphate and colloidal silica was applied. It was made into a product. The thus obtained product had an iron loss W of 17/50 at 1.7 T and 50 Hz, and a magnetic flux density B of the magnetic field of 800 A/m.
8. Table 1 shows the results of an investigation regarding the bending adhesion of the coating, the space factor of the product, and the appearance of the coating. The bending adhesion of the coating was determined by winding an Epstein test piece around a round bar with a diameter of 10 to 50 mm (5 mm intervals) and determining the minimum diameter at which the coating did not peel off.

【0015】[0015]

【0016】同表より明らかなように、脱炭焼鈍の昇温
過程に非酸化性のN2ガスを用いた条件Bでは磁束密度
、鉄損とも従来の条件Aより優れており、被膜の密着性
、占積率もこの発明に従う条件Bの方が優れている。ま
た被膜外観は従来法である条件Aでは一部の鋼板にベア
ースポットと呼ばれる大略1mmφ前後のフォルステラ
イト被膜欠損部が散在するのが見られたのに対し、条件
Bでは均一なフォルステライト被膜が形成されており被
膜の外観の面でも条件Bの方が優れていた。
As is clear from the same table, under condition B, in which non-oxidizing N2 gas was used in the temperature raising process of decarburization annealing, both magnetic flux density and iron loss were superior to conventional condition A, and the adhesion of the coating was improved. Condition B according to the present invention is also superior in terms of space factor. Regarding the appearance of the coating, in Condition A, which is the conventional method, some forsterite coating defects called bare spots, which are approximately 1 mm in diameter, were seen scattered on some steel plates, whereas in Condition B, a uniform forsterite coating was observed. Condition B was superior in terms of the appearance of the film.

【0017】実施例2 C:0.071 %, Si:3.18%, Mn:0
.08%, Se:0.021 %, Al:0.02
5 %およびN:0.008 %を含む電磁鋼スラブを
、熱間圧延後、冷間圧延により0.23mmの最終板厚
の冷延板とした。ついでこの鋼板を次に述べる条件C,
Dで脱炭焼鈍を施した。 条件C:室温から 850℃まで60秒で昇温し、 8
50℃で80秒さらに 870℃で45秒均熱し、その
後冷却した。雰囲気は昇温開始から 850℃, 80
秒の均熱時まで露点70℃のH290%、N210%湿
潤混合ガスを用いた。均熱後半の 870℃45秒の部
分では同一ガス組成で露点を15℃まで下げたガスを用
いた。 条件D:条件Cと同様であるが、昇温過程については乾
燥Arガスを用いた。
Example 2 C: 0.071%, Si: 3.18%, Mn: 0
.. 08%, Se: 0.021%, Al: 0.02
The electromagnetic steel slab containing N: 5% and N: 0.008% was hot rolled and then cold rolled into a cold rolled plate with a final thickness of 0.23 mm. Next, this steel plate is subjected to the following conditions C,
Decarburization annealing was performed in step D. Condition C: Raise the temperature from room temperature to 850°C in 60 seconds, 8
The mixture was soaked at 50°C for 80 seconds, then at 870°C for 45 seconds, and then cooled. The atmosphere was 850℃, 80℃ from the start of temperature rise.
A wet mixed gas of 90% H2 and 10% N2 with a dew point of 70° C. was used until soaking for seconds. In the second half of soaking at 870°C for 45 seconds, a gas with the same gas composition but with a dew point lowered to 15°C was used. Condition D: Same as Condition C, but dry Ar gas was used for the temperature raising process.

【0018】ついでこれらの鋼板に、 MgOを主成分
とする焼鈍分離剤を塗布したのち、1200℃の仕上げ
焼鈍を行い、実施例1と同様に磁気特性および被膜特性
について調べた結果を、表2に示す。
[0018] These steel plates were then coated with an annealing separator containing MgO as the main component, and then subjected to final annealing at 1200°C, and the magnetic properties and coating properties were investigated in the same manner as in Example 1. The results are shown in Table 2. Shown below.

【0019】[0019]

【0020】実施例1で示したのと同様、この場合も昇
温過程を非酸化性雰囲気とした脱炭条件Dで優れた磁気
特性と被膜特性が得られた。
As shown in Example 1, excellent magnetic properties and film properties were obtained under decarburization condition D in which a non-oxidizing atmosphere was used during the heating process.

