JP2675428B2 - Method for manufacturing solar cell device - Google Patents

Method for manufacturing solar cell device

Info

Publication number
JP2675428B2
JP2675428B2 JP2196585A JP19658590A JP2675428B2 JP 2675428 B2 JP2675428 B2 JP 2675428B2 JP 2196585 A JP2196585 A JP 2196585A JP 19658590 A JP19658590 A JP 19658590A JP 2675428 B2 JP2675428 B2 JP 2675428B2
Authority
JP
Japan
Prior art keywords
light
roof tile
main body
solar cell
back surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2196585A
Other languages
Japanese (ja)
Other versions
JPH0362577A (en
Inventor
宏 河田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2196585A priority Critical patent/JP2675428B2/en
Publication of JPH0362577A publication Critical patent/JPH0362577A/en
Application granted granted Critical
Publication of JP2675428B2 publication Critical patent/JP2675428B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/20Supporting structures directly fixed to an immovable object
    • H02S20/22Supporting structures directly fixed to an immovable object specially adapted for buildings
    • H02S20/23Supporting structures directly fixed to an immovable object specially adapted for buildings specially adapted for roof structures
    • H02S20/25Roof tile elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、基板裏面に太陽電池を形成した太陽電池装
置の製造方法の改良に関するものである。 (ロ)従来の技術 光エネルギを電気エネルギに変換して利用するための
太陽電池の開発が進められているが、この太陽電池によ
って家庭用電力をまかなう場合、太陽電池を広い範囲に
わたって設置する必要があり、この方法として、屋根瓦
を利用することが試みられる。即ち、屋根瓦本体として
透光性、絶縁性を備えた材料を用いて形成し、その裏面
に太陽電池を形成するが、この太陽電池の形成をレーザ
パターニングによって行う場合、屋根瓦本体の裏面にレ
ーザビームの焦点を合わせた状態で、このレザービーム
を移動させる必要がある。しかし、屋根瓦本体は、雨水
への対策上湾曲しており、しかも屋根瓦本体の加工精度
が比較的低いこともあって、レーザ発生装置の浅い焦点
進度内に納まらないために、焦点を加工位置に合わせて
プログラム制御する方式では加工不良を発生しやすい。 この対策として、レーザビーム発生器から屋根瓦本体
の面に光を投射し、この反射光を受光器で捉える変位測
定装置を用いて、発行器及び受光器と屋根瓦本体との上
下方向の距離の変化を受光器中のセンサにて水平方向の
位置として検出し、この距離が常時レーザ発生装置の焦
点距離に一致するように屋根瓦位置を調節する方式が有
力視されている。 ところが、このような方式を採る場合、従来の屋根瓦
本体は、反射損失を少なくすべく、その裏面が滑らかに
形成されているため、変位測定装置の発光器から屋根瓦
本体に投射した光が、湾曲部では受光器に捉れられない
場合が発生するという問題があった。 第7図(イ)、(ロ)及び(ハ)は屋根瓦本体裏面か
らの反射光を捉えて、その変位を計測する変位側定部の
光学系を示す模式図であり、図中1は変位測定部を構成
する発光器、2は受光器、3屋根瓦本体の裏面を示して
いる。いま発光器1から発せられた光は屋根瓦本体に入
射され、一部は透過するが、残部は反射され、第7図
(イ)に示す如く屋根瓦本体における入射点での鉛直線
が発光器1と受光器2との光軸の2等分線に一致する場
合には受光器2に捉えられるが、一致しない場合には第
7図(ロ)又は(ハ)に示す如く反射光が受光器2に達
せず、正確な距離調節ができず、また距離を誤認し、信
頼性にかけることがあった。 (ハ)発明が解決しようとする課題 本発明は、斯る問題に鑑み成されたものであって、そ
の目的とするところは屋根瓦本体における太陽電池を形
成すべき面を光の乱反射面として形成し、屋根瓦本体か
らの反射光を受光器が正確に捉えて、焦点を自動的に調
節でき、加工精度の向上を図り得るように屋根瓦の裏面
上に光の乱反射面を形成することである。 (ニ)課題を解決するための手段 透光性及び絶縁性を有する湾曲した基板の裏面側に、
その湾曲方向と直交する方向にして平行に太陽電池素子
を複数個、分離配置形成するにあたり、照射光を前記試
番裏面に対して照射させて前記基板裏面の変位を測定し
ながら、その測定値に基づいてエネルギビームを前記太
陽電池素子に照射させて、前記素子を分離させる太陽電
池装置の製造方法において、前記基板裏面の、前記照射
光が照射される箇所に乱反射面を形成し、該乱反射面で
乱反射された前記照射光を受光することで前記基板裏面
の変位を測定することを特徴とする。 (ホ)作 用 太陽電池のレーザパターニング時、その太陽電池装置
の基板表面上に光が入射されたとき、その裏面の、照射
光が照射される箇所に乱反射面が形成されているので、
変位測定装置の発光器から照射された光の一部は乱反射
され、常に受光器に正確に捉えられる。 (ヘ)実施例 第1図は本発明に係わる太陽電池装置の裏面の模式図
であり、図中10はガラス等の透光性、絶縁性材料にて形
成された屋根瓦本体、11は屋根瓦本体10を基板として、
その裏面に形成された太陽電池を示している。各太陽電
池11は具体的には示していないが、透明電極、アモルフ
ァスシリコン層、裏面電極をこの順序で積層形成して構
成されており、屋根瓦本体10を透過した光が太陽電池11
のアモルファスシリコン層に入射することにより発生し
た電子、正孔が各透明電極、裏面電極、更には隣接する
他の太陽電池11における透明電極、裏面電極同士で集電
させ、重畳されて電気的に相加された電力が取り出され
るようになっている。 ところで、上記の如き太陽電池11をレーザパターニン
グによって形成する場合、屋根瓦本体10には、第2図に
示すように、変位を測定すべき照射光が照射される箇所
に、光の乱反射面10aが形成されている。より具体的に
は、屋根瓦本体10の裏面全面(又は一部)に、細かい凹
状、凸状が屋根瓦本体10の湾曲方向と直交する方向に多
数、平行に性され、太陽電池11を形成すべき屋根瓦本体
10の裏面を滑らかな凹凸曲面からなる光の乱反射面10a
に形成してある。 上記凹状、凸状の形成ピッチは、数10〜100μm程度
であり、またその形状はサインカーブ、その他円弧を組
み合わせたものであって、変位測定装置における発光器
1からの光が第3図に示す如く屋根瓦本体10の裏面で乱
反射し、この反射光の少なくとも一部が受光器2に確実
に捉えられるようになっている。例えば、変位測定装置
の発光器1、受光器2が屋根瓦本体10面への垂直線に対
し対称な角度で配置されている場合には、凹状、凸状が
少なくともその一部において水平面10cを有するように
設定すればよい。勿論、この凹状、凸状の形成ピッチ、
形状については特に上記のものに限定するものではな
く、屋根瓦本体10の発光器1から投射した光が、屋根瓦
本体10で反射してその少なくとも一部が常に受光器2に
捉えられる態様であればどのようなものであってもよ
い。ただ、屋根瓦本体10に入射した太陽光が可及的に低
反射率で太陽電池11に入射するよう、凹状、凸状の裏面
は可及的に滑らかとするのが望ましい。 而してこのように構成された屋根瓦本体10の裏面は第
4図に示す如く光が入射されたとき、その裏面に形成さ
れている凹凸面によって乱反射される結果、第5図に示
す如く変位測定装置の発光器1から光が入射されたと
き、その光の一部は乱反射され、受光器2に常に正確に
捉えられることになる。 第6図は本発明に関わる屋根瓦本体10の裏面に形成す
る太陽電池形成過程においてレーザパターニング加工を
施している態様を示す模試図であり、21はZ軸方向、即
ち上下方向への移動テーブル、22はX軸方向、即ち左、
右方向への移動テーブル、23はY軸方向、即ち前後方向
への移動テーブル、24はレーザ発生装置、25は変位測定
装置を示している。 屋根瓦本体10は、例えばその裏面の透明電極上に形成
されたアモルファスシリコン層を各単位太陽電池を構成
する部分毎に分割形成すべく、移動テーブル21上に裏面
を上方に向けて載置されている。この移動テーブル21に
は変位測定装置25が屋根瓦本体10上に対向して、又レー
ザ発生装置24は前記変位測定装置25の発光器1、受光器
2間の中央上方に垂直下向きにし、且つ焦点を屋根瓦本
体10上のアモルファスシリコン層の面に一致せしめた状
態で配設されている。26は、Z軸方向駆動制御部、27
は、X、Y軸方向駆動制御部であり、アモルファスシリ
コン層に対し、パターンニングを施すためのレーザビー
ムの屋根瓦本体10の裏面における軌跡は予め設定されて
おり、レーザパタニング開始信号に基づき、テーブル2
2、23を移動し、レーザビームを屋根瓦本体10のアモル
ファスシリコン層上を移動せしめて、基板の裏面側に、
その湾曲方向と直交する方向と平行にアモルファスシリ
コン層を分割形成する。 一方、変位測定装置25の発光器1からは屋根瓦本体10
の裏面のアモルァスシリコン層面に光が投射され、その
裏面から乱反射を受光器2にて捉え、受光器2の一次元
センサへの受光位置の変化に対応する信号が出力され、
増幅器28にて増幅され、屋根瓦本体10の変化量としてZ
軸方向駆動制御部26へ入力される。 Z軸方向駆動制御部26は、屋根瓦本体10の上、下方向
変化量を解決すべく、移動テーブル21へ制御信号を出力
し、移動テーブル21を上下方向に移動して屋根瓦本体10
へのレーザビーム入射点を常時レーザ発生装置24のレン