【0021】[0021]

【発明の効果】かくしてこの発明によれば、磁気特性、
被膜特性の優れた方向性電磁鋼板の製造が可能になり、
変圧器鉄心として用いる場合、変圧器の効率向上等が達
成できる。
[Effects of the Invention] Thus, according to the present invention, magnetic properties,
It is now possible to manufacture grain-oriented electrical steel sheets with excellent coating properties.
When used as a transformer core, it can improve the efficiency of the transformer.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  含けい素鋼素材を、熱間圧延し、つい
で1回又は中間焼鈍を含む2回以上の冷間圧延を施して
最終板厚としたのち、脱炭焼鈍を施し、さらに仕上げ焼
鈍を施す一連の工程によって一方向性けい素鋼板を製造
するに当り、脱炭焼鈍における昇温過程の炉内雰囲気を
非酸化性とすることを特徴とする磁気特性、被膜密着性
の優れた方向性電磁鋼板の製造方法。
[Claim 1] A silicon-containing steel material is hot-rolled, then cold-rolled once or twice or more including intermediate annealing to obtain the final thickness, and then subjected to decarburization annealing and further finished. In manufacturing grain-oriented silicon steel sheets through a series of annealing processes, the furnace atmosphere during the temperature rising process during decarburization annealing is made non-oxidizing. A method for manufacturing grain-oriented electrical steel sheets.
JP41161490A 1990-12-19 1990-12-19 Production of grain-oriented silicon steel sheet excellent in magnetic property and adhesive strength of film Pending JPH04218622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP41161490A JPH04218622A (en) 1990-12-19 1990-12-19 Production of grain-oriented silicon steel sheet excellent in magnetic property and adhesive strength of film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP41161490A JPH04218622A (en) 1990-12-19 1990-12-19 Production of grain-oriented silicon steel sheet excellent in magnetic property and adhesive strength of film

Publications (1)

Publication Number Publication Date
JPH04218622A true JPH04218622A (en) 1992-08-10

Family

ID=18520586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP41161490A Pending JPH04218622A (en) 1990-12-19 1990-12-19 Production of grain-oriented silicon steel sheet excellent in magnetic property and adhesive strength of film

Country Status (1)

Country Link
JP (1) JPH04218622A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10212526A (en) * 1997-01-28 1998-08-11 Nippon Steel Corp Production of grain oriented silicon steel sheet excellent in glass coating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10212526A (en) * 1997-01-28 1998-08-11 Nippon Steel Corp Production of grain oriented silicon steel sheet excellent in glass coating

Similar Documents

Publication Publication Date Title
JP4288054B2 (en) Method for producing grain-oriented silicon steel sheet
JPH05112827A (en) Manufacture of grain-oriented silicon steel sheet excellent in magnetic property and coating film pr0perty
JP6119959B2 (en) Method for producing grain-oriented electrical steel sheet
JP2000204450A (en) Grain oriented silicon steel sheet excellent in film characteristic and magnetic property and its production
JPH0277525A (en) Production of grain-oriented electrical steel sheet having excellent magnetic characteristic and film characteristic
JP2023508029A (en) Grain-oriented electrical steel sheet and manufacturing method thereof
JP2000144249A (en) Production of grain oriented silicon steel sheet excellent in coating film characteristic and magnetic property
JPH04173923A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property as well as in film characteristic
JPH06128646A (en) Production of grain oriented silicon steel sheet reduced in iron loss and having high magnetic flux density
JP2663229B2 (en) Method for producing grain-oriented electrical steel sheet having a uniform glass film and extremely excellent magnetic properties
JPH04218622A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property and adhesive strength of film
JP4241126B2 (en) Method for producing grain-oriented electrical steel sheet
JP3197791B2 (en) Method for producing grain-oriented electrical steel sheet with excellent punchability and magnetic properties
JP3268198B2 (en) Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic and film properties
JP2002173715A (en) Method for producing grain-oriented silicon steel plate having low iron-loss and decarburization-annealing furnace
JPH06336616A (en) Production of grain-oriented silicon steel sheet
JP2001049351A (en) Production of grain-oriented silicon steel sheet high in magnetic flux density
JP2724094B2 (en) Manufacturing method of grain-oriented silicon steel sheet
JPS59226115A (en) Production of unidirectionally oriented silicon steel plate having homogeneous forsterite insulating film
JPH02305921A (en) Production of grain-oriented steel sheet having excellent magnetic characteristic
JP4585141B2 (en) Method for producing grain-oriented silicon steel sheet and decarburization annealing furnace
JP2786577B2 (en) Manufacturing method of grain-oriented silicon steel sheet
JPH11241120A (en) Production of grain-oriented silicon steel sheet having uniform forsterite film
JPH1060533A (en) Production of grain oriented silicon steel sheet excellent in magnetic property and coating characteristics
JPH0797631A (en) Production of high magnetix flux density grain oriented silicon steel sheet excellent in magnetic property and film property