ズ焦点位置に一致せしめる。 なお上記の実施例は、レーザパタニングを行う構成に
つき説明したが、例えば他に電子ビーム、イオンビーム
等の高エネルギビームをレーザ代わりに用いる場合も適
用し得ることは勿論である。また、本体の表面寸法、性
状測定にも適用することも可能である。 第8図は本発明の他の実施例を示す模式的断面図であ
り、この屋根瓦本体10′にあっては、その湾曲部分にお
ける接線が水平となる部分、即ち湾曲部分の山頂部10
d′及び谷底部10e′を除く部分を乱反射10a′に形成し
てある。これは凹凸面を形成するまでもなく、この部分
での反射光は変位測定装置25の対物レンズの視野内に捉
え得るからであり、これによって屋根瓦本体10′の透過
率も向上し、光の反射損失を低減できる効果がある。 なお、上記の実施例では屋根瓦本体10′の山頂部、谷
底部に乱反射面を形成しない構成を説明したが、この乱
反射面を形成しない領域は何等上記の部分に限るもので
はなく、変位測定装置25の発光器1と受光器2との相対
位置に応じて発光器1からの光が確実に受光器2に捉え
得る部分では凹凸を小さく、または形成しない構成とし
て良いことは勿論ある。 (ト)発明の効果 本発明によれば、透光性及び絶縁性を有する湾曲した
基板の裏面側に、その湾曲方向と直交する方向と平行に
太陽電池が複数個、分離配置形成するにあたり、その基
板の裏面上の、発光器からの光が照射される箇所の光の
乱反射面を形成し、該乱反射面で乱反射された光を受光
器で受光するようにしている。そうすることによって、
発光器からの入射した光の反射光を受光器が確実に捉え
て、屋根瓦本体の表面位置の変位を認識でき、加工ビー
ム焦点を屋根瓦本体表面に正確に位置せしめ得ることが
可能となり、屋根瓦本体の曲面、成形公差が大きくても
加工を容易に行い得、屋根瓦本体の製作も容易となって
製品のコストダウンを図れるなど、本発明は優れた効果
を層するものである。
TECHNICAL FIELD The present invention relates to an improvement in a method for manufacturing a solar cell device in which a solar cell is formed on the back surface of a substrate. (B) Conventional technology The development of solar cells for converting light energy into electrical energy for use is in progress. However, if this solar cell is used for household power, it is necessary to install solar cells over a wide range. There is an attempt to use roof tiles as this method. That is, the roof tile main body is formed of a material having a light-transmitting property and an insulating property, and a solar cell is formed on the back surface thereof. When the solar cell is formed by laser patterning, the roof tile main body is formed on the back surface. It is necessary to move this laser beam while the laser beam is focused. However, the roof tile main body is curved to prevent rainwater, and the processing accuracy of the roof tile main body is relatively low. Therefore, the roof tile main body does not fit within the shallow focus advance of the laser generator, so the focus is processed. Machining defects are likely to occur in the method of controlling the program according to the position. As a countermeasure against this, using a displacement measuring device that projects light from the laser beam generator onto the surface of the roof tile main body and captures this reflected light with a light receiver, the vertical distance between the issuer and light receiver and the roof tile main body is used. It is considered promising that the sensor in the photodetector detects the change in the horizontal direction as a horizontal position and the roof tile position is adjusted so that this distance always matches the focal length of the laser generator. However, when such a method is adopted, the conventional roof tile main body has a smooth back surface in order to reduce reflection loss, so that the light projected from the light emitting device of the displacement measuring device onto the roof tile main body is However, there is a problem that the curved portion may not be captured by the light receiver. 7 (a), (b), and (c) are schematic diagrams showing an optical system of a displacement side constant part for capturing the reflected light from the back surface of the roof tile main body and measuring the displacement thereof, and 1 in the figure. Light emitters 2 forming a displacement measurement unit, light receivers 3, and the back surface of the roof tile main body are shown. Now, the light emitted from the light emitter 1 is incident on the roof tile main body and partly transmitted, but the rest is reflected, and the vertical line at the incident point on the roof tile main body emits light as shown in FIG. 7 (a). When the light receiving unit 2 and the light receiving unit 2 coincide with the bisector of the optical axis, the light receiving unit 2 catches the light, but when they do not match, the reflected light is as shown in FIG. 7 (b) or (c). The light receiver 2 could not be reached, accurate distance adjustment could not be performed, and the distance was erroneously recognized, resulting in poor reliability. (C) Problem to be Solved by the Invention The present invention has been made in view of the above problems, and its object is to use a surface of a roof tile main body on which a solar cell is to be formed as a diffuse reflection surface of light. Form a diffused reflection surface of light on the back surface of the roof tile so that the receiver can accurately capture the reflected light from the roof tile main body and automatically adjust the focus and improve the processing accuracy. Is. (D) Means for Solving the Problems On the back surface side of the curved substrate having translucency and insulation,
When a plurality of solar cell elements are separated and arranged in parallel in a direction orthogonal to the bending direction, irradiation light is irradiated to the back surface of the sample and the displacement of the back surface of the substrate is measured. In the method for manufacturing a solar cell device in which the solar cell element is irradiated with an energy beam based on the above, the irregular surface is formed on the back surface of the substrate at a position irradiated with the irradiation light, and the irregular reflection is performed. The displacement of the back surface of the substrate is measured by receiving the irradiation light that is diffusely reflected by the surface. (E) Operation During laser patterning of a solar cell, when light is incident on the front surface of the substrate of the solar cell device, a diffused reflection surface is formed on the back surface at the location where the irradiation light is applied.
A part of the light emitted from the light emitting device of the displacement measuring device is diffusely reflected and is always accurately captured by the light receiving device. (F) Example FIG. 1 is a schematic view of the back surface of a solar cell device according to the present invention, in which 10 is a roof tile main body made of a translucent and insulating material such as glass, and 11 is a roof. Using the roof tile body 10 as a substrate,
The solar cell formed on the back surface is shown. Although not specifically shown, each solar cell 11 is configured by laminating a transparent electrode, an amorphous silicon layer, and a back electrode in this order, and the light transmitted through the roof tile main body 10 is the solar cell 11.
Electrons and holes generated by being incident on the amorphous silicon layer of each of the transparent electrodes, the back electrode, and further the transparent electrodes and the back electrodes of the other adjacent solar cells 11 are collected and superposed electrically. The added power is taken out. By the way, when the solar cell 11 as described above is formed by laser patterning, as shown in FIG. 2, the roof tile main body 10 is, as shown in FIG. Are formed. More specifically, on the entire back surface (or a part) of the roof tile main body 10, a large number of fine concaves and convexes are formed parallel to each other in a direction orthogonal to the curved direction of the roof tile main body 10 to form the solar cell 11. Roof tile body to be
Diffuse reflection surface 10a consisting of smooth uneven surface on the back side of 10a
It is formed in. The formation pitch of the concave and convex shapes is about several tens to 100 μm, and the shape is a combination of sine curve and other arcs, and the light from the light emitting device 1 in the displacement measuring device is shown in FIG. As shown, the roof tile main body 10 is irregularly reflected on the back surface, and at least a part of this reflected light can be reliably captured by the light receiver 2. For example, when the light emitting device 1 and the light receiving device 2 of the displacement measuring device are arranged at an angle symmetrical with respect to a vertical line to the surface of the roof tile main body 10, the concave shape and the convex shape at least partially form the horizontal plane 10c. It may be set to have it. Of course, this concave and convex forming pitch,
The shape is not particularly limited to the above, and the light projected from the light emitting device 1 of the roof tile main body 10 is reflected by the roof tile main body 10 and at least a part thereof is always captured by the light receiver 2. It may be of any type. However, it is desirable that the concave and convex back surfaces be as smooth as possible so that the sunlight that has entered the roof tile main body 10 will enter the solar cell 11 with the lowest possible reflectance. As a result, as shown in FIG. 5, the back surface of the roof tile main body 10 constructed in this way is diffusely reflected by the uneven surface formed on the back surface when light is incident as shown in FIG. When light is incident from the light emitting device 1 of the displacement measuring device, a part of the light is diffusely reflected and is always accurately captured by the light receiving device 2. FIG. 6 is a schematic diagram showing a mode in which laser patterning is applied in the process of forming a solar cell formed on the back surface of the roof tile main body 10 according to the present invention, and 21 is a moving table in the Z-axis direction, that is, in the vertical direction. , 22 is in the X-axis direction, that is, left,
A moving table to the right, 23 to the Y-axis direction, that is, a moving table in the front-rear direction, 24 to a laser generator, and 25 to a displacement measuring device. The roof tile main body 10 is placed on the moving table 21 with the back surface facing upward so that the amorphous silicon layer formed on the transparent electrode on the back surface of the roof tile main body 10 is divided and formed for each part constituting each unit solar cell. ing. A displacement measuring device 25 faces the roof tile main body 10 on the moving table 21, and a laser generator 24 faces vertically downward to the center between the light emitting device 1 and the light receiving device 2 of the displacement measuring device 25, and They are arranged with their focal points aligned with the surface of the amorphous silicon layer on the roof tile body 10. 26 is a Z-axis direction drive control unit, 27
Is an X- and Y-axis direction drive control unit, and the locus of the laser beam for patterning the amorphous silicon layer on the back surface of the roof tile main body 10 is preset, and based on the laser patterning start signal, Table 2
Move 2 and 23, move the laser beam on the amorphous silicon layer of the roof tile main body 10 to the back side of the substrate,
The amorphous silicon layer is divided and formed in parallel with the direction orthogonal to the bending direction. On the other hand, from the light emitting device 1 of the displacement measuring device 25, the roof tile main body 10
The light is projected onto the amorphous silicon layer surface on the back surface of the light receiving device, the diffuse reflection is captured by the light receiving device 2 from the back surface, and a signal corresponding to a change in the light receiving position of the one-dimensional sensor of the light receiving device 2 is output.
Amplified by the amplifier 28, Z as the amount of change of the roof tile 10
It is input to the axial drive control unit 26. The Z-axis direction drive control unit 26 outputs a control signal to the moving table 21 and moves the moving table 21 in the vertical direction to solve the amount of change in the upper and lower directions of the roof tile main body 10 and moves the roof tile main body 10 in the vertical direction.
The point of incidence of the laser beam on the lens is always matched with the focal point of the lens of the laser generator 24. Although the above embodiment has been described with respect to the configuration for performing the laser patterning, it is needless to say that it can be applied to the case where a high energy beam such as an electron beam or an ion beam is used instead of the laser. It is also possible to apply it to the measurement of surface dimensions and properties of the main body. FIG. 8 is a schematic cross-sectional view showing another embodiment of the present invention. In this roof tile main body 10 ', a portion where a tangent line in the curved portion is horizontal, that is, a mountain top portion 10 of the curved portion.
The portion excluding d'and the valley bottom portion 10e 'is formed as diffuse reflection 10a'. This is because the reflected light at this portion can be captured within the field of view of the objective lens of the displacement measuring device 25 without forming an uneven surface, which also improves the transmittance of the roof tile main body 10 ', The effect is to reduce the reflection loss of. In the above-mentioned embodiment, the roof tile main body 10 'has a structure in which the irregular reflection surface is not formed on the peak portion and the valley bottom portion.However, the region where the irregular reflection surface is not formed is not limited to the above portion, and displacement measurement is performed. Needless to say, the unevenness may be small or not formed in the portion where the light from the light emitter 1 can be reliably captured by the light receiver 2 depending on the relative position of the light emitter 1 and the light receiver 2 of the device 25. (G) Effect of the Invention According to the present invention, on the back surface side of a curved substrate having a light-transmitting property and an insulating property, a plurality of solar cells are formed in a separated arrangement in parallel to a direction orthogonal to the bending direction, On the back surface of the substrate, a diffused light reflection surface is formed at a position where the light from the light emitter is irradiated, and the light diffusedly reflected by the diffused reflection surface is received by the light receiver. By doing so,
The receiver can reliably capture the reflected light of the light incident from the light emitter, recognize the displacement of the surface position of the roof tile main body, and it becomes possible to accurately position the processing beam focus on the roof tile main body surface, The present invention has excellent effects such that the roof tile main body can be easily processed even if its curved surface and molding tolerance are large, the roof tile main body can be easily manufactured, and the cost of the product can be reduced.

【図面の簡単な説明】 第1図は本発明において使用する太陽電池の模式図、第
2図は本発明において使用する屋根瓦本体の模式的断面
図、第3図は第2図の屋根瓦本体の部分拡大図、第4図
は更に拡大した部分拡大図、第5図は本発明における屋
根瓦本体と変位測定装置との関係図、第6図はレーザパ
タニングの態様を示す模式図、第7図(イ)、(ロ)及
び(ハ)は従来における屋根瓦本体と、その裏面変位検
出量との関係図、第8図は本発明の他の実施例を示す模
式的断面図である。 1……発光器、2……受光器、10、10′……屋根瓦本
体、11……太陽電池、21、22、23……移動テーブル、24
……レーザ発生装置、25……変位測定装置。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view of a solar cell used in the present invention, FIG. 2 is a schematic cross-sectional view of a roof tile main body used in the present invention, and FIG. 3 is a roof tile of FIG. Partial enlarged view of the main body, FIG. 4 is a further enlarged partial enlarged view, FIG. 5 is a relationship diagram between the roof tile main body and the displacement measuring device in the present invention, and FIG. 6 is a schematic view showing a mode of laser patterning, 7 (a), (b) and (c) are relationship diagrams of a conventional roof tile main body and its rear surface displacement detection amount, and FIG. 8 is a schematic sectional view showing another embodiment of the present invention. . 1 ... Light emitter, 2 ... Light receiver, 10, 10 '... Roof tile main body, 11 ... Solar cell, 21, 22, 23 ... Moving table, 24
...... Laser generator, 25 …… Displacement measuring device.

Claims (1)

(57)【特許請求の範囲】 1.透光性及び絶縁性を有する湾曲した基板の裏面側
に、その湾曲方向と直交する方向に対して平行に太陽電
池素子を複数個、分離配置形成するにあたり、照射光を
前記基板裏面に対して照射させて前記基板裏面の変位を
測定しながら、その測定値に基づいてエネルギビームを
前記太陽電池素子に照射させて、前記素子を分離させる
太陽電池装置の製造方法において、前記基板裏面の、前
記照射光が照射される箇所に乱反射面を形成し、該乱反
射面で乱反射された前記照射光を受光することで前記基
板裏面の変位を測定することを特徴とする太陽電池装置
の製造方法。
(57) [Claims] On the back surface side of the curved substrate having a light-transmitting property and an insulating property, a plurality of solar cell elements are separated and arranged in parallel to the direction orthogonal to the bending direction, and irradiation light is applied to the back surface of the substrate. While irradiating and measuring the displacement of the back surface of the substrate, the solar cell element is irradiated with an energy beam based on the measured value, in the method for manufacturing a solar cell device for separating the element, the back surface of the substrate, A method for manufacturing a solar cell device, comprising: forming a diffused reflection surface at a position irradiated with irradiation light, and measuring the displacement of the back surface of the substrate by receiving the irradiation light diffusely reflected by the reflection surface.
JP2196585A 1990-07-24 1990-07-24 Method for manufacturing solar cell device Expired - Lifetime JP2675428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2196585A JP2675428B2 (en) 1990-07-24 1990-07-24 Method for manufacturing solar cell device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2196585A JP2675428B2 (en) 1990-07-24 1990-07-24 Method for manufacturing solar cell device

Publications (2)

Publication Number Publication Date
JPH0362577A JPH0362577A (en) 1991-03-18
JP2675428B2 true JP2675428B2 (en) 1997-11-12

Family

ID=16360188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2196585A Expired - Lifetime JP2675428B2 (en) 1990-07-24 1990-07-24 Method for manufacturing solar cell device

Country Status (1)

Country Link
JP (1) JP2675428B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55115376A (en) * 1979-02-26 1980-09-05 Shunpei Yamazaki Semiconductor device and manufacturing thereof
JPS569764U (en) * 1979-07-04 1981-01-27
JPS5749278A (en) * 1980-09-08 1982-03-23 Mitsubishi Electric Corp Amorphous silicone solar cell
JPS596074B2 (en) * 1981-10-08 1984-02-08 太陽誘電株式会社 amorphous silicon solar cell
JPS5916786U (en) * 1982-07-20 1984-02-01 三洋電機株式会社 Automatic focus laser processing machine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
テレビジョン学会誌,Vol.37,No.8 (1983) P.641−648

Also Published As

Publication number Publication date
JPH0362577A (en) 1991-03-18

Similar Documents

Publication Publication Date Title
US20080105295A1 (en) Method for structuring of a thin-layer solar module
US20130206208A1 (en) System and method for determining placement of photovoltaic strips using displacement sensors
CN101750711B (en) Focusing method and automatic focusing device and detection module thereof
JP2000091612A (en) Condensing and tracking power generator
JP2675428B2 (en) Method for manufacturing solar cell device
TWI635549B (en) Processing groove detection method and processing groove detection device of thin-film solar cell
JP4884063B2 (en) Depth measuring device
CN1728063A (en) Reducing dust contamination in optical mice
US4346988A (en) Distance measuring device
JP2000155026A (en) Sun position sensor
JPH10303444A (en) Manufacture of solar battery
US4888491A (en) Device for measuring angular deviation of flat plate
JP2000022194A (en) Solar cell power supply
JP2011198965A (en) Laser scribing device
JPH0226164B2 (en)
CN108604618B (en) Method and system for monitoring a laser scribing process for forming isolation trenches in a solar module
US8093540B2 (en) Method of focus and automatic focusing apparatus and detecting module thereof
JP3098835B2 (en) Solar cell coating
CN110749937B (en) Infrared detector with enhanced detection range
JPS60263481A (en) Manufacture of photovoltaic device
JPS5819807Y2 (en) backscattered electron detector
JPH0479564B2 (en)
JPH032512A (en) Three-dimensional position recognition device
JPS61124920A (en) Lighting device
JP2591205Y2 (en) Remote controller receiver

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term